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Abstract

Background

Microbial communities of the mouse gut have been extensively studied; however, their func-
tional roles and regulation are yet to be elucidated. Metagenomic and metatranscriptomic
analyses may allow us a comprehensive profiling of bacterial composition and functions of
the complex gut microbiota. The present study aimed to investigate the active functions of
the microbial communities in the murine cecum by analyzing both metagenomic and meta-
transcriptomic data on specific bacterial species within the microbial communities, in addi-
tion to the whole microbiome.

Results

Bacterial composition of the healthy mouse gut microbiome was profiled using the following
three different approaches: 16S rRNA-based profiling based on amplicon and shotgun
sequencing data, and genome-based profiling based on shotgun sequencing data. Consis-
tently, Bacteroidetes, Firmicutes, and Deferribacteres emerged as the major phyla. Based
on NCBI taxonomy, Muribaculaceae, Lachnospiraceae, and Deferribacteraceae were the
predominant families identified in each phylum. The genes for carbohydrate metabolism
were upregulated in Muribaculaceae, while genes for cofactors and vitamin metabolism and
amino acid metabolism were upregulated in Deferribacteraceae. The genes for translation
were commonly enhanced in all three families. Notably, combined analysis of metagenomic
and metatranscriptomic sequencing data revealed that the functions of translation and
metabolism were largely upregulated in all three families in the mouse gut environment. The
ratio of the genes in the metagenome and their expression in the metatranscriptome
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Abbreviations: NOD, non obese diabetic; RPKM,
reads per kilobase of transcript per million mapped
reads; KEGG, Kyoto Encyclopedia of Genes and
Genomes; KO, KEGG ortholog; Plin2, perilipin-2;
CRC, colorectal cancer; LPS, lipopolysaccharide;
SPF, Specific pathogen-free; RPM, Reads per
million.

indicated higher expression of carbohydrate metabolism in Muribaculum, Duncaniella, and
Mucispirillum.

Conclusions

We demonstrated a fundamental methodology for linking genomic and transcriptomic data-
sets to examine functional activities of specific bacterial species in a complicated microbial
environment. We investigated the normal flora of the mouse gut using three different
approaches and identified Muribaculaceae, Lachnospiraceae, and Deferribacteraceae as
the predominant families. The functional distribution of these families was reflected in the
entire microbiome. By comparing the metagenomic and metatranscriptomic data, we found
that the expression rates differed for different functional categories in the mouse gut envi-
ronment. Application of these methods to track microbial transcription in individuals over
time, or before and after administration of a specific stimulus will significantly facilitate future
development of diagnostics and treatments.

Introduction

With the emergence of high-throughput sequencing platforms, metagenomics has become a
powerful approach for analyzing microbial communities [1, 2]. Traditional methods for profil-
ing microbial composition rely primarily on targeted sequencing of 16S rRNA genes, which
analyzes the relative abundance of the species in a microbial community [3, 4]. By contrast,
shotgun sequencing is more effective in identifying the abundance of bacterial genes and their
potential functions within a community, because it can decode the entire genetic material [5,
6]. Several large-scale surveys have been performed to find a possible association between the
microbial composition and disease status. Nonetheless, analysis of the 16S rRNA genes or
metagenome shotgun sequencing data is limited to the survey of bacterial composition in the
microbiome of interest.

Shotgun sequencing of a metatranscriptome facilitates microbiome analysis with better res-
olution because different functional activities of individual genes in a species or in a microbial
community can be explored under different conditions [7]. By mapping RNA sequencing
reads to the known microbial genomes or a set of genes involved in a specific pathway, func-
tional activity can be measured to find up- or down-regulated pathways in the microbial com-
munities under various pathogenic conditions [5, 8-11].

Metatranscriptomic studies on the human gut microbiome revealed temporal changes of
the microbial gene expression as well as actively transcribed genes or genes with suppressed
functions [3, 12-15]. Some studies have documented the microbial dynamics of the human
oral community during the dysbiosis of oral conditions [9, 16-18]. Recently, metatranscrip-
tomic profiles of the human lung microbiome were obtained from patients with moderate and
severe chronic obstructive pulmonary disease [15, 19]. Moreover, metatranscriptomic analysis
of the gut microbiome during targeted exposure to xenobiotics [20, 21] and dietary changes
[22] has been performed to discover significant alterations in the gene expression profiles,
without significant changes in the overall community structure.

In the metagenomic analysis of the human gut microbiome, it is important to combine
metatranscriptomic data. A recent study showed that several gene groups that are less abun-
dant at the metagenomic level might be significantly active at the metatranscriptomic level,
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and vice versa [15]. This finding suggests that metagenomic analysis alone may overestimate
or underestimate functional significance of the transcribed genes in the microbiome. For
example, a metatranscriptomic analysis of 10 fecal samples from healthy volunteers has
revealed that the phylogenetic composition is not evenly distributed among individuals [13].
In contrast, a functional analysis with the Cluster of Orthologous Groups (COG) database
uncovered increased homogeneity in the distribution of the functional gene categories among
the samples [13]. In another study on human oral microbiome, the relative abundance of bac-
terial genera obtained through metagenomic analysis was also different from that obtained by
metatranscriptomic data [23]. Although recent studies have proved the association of commu-
nity composition with the genomic potential of these microbiomes, how the genomic potential
regulates transcriptional expression of the whole community is yet to be elucidated. To better
understand the transcriptional effect on the microbiome, a combination of metagenomic and
metatranscriptomic analyses is needed for specific species or strains within the complex gut
microbiota.

Although mouse has been the primary choice as a model organism for functional studies,
only a few studies have investigated the differential transcriptional ability of bacterial genes in
the mouse gut microbiome under normal conditions. For example, metatranscriptomic analy-
sis of the large intestine has been performed on a gnotobiotic mouse model system, which
focused on a relatively simple community [22, 24].

In this study, we carried out a comprehensive analysis of metagenomic and metatranscrip-
tomic data from the murine cecum. In order to find the expression patterns of the micro-
biome, pairs of the metagenome and metatranscriptome data were generated from eight mice.
To estimate the bacterial composition in the gut microbiome, three different approaches com-
prising 16S rRNA profiling using amplicon sequencing data, 16S rRNA profiling using shot-
gun sequencing data, and genome-level profiling using shotgun sequencing data were
employed for the metagenome data. In addition, the expression levels were quantified for the
dominant species of the normal flora in the murine gut microbiome. Therefore, our results
indicate a close relationship between the genomic potential and their expression in the mouse
gut, and unveil important metatranscriptomic features in specific bacterial species in complex
microbial communities.

Results
Bacterial composition of the mouse gut microbiome

We comprehensively investigated the bacterial composition of the gut microbiome from eight
mice using three different profiling approaches and examined the gut microbiome of eight
mice; 16S rRNA-based profiling with amplicon sequencing data, 16S rRNA-based profiling
extracted from shotgun sequencing data, and genome-based profiling with shotgun sequenc-
ing data. Even though each approach has its own limitations, the overall composition revealed
by the three approaches was consistent and complementary.

After we filtered out low-quality and host genomic reads, an average of 77.77% of the meta-
genome was retained (Table 1). Taxonomic assignment was performed at the phylum, family,
and genus levels (Fig 1). Our analysis, using all three approaches, revealed that Bacteroidetes is
the most abundant bacterium at the phylum level. Most Bacteroidetes strains were classified
into the family Muribaculaceae, which constituted roughly 54.99% to 83.44% of the microbial
community in the eight metagenome samples analyzed by genome-based profiling (Fig 1A).
Notably, Barnesiellaceae was the most abundant family in 16S rRNA profiling based on ampli-
con sequencing and shotgun sequencing data (Fig 1B and 1C). This discrepancy is mainly due
to the different versions of taxonomic classification that each method uses. The family
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Table 1. Summary of metagenomic (MG) and metatranscriptomic (MT) data.

Samples
MG1
MG2
MG3
MG4
MG5
MG6
MG7
MG8
MT1
MT2
MT3
MT4
MT5
MTé6
MT7
MT8

Raw reads
37,250,272
37,922,399
42,289,523
34,517,538
33,129,291
68,973,711
64,390,225
38,200,675
51,518,586
54,356,835
52,252,893
58,256,982
50,986,731
55,380,658
51,412,952
49,895,941

Low quality Host genome rRNA Duplicated Retained for analysis
1,173,619 3,432,398 152,067 1,390,026 31,102,162
1,158,675 1,785,568 165,400 1,463,627 33,349,129
2,874,989 1,267,331 178,398 2,001,801 35,967,004
1,168,846 4,671,768 137,557 1,107,499 27,431,868
860,283 4,393,498 141,944 1,277,661 26,455,905
1,209,460 11,239,904 291,189 2,932,048 53,301,110
1,665,760 5,799,291 300,742 2,630,213 53,994,219
293,686 10,501,277 146,684 1,266,447 25,992,581
39,385 846,427 105,464 9,465,557 41,061,753
39,075 1,631,150 144,028 10,226,812 42,315,770
137,428 883,052 120,324 9,685,672 41,426,417
40,854 315,347 95,836 12,617,154 45,187,791
50,246 340,820 76,258 9,771,730 40,747,677
137,955 15,735,360 293,084 3,358,470 35,855,789
47,921 10,655,569 256,501 6,858,291 33,594,670
50,853 1,933,768 127,292 10,423,191 37,360,837

https://doi.org/10.1371/journal.pone.0227886.t001

Muribaculaceae is annotated in NCBI taxonomy and its genome could be identified, while this
family is not included in the RDP classifier model. Therefore, the RDP classifier predicted this
family as Barnesiellaceae, which is close to the family Muribaculaceae. In the whole metagen-
ome analysis, we confirmed Muribaculum and Duncaniella (family Muribaculaceae), Bacter-
oides (family Bacteroidaceae), and Alistipes (family Rikenellaceae) as the predominant genera
in the mouse gut microbiome (Fig 1A). The second most abundant phylum was Firmicutes,
most of which was assigned to Anaerotruncus and Oscillibacter at the genus level (Fig 1A). The
third most abundant phylum was revealed as Deferribacteres, which mostly consisted of Mucis-
pirillum at the genus level (Fig 1A).

Consistent with our findings, Bacteroidetes and Firmicutes have been reported as the most
abundant phyla in the mouse gut microbiome in previous studies [24, 25]. Of note, Deferribac-
teres constituted a large proportion (4.26-21.78%) of our sample (Fig 1). In our analysis, higher
proportions of Deferribacteres were observed in the whole metagenome analysis (average of
10.03%), compared to those in 16S rRNA profiling (average of 4.15% and 3.60% for amplicon
sequencing and shotgun sequencing, respectively) (Fig 1). On the other hand, an extremely
small proportion (~0.1%) was present in the previous study [25]. The top 20 core genera that
were reported in the previous study [25] did not include any members of the Mucispirillum
genus; this may be attributed to the use of an older version of the genome sequence database
for metagenomic analysis in that study, since Mucispirillum has been recently sequenced, and
therefore, it was not included in the earlier versions. To verify this notion, we re-analyzed the
data from the report by Xiao et al. [25]. Twenty samples were randomly downloaded and their
taxonomy profiles were estimated by metaphlan2. We confirmed that M. schaedleri was found
in ten samples, constituting from 0.1% to 37% of the bacterial composition. Interestingly most
of the Firmicutes were classified into Clostridiaceae and Lachnospiraceae in NOD mice, while
Lachnospiraceae was observed to be the predominant family in our study (Fig 1). The effect of
diet and housing on the bacterial composition has already been discussed in a previous study
(24, 25].
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Fig 1. Bacterial composition of the eight mice gut microbiome estimated by three different approaches. Bacterial composition of the eight mice gut microbiome
estimated by genome-based profiling using shotgun sequencing data (top), 16S rRNA-based profiling using amplicon sequencing data (middle), and 16S rRNA-based
profiling using shotgun sequencing data (bottom). The color represents different phylum: cyan for Bacteroidetes, orange for Firmicutes, and yellow for Deferribacteres.

https://doi.org/10.1371/journal.pone.0227886.9001

Distribution of functional contents encoded in the predominant genera of
the mouse gut microbiome

The analysis of bacterial composition revealed that nine major genera constitute the mouse gut
microbiome by genome-based profiling (Fig 1A). All the strains identified in each genus were
analyzed to determine the functions encoded in the genome (S1 Fig). Each cell represents the
ratio of a function encoded in a strain. Similar patterns of functional distribution were
observed for most of the strains in each genus. Three strains were randomly selected manually
from each genus (except two) for better comparison of the functions in the genome of nine
genera (Fig 2, Table 2). Acutalibacter and Mucispirillum had only one strain each that were
assembled at complete or scaffold level in NCBI repository (downloaded in 2019 May).
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Fig 2. Abundance of functional contents encoded in the genomes of major nine genera in the mouse gut. Each column represents one species. Labels on the top
represent each genus. M: Muribaculum, D: Duncaniella, B: Bacteroides, A: Alistipes, O: Oscillibacter, N: Anaerotruncus, U: Acutalibacter, C: Clostridium, and L:
Mucispirillum. Specific species names are listed in Table 2. Each row represents a functional category in KEGG pathway. Each cell represents a ratio of genes in a
specific genome, which is related to a given functional category.

https://doi.org/10.1371/journal.pone.0227886.9002

Notably, translation and carbohydrate metabolism were the most abundant functions
among 35 KEGG pathway categories in all nine genera (Fig 2). In Bacteroides, carbohydrate
metabolism was the most abundant, while translation was less abundant, compared to the
other eight genera. Muribaculum, Duncaniella, and Alistipes showed similar patterns of func-

tional distribution, in which the amount of genomic content for carbohydrate metabolism was
comparable with that for translation (14.46% vs 14.48% for translation and carbohydrate
metabolism, respectively, in Muribaculum; 14.91% vs 15.57%, respectively, in Duncaniella;
14.16% vs 14.07%, respectively, in Alistipes) (Fig 2). The genomic content for metabolism of
cofactors and vitamins was more enhanced in Muribaculum, Duncaniella, Bacteroides, and
Alistipes, while in Oscillibacter and Anaerotruncus was this relatively small in number (Fig 2).

Interestingly, the increase of genomic content for membrane transport was distinct in Oscilli-
bacter, Anaerotruncus, and Clostridium.
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Table 2. Strains of the nine genera used for the analysis of functional distribution.

Species

Muribaculum intestinale

Muribaculum sp.
Muribaculum sp.
Duncaniella sp.
Duncaniella sp.
Duncaniella sp.
Bacteroides eggerthii
Bacteroides ovatus
Bacteroides vulgatus
Alistipes indistinctus
Alistipes finegoldii
Alistipes sp.
Oscillibacter sp.
Oscillibacter sp.
Oscillibacter sp.

Anaerotruncus sp.

Anaerotruncus colihominis

Anaerotruncus colihominis

Acutalibacter muris
Clostridium sp.
Clostridium sp.

Clostridium botulinum

Mucispirillum schaedleri

Strain Accession number Assembly level Size (MDb)
YL27 GCA_002201515.1 Chromosome 3.31
H5 GCA_004803915.1 Chromosome 3.69
TLL-A4 GCA_004803695.1 Chromosome 3.43
B8 GCA_005304985.1 Complete 3.38
C9 GCA_004803935.1 Chromosome 3.42
TLL-A3 GCA_004766125.1 Scaffold 3.55
AM14-12 GCA_003472985.1 Scaffold 4.13
OF05-12AC GCA_003439865.1 Scaffold 6.72
AM35-11 GCA_003468485.1 Scaffold 5.17
AF17-14 GCA_003460105.1 Scaffold 2.93
DSM 17242 GCA_000265365.1 Complete 3.73
Marseille-P5997 GCA_900604385.1 Complete 3.27
1-3 GCA_000403435.2 Scaffold 4.47
KLE 1745 GCA_000469445.2 Scaffold 3.59
KLE 1728 GCA_000469425.1 Scaffold 3.59
AF02-27 GCA_003465835.1 Scaffold 3.74
TF05-12AC GCA_003435515.1 Scaffold 3.62
2789STDY5834939 GCA_001404495.1 Scaffold 3.79
KB18 GCA_002201475.1 Chromosome 3.8
AF27-2AA GCA_003478505.1 Scaffold 3.58
AF15-41 GCA_003604095.1 Scaffold 2.75
CDC_53174 GCA_001889345.1 Complete 3.87
ASF457 GCA_000487995.1 Scaffold 2.33

https://doi.org/10.1371/journal.pone.0227886.t1002

Differentially expressed genes of the predominant genera in the mouse gut

The expression of bacterial genes was quantified by all metagenomic and metatranscriptomic
reads that were mapped against the reference genomes of the six most abundant species: Muri-
baculum, two species of Duncaniella, B. caccae, a speies of Oscillibacter, and M. schaedleri.
Among the reference genomes in the NCBI repository, the closest strains were selected for
each species. The abundance of each gene was measured by RPKM (Reads Per Kilobase tran-
script and per Million mapped reads) to determine the distribution of expression levels across
the entire set of genes in each species. Considering the uneven abundance of genes in a species,
which is due to the limitation of uneven sequencing, the expression levels of genes were inves-
tigated. Notably, the interquartile range of the gene abundance in the metagenomic data was
narrow for most of the species, while the range of their expression levels was much wider in
the metatranscriptomic data (S2 Fig).

The quantification was further analyzed to characterize the functions of the normal flora in
the mouse gut. For the three genera of Muribaculum, Duncaniella, and Mucispirillum that had
enough reads covering more than 80% of the genome, the functional distribution was esti-
mated based on the KEGG classification [26]. The reads of the metagenome and metatran-
scriptome that were mapped to the genera and the functions in the KEGG database, were
quantified and normalized. Comparison of the function distributions of the metagenome with
that of the metatranscriptome clearly revealed the differential expression of functions at the
genomic and transcriptomic levels (Fig 3). As indicated by the functional analysis of the major
genera (Fig 2), translation and carbohydrate metabolism were enhanced in the entire metagen-
ome data (Fig 3).
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Fig 3. Abundance of functional contents measured from metagenomic and metatranscriptomic reads. Metagenomic and
metatranscriptomic reads mapped to the top three genera (Muribaculum, Duncaniella, and Mucispirillum) were classified against
the KEGG database. An abundance of functional contents encoded in the genome was measured from metagenomic reads (red)
and expressed functional contents were measured from metatranscriptomic reads (green).

https://doi.org/10.1371/journal.pone.0227886.9003

Translation showed a distinctive increase in transcription, compared to the genomic con-
tents in all three genera of Muribaculum, Duncaniella, and Mucispirillum (Fig 3). Though
increased rate of metatranscriptome to metagenome of carbohydrate metabolism was lower
than that of translation, expression level of carbohydrate metabolism was up-regulated in all
three genera of Muribaculum, Duncaniella, and Mucispirillum (Fig 3). In contrast, expression
level of metabolism of cofactors and vitamins, amino acid metabolism, and nucleotide metabo-
lism was down-regulated in all three genera of Muribaculum, Duncaniella, and Mucispirillum
(Fig 3). In case of energy metabolism, expression rate was not changed in Muribaculum and
Duncaniella, but it was dramatically up-regulated in Mucispirillum (Fig 3). These results show
that translation and carbohydrate metabolism, occupied significantly abundant gene contents
in mouse gut microbiome, transcriptionally up-regulated in Muribaculum, Duncaniella, and
Mugcispirillum. In addition, increased or decreased pattern of transcriptional expression ratio
is almost similar in Muribaculum, Duncaniella, and Mucispirillum.

Functional dynamics of the metagenome and metatranscriptome

To investigate the functional distribution in the entire mouse gut microbiome with respect to
the genomic contents and functional activity, both the metagenomic as well as the metatran-
scriptomic data were compared using KEGG database. Among seven categories at the highest
level in KEGG pathways (metabolism, genetic information processing, environmental informa-
tion processing, cellular processes, organismal systems, human disease, and drug development),
genetic information processing function was the most dominantly expressed in transcriptomic
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data, which was due to the translation function (S3 Fig). In genetic information processing cate-
gory, translation, and replication and repair functions were abundant (S3 Fig). In particular,
translation was the significantly abundant function in the metatranscriptomic data, compared
to the metagenomic data. However, replication and repair function was less abundant in the
metatranscriptomic data. It ought to be noted that, this comparison was based on the relative
abundance, indicating that the ratio of expressed transcripts among the entire transcripts in
the metatranscriptomic data set was compared with the ratio of the genes among the entire
genes in the metagenomic data set.

Notably, metabolism functions constitute a large proportion of both the metagenomic and
metatranscriptomic data. In particulr, carbohydrate metabolism, amino acid metabolism, nucle-
otide metabolism, energy metabolism, and metabolism of cofacters and vitamins were the abun-
dant functions, which constituted more than 73.05% and 73.52% of metagenomic and
metatranscriptomic reads, respectively that were assigned to the metabolism categories (Fig
4A). Carbohydrate metabolism and energy metabolism showed an evident increase in transcrip-
tion, compared to the genomic contents. Carbohydrate metabolism constitutes 35.98% in tran-
scriptomic contents, compared to 25.95% of metabolism in genomic contents (Fig 4A). Energy
metabolism showed a similar pattern: 13.57% in transcriptomic contents vs 8.45% in genomic
contents (Fig 4A). Among Carbohydrate metabolism pathways, Glycolysis / Gluconeogenesis
and Inositol phosphate metabolism showed the higher expression rate compared to the geno-
mic contents, while amino sugar and nucleotide sugar metabolism showed the lower expression
rate (Fig 4B). Among the energy metabolism pathways, Oxidative phosphorylation showed the
lower expression activity among seven functional categories that are defined in energy metabo-
lism pathways (Fig 4C). On the contrary, amino acid metabolism and nucleotide metabolism
showed a decrease in transcription (Fig 4A). Amino acid metabolism constitutes 13.99% of
metabolism in genomic contents, and 10.95% in transcriptomic contents. Nucleotide metabo-
lism constitutes 13.81% of metabolism in genomic contents, and 8.01% in transcriptomic con-
tents. In metabolism of cofacters and vitamins pathway, Pantothenate and CoA biosynthesis and
Biotin metabolism showed an increase in transcription (Fig 4D).

In order to profile the abundance of functional genes, genes were predicted from both the
metagenomic and the metatranscriptomic data sets, and mapped against the KEGG protein
database [26]. The number of non-redundant genes was tallied for each functional category
(54 Fig). The abundance of genes predicted from the assembled contigs revealed the genetic
diversity rather than their expression levels in the metatranscriptomic data. This is because the
reads sharing the origin are merged into a contig in the assembly process. The functions
involved in translation and carbohydrate metabolism were highly encoded and expressed by
the genomes. This result suggests that such functions are not only abundant but also highly
expressed.

The functional diversity was compared among the metagenomic and metatranscriptomic
data sets using principle component analysis (PCA) (Fig 5). The metagenomic data were
closely clustered, while the metatranscriptomic data were more scattered. This result might
imply that the functional activities of the microbiome are more dynamic in different mice even
though the functional contents in the genome show similar patterns. In addition, we observed
that the functional distribution in the transcriptomic data differed from that of the genomic
data.

Discussion

We comprehensively investigated bacterial composition of the mouse gut using amplicon
sequencing and shotgun sequencing approaches. Our data revealed that Bacteroidetes was the
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https://doi.org/10.1371/journal.pone.0227886.9004

most abundant bacterium at the phylum level and was classified into the following three major
genera: Muribaculum and Duncaniella of the family Muribaculaceae, and Bacteroides of the
tamily Bacteroidaceae. These findings were consistent with the murine gut microbiome com-
position determined previously by metagenomic shotgun sequencing [25]. The second major
phylum was Firmicutes, which was mostly classified into Anaerotruncus and Oscillibacter. Xiao
et al. also reported Firmicutes as the second most abundant phylum [25]. In our study, the
third most abundant phylum was Deferribacteres, most of which was assigned to Mucispirillum
at the genus level.

At the family level, Barnesiellaceae was the most abundant family in 16S rRNA-based profil-
ing. This discrepancy is mainly due to the different versions of database for taxonomic classifi-
cation that each method uses. Muribaculaceae genome is currently available in NCBI
repository, which can be used as a reference genome. However, this family is not included in
the current version of RDP classifier model. Therefore, the RDP classifier predicted this family
as Barnesiellaceae, which is close enough to the family Muribaculaceae.
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Fig 5. Principle component analysis of functional composition in metagenomic and metatranscriptomic data sets. Each
sample was colored based on their source; metagenome sample is indicated by coral and metatranscriptome sample by mint color.

https://doi.org/10.1371/journal.pone.0227886.9g005

We also quantified the expression at the gene level by mapping all metagenomic and meta-
transcriptomic reads into reference genomes of the five most abundant species. The major
genera play important roles in specific functions; for example, Muribaculum and Duncaniella
(family Bacteroidetes) have more functions related to translation, whereas Mucispirillum (fam-
ily Deferribacteres) has more functions for folding, sorting, degradation, and metabolism.
These data indicate that the abundance of a gene family in the microbiota community appears
to be a principal determinant of the abundance of its corresponding transcript.

To date, several reports have shown microbiota structure and microbiome function in the
mouse gut under various environmental conditions by metatranscriptomic analysis [22, 24,
27-37]. In particular, metatranscriptomic analysis of the mouse gut microbiome during tar-
geted exposure to lard and primary bile acid diet [29], a high-protein diet [31], and vitamin
and mineral deficiencies [32] uncovered significant alterations in both bacterial community
structure and their gene expression profiles. In addition to diet conditions, targeted infection
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with Clostridium difficile [30], specific exposure to organophosphate insecticides [34], and
antibiotics [38] alter both the microbiome structure and its functional activity. In contrast,
during a host gene deficiency, as in Perilipin-2 (Plin2)-deficient mice, high-fat diet causes the
microbiota of Plin2-null mice to undergo significant shifts in transcript expression, despite no
distinct change in overall community structure, as compared to wild-type mice [28]. Although
the above reports point to the correlation between the whole-community composition and
their genomic potential activity based on metatranscriptomic analysis, studies on how the
genomic potential regulates the transcriptional expression in specific species or strains within
a complex gut microbiota have not been conducted.

To the best of our knowledge, this is the first in-depth study to validate the functional activ-
ity of specific commensal microbes such as Muribaculum, Duncaniella, Bacteroides, and
Mugcispirillum, the most abundant genera within the mouse gut, via a combination of metage-
nomic and metatranscriptomic analyses. Different metatranscriptomic depth at various genes
indicates that functional activities of the species are differently regulated in a gene-specific
manner. Similarly, several genes dealing with bile acid metabolism in B. vulgatus are differen-
tially expressed under a vitamin A deficiency condition [32]. During colorectal cancer (CRC)
development, functional differences in the microbiome related to specific bacterial species,
emerge from four pathways: lipopolysaccharide (LPS) production, polyamine synthesis, buty-
rate metabolism, and oxidative phosphorylation. Notably, an LPS production-related gene,
specific for M. schaedleri, is dramatically upregulated in a CRC mouse model [33], supporting
the differential expression of genes in M. schaedleri, also observed in our study.

The relative functional importance of genes in the gut of the living organism tends to be
underestimated or overestimated by the metagenomics-only approach. Therefore, we exam-
ined transcriptionally up-regulated gene families by means of metagenomic and metatran-
scriptomic reads, mapped to those microbes. Based on functional classification via the KEGG
database, the genes involved in translation, carbohydrate metabolism, and energy metabolism
exhibited higher expression at the metatranscriptomic level, compared to that at the metage-
nomic level.

Consistent with the higher diversity and expression of ribosomal structure and biogenesis
gene families in our metatranscriptomic data, microbial genes encoding ribosomal proteins
are some of the most highly and variably expressed genes in either the human or mouse micro-
biome [15, 24]. The end products of ribosomal proteins are essential building blocks of the
ribosome and must be constantly synthesized for survival of all microbes. Therefore, the high
RNA expression level and their variability were caused largely by their high abundance at the
DNA level. In addition, ribosomal genes are well conserved across species and strains. These
represent a functional metatranscriptomic tool by which metagenomic stability (gene abun-
dance and conservation) can be directly achieved in various host gut environments. We also
observed that the carbohydrate metabolism gene families had much higher diversity and
expression in the metatranscriptomic analysis, in line with earlier findings in both humans
and mice [15, 24]. In general, metabolic routes including metabolism of carbohydrates such as
starch and sucrose are unchanged or underexpressed, judging by the results of the metatran-
scriptomic analysis [13, 15]. In addition, many pathways related to the biosynthesis of small
metabolites are expressed at relatively low levels [13, 15]. Given that these compounds have
high bioavailability in the host gut owing to host diet, it seems reasonable that it would be
more beneficial to transport them rather than to synthesize them in relation to energy effi-
ciency. Notably, the less transcribed gene families in the metatranscriptomic analysis also have
much lower abundance of metagenomes, except for gene families of replication, recombina-
tion, and repair. These data suggest that gene families relatively essential for microbial survival
are likely to comprise higher abundance of genes exhibiting higher expression.
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Conclusions

In this study, we demonstrated a fundamental methodology for linking genomic and tran-
scriptomic datasets to examine the functional activities of specific bacterial species in a compli-
cated microbial environment. We investigated the normal flora of the mouse gut using three
different approaches, and identified Muribaculaceae, Lachnospiraceae, and Deferribacteraceae
as the predominant families. The overall bacterial composition was consistent, and the discrep-
ancy was mostly due to the different taxonomic classifications used in the different databases.
By comparing the metagenomic and metatranscriptomic data, we found that the expression
rates differ for different functional categories in the mouse gut environment. In particular,
translation and carbohydrate metabolism were the most abundant functions among 35 KEGG
pathway categories in the most abundant nine genera. Application of these methods to track
microbial transcription in individuals over time, or before and after administration of a spe-
cific stimulus, will significantly facilitate future development of diagnostics and pre/probiotic
treatments.

Materials and methods
Preparation of samples

Eight-week-old wild-type C57BL/6 male mice were used in this study. Conventionally raised
mice were housed in a specific pathogen-free (SPF) animal facilities under a 12 h light-dark
cycle at 20+2°C and humidity range of 50+5% and maintained on normal chow diet (LabDiet
5053). Animals had access to diet and water ad libitum. Total eight mice were randomly
grouped into three (3,2 and 3 mice). Each group of mice were anesthetized with zoletil-rom-
pun mixture, a transverse abdominal incision was made, and the cecum was extracted. All ani-
mal experiments were performed according to the Guide for the Care and Use of Laboratory
Animals and were approved by the Institutional Animal Care and Use Committee (IACUC) of
Yonsei University Health System.

Shotgun sequencing of the metagenome

Genomic DNA was isolated from murine cecal content using the QIAamp DNA Stool Mini
Kit (Qiagen, Germany). The quantity and quality of DNA were assessed using PicoGreen
dsDNA quantitation reagent (Invitrogen, Carlsbad, CA) and agarose gel electrophoresis,
respectively. Each sequenced sample was prepared according to the Illumina protocols. Briefly,
100 ng of genomic DNA was fragmented into 350 bp inserts by means of a Covaris Focused-
ultrasonicator (Covaris Inc., Woburn, MA). The fragmented DNA was blunt-ended and phos-
phorylated. After the end repair process, the appropriate library size was selected using differ-
ent proportions of the sample purification beads. A single ‘A’ base was ligated to the 3’ end of
the fragmented DNA, followed by ligation of the Illumina adapters. The final ligated product
was quantified by qPCR according to the qPCR Quantification Protocol Guide, and its quality
was assessed using a 2200 TapeStation (Agilent Technologies, Palo Alto, CA). Sequencing was
carried out on the HiSeq™ 4000 platform (Illumina, San Diego, CA).

Shotgun sequencing of the metatranscriptome

Total RNA was extracted from mouse cecum using the Hybrid-RTM total RNA Purification
Kit (GeneAll Biotechnology, Seoul, Korea). Concentration of total RNA was determined by
Quant-IT RiboGreen (Invitrogen). To assess the integrity of total RNA, the samples were run
on the TapeStation RNA ScreenTape (Agilent Technologies). Only high-quality RNA prepara-
tions, with RIN greater than 7.0, were used for RNA library construction. A library was
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prepared from each sample using 1 pg of total RNA with the Illumina TruSeq RNA Sample
Prep kit (Illumina, Inc., San Diego, CA). In the first step, the poly-A-containing mRNA of a
mouse was removed by obtaining a supernatant by means of poly-T oligo-conjugated mag-
netic beads. Thereafter, bacterial rRNA in the collected supernatant was depleted by Ribo-
Zero bacteria. The remaining RNA was fragmented into small pieces using divalent cations at
elevated temperature. The cleaved RNA fragments were transcribed into first-strand cDNA
using SuperScript II Reverse Transcriptase (Invitrogen) and random primers. This step was
followed by the second-strand cDNA synthesis, involving DNA Polymerase I and RNase H.
These cDNA fragments were subjected to an end repair process, the addition of a single ‘A’
base, and ligation of the indexing adapters. The products were purified and enriched by PCR
to create the final cDNA library. The libraries were quantified by qPCR according to the qPCR
Quantification Protocol Guide (KAPA Library Quantification kits for Illumina Sequencing
platforms). The quality of the libraries was assessed using the TapeStation D1000 ScreenTape
(Agilent Technologies). The indexed libraries were sequenced by the Macrogen Inc. (Seoul,
Korea) on the HiSeq 4000 platform (Illumina). All raw sequencing data described in this study
are available at European Nucleotide Archive (ENA) with the accession number PRJEB33889.

Processing of shotgun sequencing reads

Adapter sequences, low quality, and host reads were removed before the analysis. Adapter
sequences were removed by SeqPurge, and low quality reads (whose Phred quality score was
lower than 20) were discarded using Sickle; N-containing reads were discarded by in-house
scripts. Therefore, an average of 3.01% and 0.13% of reads were discarded from the metage-
nomic and metatranscriptomic samples, respectively (Table 1). To remove the host reads, the
retained reads were mapped against the USCS mouse reference genome (mm10) using Bowtie
[39]. Reads that were mapped with two or fewer mismatches were discarded. Consequently, an
average of 12.04% and 7.56% of reads were discarded from metagenomic and metatranscrip-
tomic samples, respectively. In addition, the metatranscriptome reads were mapped against
mouse mRNA sequences to remove the reads. An average of 0.02% and 0.01% of reads were
discarded. Finally, ribosomal RNA reads were filtered out by SortMeRNA and duplicated
reads were removed by FastUniq. An average of 0.42% and 0.29% of reads were filtered as
rRNA reads and 3.88% and 17.11% of reads were removed as duplicated reads.

Contigs were assembled from each metagenomic and metatranscriptomic sequence using
megahit [40] with default parameters. In each contig, genes were predicted using FragGeneS-
can [41] with the Illumina_5 error model.

For reads classified as rRNA, 16S rRNA reads were obtained by SortMeRNA using only the
16S rRNA database. The 16S rRNA reads that were retained, were used for the analysis of bac-
terial composition.

To obtain targeted variable region, amplicon sequencing reads were assembled by FLASH,
allowing 20 to 300 bp overlap. Incorrectly assembled fragments, whose lengths were shorter
than 380 bp, were filtered out by Sickle.

Examination of bacterial composition

Operational Taxonomic Units (OTUs) were constructed for 16S rRNA-based profiling by cd-
hit with 99% sequence similarity threshold. Their representative sequences were classified by
RDP (Ribosomal Database Project) naive Bayesian classifier [42], which classified all inputs
from the phylum to the genus level and reported their scores. Only those classification results
whose confidence scores were over 0.8 by default were considered in order to avoid
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misclassification. OTUs were classified at the lowest level and bacterial composition was esti-
mated based on the classification results.

To analyze the bacterial composition using the metagenomic sequences, metagenomic
reads were searched using the NCBI reference genomes. All reference sequences (complete-
and scaffold-level assembly) were downloaded from the NCBI RefSeq database. For initial
screening, metagenomic reads were searched against all proteins using DIAMOND [43] (cut
off of e-value 1.0e ', percent identity 70%, and query coverage 70%). The references to which
reads were mapped were retained for more detailed analysis. Metagenomic reads were
searched against the selected reference genomes using Bowtie [39]. Best hits whose percent
identities were higher than 85% were retained. Aligned reads were classified based on the
NCBI taxonomy and bacterial composition was estimated through tallying up the mapped
reads.

To estimate bacterial composition in the data from the report by Xiao et al., 20 samples
(ERR675499, ERR675503, ERR675507, ERR675513, ERR675525, ERR675553, ERR675554,
ERR675575, ERR675584, ERR675600, ERR675607, ERR675610, ERR675623, ERR675638,
ERR675652, ERR675655, ERR675667, ERR675672, ERR675679, ERR675687) were down-
loaded. MetaPhlan2 was performed with the default parameter setting except ignore flags (—
ignore-archaea,—ignore-eukaryotes,—ignore-viruses) to determine whehter Mucispirillum
exists or not.

Examination of functional contents

To examine the functional contents, processed reads and proteins were searched against
KEGG protein database using DIAMOND [43] (percent identity and query coverage cutoffs
were set as 70% and 70%, respectively, for read search, and 50% and 50%, respectively, for pro-
tein search; e-value cutoff was 1.0e '° for both searches). Database proteins that have no KEGG
Ortholog (KO) number or have KO number without functional classification were discarded.
For reads, RPKM values were calculated for all proteins and these values were tallied up to
functional categories. RPKM is defined as below.

RPKM = x x 10”/(y x z)

, where x is the number of reads mapped to the gene, y is the length of the gene sequence, and
z is a total number of mapped reads in the sample.

For proteins, the number of mapped reads was counted for all proteins; the counts were tal-
lied up to functional categories, and normalized by total number of mapped reads. Most pro-
teins in the KEGG database have a single KO number, with only a few proteins having
multiple KO numbers. In such cases, one KO was randomly chosen.

For statistical analysis of expression level, t-test was performed by using python statistics
library of scipy.stats. For regression analysis, functions Im was used from standard R package.

Supporting information

S1 Fig. Abundance of functional contents encoded in each genus. Each column represents
one species. Labels on the top represent each genus. Muribaculum (A), Duncaniella (B), Bac-
teroides (C), Alistipes (D), Oscillibacter (E), Anaerotruncus (F), and Clostridium (G). Each row
represents a functional category in KEGG pathway.

(TIF)

S2 Fig. Distribution of RPKM:s for genes in six predominant species.
(TIF)
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S3 Fig. Read-based abundance of genomic contents and functional activities of each mouse
gut microbiome. Abundance was measured from the entire metagenomic and metatranscrip-
tomic reads sequenced from each mouse gut.

(TIF)

S4 Fig. Gene-based diversity of genomic contents and functional activities of each mouse
gut microbiome. Abundance was measured from the number of non-redundant genes pre-
dicted from each mouse gut.

(TIF)
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