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Abstract

Background: In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, excessive 

irons as well as lactoferrin (Lf), but not transferrin (Tf), have been found in and around the 

affected regions of the brain. These evidences suggest that lactoferrin plays a critical role during 

neurodegenerative diseases, although Lf-mediated iron transport across blood-brain barrier (BBB) 

is negligible compared to that of transferrin in normal condition. However, the kinetics of 

lactoferrins and lactoferrin-mediated iron transport are still unknown.

Method: To determine the kinetic rate constants of lactoferrin-mediated iron transport through 

BBB, a mass-action based ordinary differential equation model has been presented. A Bayesian 

framework is developed to estimate the kinetic rate parameters from posterior probability density 

functions. The iron transport across BBB is studied by considering both Lf- and Tf-mediated 

pathways for both normal and pathologic conditions.

Results: Using the point estimates of kinetic parameters, our model can effectively reproduce the 

experimental data of iron transport through BBB endothelial cells. The robustness of the model 

and parameter estimation process are further verified by perturbation of kinetic parameters. Our 

results show that surge in high-affinity receptor density increases lactoferrin as well as iron in the 

brain.

Conclusions: Due to the lack of a feedback loop such as iron regulatory proteins (IRPs) for 

lactoferrin, iron can transport to the brain continuously, which might increase brain iron to 

pathological levels and can contribute to neurodegeneration.

General significance: This study provides an improved understanding of presence of 

lactoferrin and iron in the brain during neurodegenerative diseases.
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1. Introduction

Abnormally high levels of irons have been demonstrated in the brain cells during several 

neurodegenerative disorders such as Parkinson’s disease (PD) [1–5] and Alzheimer’s disease 

(AD) [2, 6]. Although little is known about the etiology of these neurodegenerative diseases, 

evidence suggests that misregulation of iron metabolism is a major player [1, 3, 7, 8]. For 

instance, altered iron metabolism leads to the excess free radical formation, which in turn 

results in cell death [8, 9]. In addition, excessive intracellular irons produce both oxidative 

stress and mitochondrial dysfunction, which causes cytoskeletal damage and neuronal death 

[1, 7].

Iron can enter the brain through the blood-brain barrier [5]. Among various iron transport 

mechanisms, transferrin-mediated iron transcytosis is the most dominant in BBB endothelial 

cells [10, 11]. However, the possibility of transferrin involvement in excess iron transport 

(found in various disease states) can be ruled out because of the presence of iron regulatory 

proteins that precisely control the Tf-mediated iron transport [12]. Furthermore, in AD and 

PD patients, transferrin binding sites (i.e. the transferrin receptors expression) are reduced, 

while the iron concentration is increased in brain [13–15]. These evidences indicate that the 

focus needs to be paid on other iron transport mechanisms such as Lf-mediated iron 

transport in addition to Tf-mediated pathways.

Lactoferrins are widely distributed in the body fluids which are synthesized by exocrine 

glands and neutrophils [16]. Several studies on lactoferrins have shown that the 

concentration of lactoferrins in the brain is enhanced in case of neurodegenerative disorders 

[17–19], while lactoferrin is practically absent in normal brain cells [13]. For instance, in the 

case of PD, a higher concentration of lactoferrins is found in the surviving neurons [20]. The 

excessive accumulation of lactoferrins and associated iron may lead to a cytotoxic effect that 

results in the formation of intracellular lesions and neuronal death [13].

Lactoferrins can cross the BBB via receptor-mediated transcytosis as iron-bound or iron-free 

form [21]. Lactoferrins can also assist in nanoparticle based drug delivery through BBB [22–

25]. The BBB endothelial cells express two types of lactoferrin binding sites [21, 26, 27]: 

high-affinity lactoferrin receptors (90000±16000 / cell) and low-affinity lactoferrin receptors 

(890000±70000 / cell) [21]. In neurodegenerative diseases, the expression of lactoferrin 

receptors (LfRs) is further upregulated in brain cells [19, 26, 28] resulting in a higher 

amount of lactoferrin and iron transport. For example, Faucheux et al. [26] found that, in 

PD, LfR immunoreactivity on endothelial cells is increased and it is more pronounced in 

midbrain regions where the loss of dopaminergic neurons is severe. Moreover, the LfR 

expression is not regulated by intracellular iron concentration or iron regulatory proteins 

[29] that allows LfR expression to lurch out of control, leading to the uptake of excessive 

amounts of Lf-mediated iron [26]. Thus, to understand the etiology of neurodegenerative 

diseases, more focus should be placed on Lf-mediated iron transport.

At present no theoretical framework exists for Lf-mediated iron transport that can connect 

various key players in the transcytosis process. In a previous work, we have developed a 

comprehensive mathematical model for Tf-mediated iron transport across BBB [30]. In this 
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study, a mass-action based mathematical model has been proposed for the first time for Lf-

mediated iron transport across the BBB. Models based on mass-action laws have been 

widely adopted to study biophysical processes [31–34], which heavily depend on kinetic rate 

constants. Unfortunately, the kinetic rate constants are not available for Lf-mediated iron 

transport process either.

Several techniques such as least squares [35], Kalman filtering [36–38], shooting algorithm 

[39, 40], preprocessing method [41], artificial neural network-based decomposition [42, 43] 

and Bayesian inference [44] are available for parameter estimations in biophysical 

processes. Among various techniques, Bayesian inference is a promising method and has 

been applied for various biological process modeling [45–48]. Bayesian approach provides a 

statistical technique for parameter estimation by combining prior knowledge with the data. 

Over the past decades, several Bayesian approaches have been developed to estimate 

parameters for various interesting problems. For example, Campbell et al. [49] presented a 

Bayesian procedure for parameter estimation in nonlinear flood event models. Putter et al. 
[45] discussed a Bayesian approach to estimate parameters in a human immunodeficiency 

virus (HIV) infection problem. A hierarchical Bayesian method is presented for the 

estimation of parameters in a longitudinal HIV dynamic system [47]. Recently, Choi et al. 
[50] developed a stochastic method based on Bayesian inference to estimate thermal 

response parameters.

In this paper, we extend the Bayesian inference framework presented in [50] for kinetic 

parameter estimation in Lf-mediated iron transport across BBB. The posterior distribution of 

the kinetic parameters is approximated by Markov chain Monte Carlo (MCMC) technique 

[51, 52]. We specifically use Metropolis-Hastings algorithm [53–55] for sampling 

parameters for the posterior distribution. The whole estimation process is implemented in R 

[56], using an in-house R-code. After validating the kinetic rate constants for the Lf-

mediated transcytosis, transport of iron, lactoferrin and transferrin through BBB are studied 

considering both Lf- and Tf-mediated pathways. We particularly study the effects of 

lactoferrin concentration in blood, percentage of holo-lactoferrins in the blood side, and 

upregulation of lactoferrin receptors on the apical membrane.

2. Mathematical Modeling

As stated earlier, iron can primarily transported through BBB using Tf-mediated pathway. In 

our earlier work [30], we presented a comprehensive model for Tf-mediated iron transport 

through the BBB. Considering the important role of lactoferrin in some pathological 

conditions, here we develop a mathematical model for Lf-mediated iron transport across 

BBB.

2.1. Lactoferrin-mediated iron transport pathway

In body fluids, lactoferrins can be found in two forms: apo-Lf and holo-Lf [16]. The iron-

free Lf is called apo-Lf, whereas iron loaded (2 iron molecules in one Lf molecule) is known 

as holo-Lf. In Lf-mediated transcytosis process, lactoferrins specifically bind with surface 

receptors on the apical membrane (AM), are internalized into the endothelial cells and 

finally, are transported across the basolateral membrane (BM) (Fig. 1a). Recent studies 
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suggest that there are two kinds of specific binding sites: high and low affinity [21, 27]. In 

addition, the binding of holo-Lf is found to be concentration dependent, saturable, reversible 

and specific [21]. Thus, the binding of holo-Lf with binding sites can be modeled by 

considering the following

HL + R1 k−1

k1
HR1, am (1)

HL + R2 k−2

k2
HR2, am (2)

where k1 and k2 are the association rates of holo-Lf with high- and low-affinity binding 

sites, respectively; and k−1 and k−2 are the dissociation rates of holo-Lf from high- and low-

affinity binding sites, respectively. Extensive research suggests that lactoferrin binding with 

its receptor is independent of its degree of iron binding. In other words, both apo-Lf and 

holo-Lf bind with lactoferrin receptors in a similar fashion [57, 58] as

AL + R1 k−1

k1
AR1, am (3)

AL + R2 k−2

k2
AR2, am (4)

It has been found that the lactoferrin is only internalized by the high-affinity binding sites 

[21]. Also, both apo-Lf and holo-Lf enter cells via a similar mechanism and there is no 

significant difference between the uptake of apo-Lf and holo-Lf [58]. In addition, the first 

order endocytic rate constants for apo-Lf and holo-Lf are found to be almost same in 

hepatocytes (0.276 and 0.292 min−1) [59]. These previous studies suggest to use the same 

endocytic rate for internalization of holo- and apo-Lf. Moreover, after internalization, both 

holo- and apo-Lf can recycle back to the apical membrane, which makes the internalization 

process reversible. Thus, considering first-order kinetics the internalization of holo- and apo-

Lf can be described as

HR1, am k−3

k3
HR1, i (5)

AR1, am k−3

k3
AR1, i (6)

where k3 is the first order internalization rate of surface bound holo- or apo-Lf-receptor 

complex and k−3 is the recycle rate of the holo- or apo-Lf-receptor complex from 

intracellular space to the apical membrane. Although Lf binds iron more tightly than Tf, 
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acidic condition of endosome can release iron from holo-Lf-receptor complex [2]. The iron 

release process can be modeled by the following first order reaction

HR1, i

k4 AR1, i + 2Fei
(7)

where k4 is the release rate of iron from the holo-Lf-receptor complex. Degradation of apo- 

or holo-Lf inside the lysosome of endothelial cells is neglected based on the experimental 

evidence [21].

The released irons can have three different fates: storage by the cell ferritins, utilization by 

mitochondria or other organelles of cell, and efflux through the cell membranes. Iron storage 

by ferritin is a bidirectional process [60], which can be model as

Fei k−5

k5
Fes (8)

where k5 and k−5 are the storage and release rate of iron from ferritin, respectively. We 

consider the iron utilization as an one step process

Fei

k6 Feu
(9)

where k6 is the iron utilization rate by all organelles within the cell. Iron transport through 

the cell membranes is mediated by ferroportin, the only known iron exporter. In brain 

microvascular endothelial cells, ferroportins are localized on both apical and basolateral 

surfaces [61]. This distribution of ferroportins indicates that iron can return to the circulation 

(blood side) through ferroportin localized on the apical surface in addition to transporting in 

the brain side [62]. Iron efflux through ferroportin requires the action of an exocytoplasmic 

ferroxidase and, in brain microvascular endothelial cells, endogenous hephaestin or 

astrocyte-secreted soluble ceruloplasmin can provide that ferroxidase activity [63]. In the 

current model, the bidirectional transport of free iron from endothelial cells to brain is 

represented by Eq. (10); whereas bidirectional efflux of iron from endothelial cells to blood 

circulation is represented by Eq. (11)

Fei k−7

k7
Febr (10)

Fei k−8

k8
Fe (11)

where k7 and k8 are the iron transport rate from intracellular space to the brain side and 

blood side, respectively; whereas k−7 and k−8 are the corresponding reverse kinetic rates.
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Both apo- and holo-Lf can transport to the brain side in a similar fashion [21]. We model this 

transport as a two-step process. First, the apo- or holo-Lfs traffic to the basolateral 

membrane of endothelial cells with the help of motor protein as

HR1, i k−9

k9
HR1, bm (12)

AR1, i k−9

k9
AR1, bm (13)

where k9 is the transport rate of Lf-receptor complex from intracellular space to basolateral 

membrane and k−9 is the reverse transport of Lf-receptor complex from basolateral surface 

to intracellular space. Then, the apo- and holo-Lf transport across the basolateral membrane 

by leaving the receptors at the basal surface of endothelial cells. It has been proposed that 

the release process on the basolateral surface of these cells is facilitated by the action of 

citrate and adenosine triphosphate [64], and we model this release process as

HR1, bm k−10

k10
HLbr + R1, bm (14)

AR1, bm k−10

k10
ALbr + R1, bm (15)

where k10 is the transport rate of lactoferrin from basolateral membrane to brain side and k

−10 is the binding rate of brain side lactoferrin with the lactoferrin receptor on the basolateral 

membrane. The released receptors may partially recycle from the basolateral membrane to 

apical membrane through intracellular pool of receptors as in the case of transferrin 

receptors [65]. In this study, we assume a similar phenomenon for Lf-mediated iron 

transport as

R1, bm

k11 R1
(16)

where k11 is the recycling rate of lactoferrin receptor from the basolateral membrane to the 

apical membrane. The overall pathways of Lf-mediated iron transport across BBB are shown 

in Fig. 1b. Symbols used to denote different chemical compounds are described in Table 1.

2.2. Governing equations

In this study, the governing ordinary differential equations (ODEs) are derived from the 

kinetic scheme by applying mass action laws with the consideration of compartment size 

effects. The effect of compartment size has been explicitly considered in this model because 

this provides accurate quantification of material densities or concentration of species at 

various compartments [66]. The various compartments and their sizes (either volume or 

surface area) for current biological modeling are shown in Fig. 2. All ODEs for Lf-mediated 
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iron transport are listed in Table 2, where symbols [·] and {·} indicate reactants 

concentration (material per unit volume) and reactants material density (material per unit 

area), respectively.

In biological modeling, the initial values of different species are usually known from 

experimental conditions. Thus, with defined initial values of different species at different 

compartments, the ODE system becomes an initial-value problem. Since the formulated 

ODEs are coupled with each other, all equations need to be solved simultaneously. 

Therefore, a numerical approach is necessary for the solution of governing ODEs. Among 

various numerical approach, 4th order Runge-Kutta (R-K) method is widely used because of 

its ease of use, accuracy, excellent stability and self-starting capability [67]. In this work, 4th 

order R-K method has been used to solve the governing initial value problems.

Although the initial conditions are known for the current study, the kinetic rate parameters of 

receptor-mediated transcytosis of Lf and associated iron transport across BBB are unknown. 

Therefore, one of the objectives of this study is to estimate those rate constants from 

experimental data. For the parameter estimation process, we have implemented a Bayesian 

framework, which is discussed in detail in the next section.

3. Bayesian Framework for Parameter Estimation

Our aim is to estimate the unknown parameters for the set of differential equations listed in 

Table 2. For the current problem, the parameter vector θ can be defined as follows

θ = k1, k−1, k2, k−2, k3, k−3, k4, k5, k−5, k6, k7, k−7, k8, k−8, k9, k−9, k10, k−10, k11 (17)

According to Bayes’ theorem, the conditional probability of the parameter vector θ for a 

given measured data, Y, which is commonly known as posterior, can be given as follows

p θ Y = p Y θ p θ
p Y (18)

where p(θ) denotes the prior of the unknown parameters which use all available knowledge 

of unknown parameters; p(Y|θ) denotes the likelihood which describes the relative 

probability of observed data for all permissible values of the parameters; and p(Y) denotes 

the probability distribution of the observed data under any circumstance. In Eq. (18), p(Y) 

acts as a normalizing constant necessary to ensure ∫ p(θ|Y) dθ = 1. In reality, it is very 

difficult to calculate p(Y) directly and, in addition, it is rarely used in practice [49]. As a 

result, Eq. (18) can be expressed as

p θ Y ∝ p Y θ p θ (19)

3.1. Likelihood

The modeled results are always subject to errors because the model is an approximation of 

true physical phenomenon. If we consider the experimental measurement, Y as true 
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description of physical phenomenon i.e. no errors, then the results of the model, F can be 

expressed as

Fi = Y i + εi (20)

where εi describes the error in the model and i represents the time step. The model error is 

assumed to follow a normal distribution with zero mean and variance of vi = σi
2. Under these 

assumptions, the likelihood function with respect to experimental measurement can be 

expressed as [49]

p Y θ =
i 1

n 1
2πσi

2exp −
Y i − Fi

2

2σi
2 (21)

where n is the total number of time steps. In Eq. (21), to evaluate p(Y|θ), only unknown is 

the standard deviation (σi). To quantify σi, Choi et al. [50] set a hyperparameter by 

introducing the error ratio, rσ as

σi
2 ≈ rσ Y i − Y0

2
(22)

where Y0 is the initial value of corresponding measured data. By substituting Eq. (22) into 

Eq. (21), the likelihood can be expressed as

p Y Φ ∝ 1
rσ

n exp − 1
2 i 1

n Y i Fi
2

rσ Y i Y0
2 (23)

where Φ = (θ, rσ) is the overall parameter vector.

3.2. Prior

The prior distributions of unknown parameters, Φ can be set in various ways. If previous 

measurements are available, those values can be taken as a first estimation [32]. However, 

this method is often too restrictive when different species are distributed in different volumes 

[66]. Furthermore, the introduction of compartment size changes all the parameters from 

their regular unit, and plausible range cannot be set by following the traditional method. 

Thus, in this work, we first approximate the initial guess values of all kinetic rate parameters 

by following the method described in [30]. Then, the plausible range is set from 0 to two 

orders of magnitude higher than the approximated value because all kinetic rate parameters 

are known to be positive and definite. For error ratio rσ, we follow the method described by 

Choi et al. [50] and set its upper bound to an arbitrarily large value, such as 0.2 . Once, the 

parameter space, ℜ is defined, the prior can be set based on the available knowledge of 

various parameters. Since our information about the parameters is limited, it is difficult to 

define the shape of the prior probability distribution. Thus, we consider a uniformly 

distributed prior as

p Φ = C constant (24)
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where Φ ∈ ℜ.

3.3. Posterior

Once the likelihood and prior are defined, the equation for posterior can be obtained from 

Eqs. (19), (23) and (24). Since the prior of each parameter is uniformly distributed within 

their given ranges, the posterior follows the same distribution as likelihood. To consider the 

boundaries of the parameter space, an indicator function, I is introduced as

p Φ Y, I ∝ I Φ ∈ ℜ
rσ

n exp − 1
2 i 1

n Y i Fi
2

rσ Y i Y0
2 (25)

The indicator function has only two states: 0, if any parameter lays outside of the parameter 

space or 1, if all parameters remain within the parameter space.

3.4. Markov Chain Monte Carlo (MCMC) Method

It is difficult to estimate the posterior distribution by direct calculation. A well-established 

alternative approach is to use MCMC [51, 52]. With respect to Bayesian inference, MCMC 

is a computer-driven technique for generating samples for the posterior distribution p(Φ|Y, 

I). The objective is to estimate the kinetic parameters by randomly generating enough 

samples while maximizing the posterior probability.

The MCMC starts with an arbitrary guess value of parameters, Φ(0). Then, a sequence of 

parameter values {Φ(j) : j = l, 2, 3, …} is generated from carefully constructed Markov 

chain; a sequential process in which the current state depends only on its direct predecessor 

in a certain way. To construct the Markov chain through the random walk, a transition 

density function describing the move Φ(j) → Φ(j+1) needs to be defined such that the 

observed values of the chain converge to the posterior distribution.

In this study, we have used the Metropolis-Hastings algorithm [53–55] to evaluate the 

posterior distribution. The Metropolis-Hastings algorithm produces a probability distribution 

function which describes the transition from the current step to the next step as follows. The 

sampling starts with an arbitrary initial guess of the parameter, Φ(j=0) where, (j) indicates the 

j-th sampling iteration. Then, generate a candidate value Φ* for Φ{j+l) from a probability 

distribution, which can be any arbitrary distribution. In the present study, we have used a 

normal distribution with the mean value of Φ(j) and a standard deviation of 0.01 aΦ(j). The 

value of hyperparameter, a, should be chosen in such a way that it can avoid the parameter 

search from being stuck at a local point or yielding a large correlation among the drawn 

samples. Usually, a trial and error method is used to compute the value of variance [50]. 

Thus, the new parameter candidate Φ* is then sampled based on the current state Φ(j) as 

follows

Φ* = ℕ Φ j , 0.01aΦ j 2
(26)
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As stated earlier, the indicator function ( I ) is used to check the bound of Φ* within the 

parameter space (ℜ). If any component of Φ* is outside the parameter space, the function 

I(Φ* ∈ ℜ) becomes zero, and thus, the candidate parameter is discarded. If all components 

of Φ* is within the parameter space, then accept this value with probability α (Φ(j), Φ*) and 

move to Φ(j+1) = Φ*, where

α Φ j , Φ* = min 1, p Φ* Y, I
p Φ( j) Y, I

(27)

If α(Φ(j), Φ*) = 1, Φ* is accepted because it provides a better fit to the experimental data 

than Φ(j). However, if α(Φ(j), Φ*) < 1, Φ* is not rejected exclusively. Instead, a random 

number, r is generated from a uniform distribution, U(0,1) which provides the opportunity to 

escape from local minima. In summary, Φ* is accepted or rejected based on the following 

criterion:

Φ j + 1 =
Φ j i f α Φ j , Φ* < r

Φ* i f α Φ j , Φ* ≥ r
(28)

Note that for each iteration of Metropolis-Hastings algorithm, one needs to evaluate F from 

the Lf-mediated transport model by solving the system of ODEs (listed in Table 2) using 4th 

order R-K method. By iterating this process, the posterior distribution of each parameter can 

be evaluated if a sufficiently large number of samples are obtained. Usually, the early steps 

are significantly dependent on the initial guess of parameters, so the posterior distribution 

should be evaluated after discarding the data during burn-in period. In this study, the first 

50,000 steps are considered as burn-in period. From the accepted samples, statistical 

parameters of all kinetic rate constants can be estimated.

4. Results and Discussions

The Bayesian framework discussed above has been applied for parameter estimation in Lf-

mediated iron transport across BBB. The experimental conditions for Lf-mediated iron 

transport through BBB endothelial cells are taken from Fillebeen et al. [21] and presented in 

Table 3. In their work, they also presented progressive transport of lactoferrin and iron from 

blood to brain, which is used in the Bayesian framework as the experimental data (Y) to 

estimate the kinetic rate constants. Although parameter vectors, θ contains all parameters, 

three specific parameters: k−5, k6 and k7 are known from previous studies and presented in 

Table 3. Therefore, these three parameters are excluded from the Bayesian parameter 

estimation framework.

4.1. Selection of hyperparameter a

The MCMC method is computationally rigorous, and the computational cost increases with 

the sampling size and the number of accepted steps. In this study, we have used Metropolis-

Hastings algorithm, where hyperparameter “a” is used to set the sampling variance. The 

sampling variance determines the required number of steps in the MCMC method. Here, the 
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value of hyperparameter a is varied from 2 to 7. The sampling results for the parameter k1 

with different values of a are summarized in Table 4 and Fig. 3. As seen from Table 4, as the 

sampling variance increases, the total number of steps required to achieve 2×105 accepted 

steps also increases. As a result, the acceptance rate is gradually decreased from 87.0 to 

42.2% for increasing values of a. The MCMC results are statistically good if the acceptance 

rate is between 30 and 70% [49]. Thus, based on the acceptance rate, a = 5 or a = 7 yield a 

statistically acceptable result. However, as seen from the sampling results (Figs. 3a–3c), a 

well-defined Markov chain is formed for a = 2 or a = 5. The histograms of sampling results 

for the parameter k1 are shown in Figs. 3d–3f with the corresponding normalized probability 

distribution functions for low (a = 2), medium (a = 5) and high (a = 7) sampling variances, 

respectively. Low and medium variances provide similar distribution with symmetric tails on 

both sides as in normal distribution; whereas, high variance yields relatively longer tail in 

the upper region as in gamma distribution. Although both low and medium variances yield 

normal distribution, the medium variance yields more symmetric and shorter tail (Fig. 3 and 

Table 4). Based on the aforementioned discussion, we select the medium variance (a = 5) 

since it provides good acceptance rate (53.9%) as well as a well-formed Markov chain.

4.2. Point estimates of parameters

The probability density function (pdf) of other parameters are shown in Fig. 4. To obtain the 

posterior probability distributions of these parameters, 1.5×105 samples are drawn from the 

Metropolis-Hastings algorithm after discarding the burn-in period. Among all parameters, 

three parameters: k3, k4 and k5 have a normal distribution with a short symmetric tail as 

shown in Figs. 4d, 4f and 4g, respectively. Except k2 and k−2, the rest of the parameters have 

slightly skewed (longer tail in the upper region) posterior probability distributions similar to 

a Gamma distribution (Figs. 4a, 4e, and 4h–o). Moreover, other sampling variances (data not 

shown) also provide a similar type of distribution with almost the same mode and median 

within the given range. This is a clear indication of global minima. But as seen from Figs. 

4b–4c, the maximum a posteriori (highest probability) of parameters k2 and k−2 is zero. This 

situation arises due to the weak relationship between the experimental data and the predicted 

values of those two parameters. As shown in the model (discussed in Section 2 and 

presented in Fig. 1), there is no uptake of lactoferrin or iron through the low-affinity binding 

site. Thus, any value of those two parameters will provide the same amount of brain 

lactoferrin or iron, as long as the other parameters are fixed, because of the high 

concentration of lactoferrin in the blood (30 [μg / ml]). Although a significant amount of 

lactoferrins bind with low-affinity binding sites at the blood side, with a high concentration 

of lactoferrin there is still sufficient lactoferrins available to bind with high-affinity binding 

sites. Thus, from the density data of high and low-affinity binding sites (listed in Table 3), it 

is intuitive that at the blood side with a low concentration of lactoferrin, k2 and k−2 would 

have a significant effect on the transport of lactoferrin and Lf-mediated iron from blood to 

the brain. Therefore, it is necessary to estimate k2 and k−2 to address this phenomenon.

From the Bayesian analysis, we find that the parameters, k2 and k−2 always take the lowest 

value of the provided plausible range (data not shown). This indicates that changing of the 

plausible range will not help to estimate these two parameters. So, in order to estimate the 

values of these two parameters, we need extra constraints that may be taken from the 
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experimental evidences. For instance, it has been found that the dissociation constant of 

receptors, R2 is higher than that of receptors, R1 [21, 27]. Thus, the affinity of receptors R2 

must be lower than that of receptors R1, which we set as the first constraint. However, one 

constraint is not sufficient to estimate two parameters. Experimentally, it has also been found 

that around 18–20% of surface-bound lactoferrins get transported to the brain side [21]. 

Since this data is directly related to those parameters, we set this as the second constraint. 

With these two constraints, the modified probability density function for parameters k2 and k

−2 are plotted in Fig. 5. Parameter k2 yields a gamma distribution with longer tail in the 

upper region (Fig. 5a) while parameter k−2 takes a normal distribution (Fig. 5b). 

Furthermore, the statistical properties of all kinetic parameters are summarized in Table 5.

4.3. Model validation

With the point estimates (mode values in Table 5) of kinetic rate constants, the concentration 

or density of different species is obtained for different compartments by solving ODEs 

system. The results of the forward model are compared with the experimental data for 

transcytosis of lactoferrin (Fig. 6a) and iron (Fig. 6b). Although the model results are in 

good agreement with experimental data, it does not guarantee the validity of parameter 

estimation process. Instead, this indicates the good training of the model against the 

experimental data. To test the robustness of the model, the estimated parameters are 

perturbed by a random amount (e.g. 15%) following the work of Shin and Nguyen [68]. 

Using these new parameters, the concentration of different species is recalculated and 

presented in Fig. 7. The behaviors of both lactoferrin (Fig. 7a) and iron (Fig. 7b) transport 

are well preserved to such parameter perturbation, which confirms the robustness of the 

model and parameter estimation process. Further qualitative validations will be provided in 

the following section.

4.4. Kinetics of Lactoferrin in BBB endothelial cells

Internalization kinetics of lactoferrin in BBB endothelial cells is quantified through our 

model based on the experimental conditions presented in [21]. In their experiment, cells 

were first incubated at 4° C for 1 h to prevent uptake. This also ensures that the occupancy 

of the binding sites reached steady state. After washing off the unbound ligands, cells were 

incubated at 37° C and the amount of surface-bound, internalized, released (to blood side) 

and transported (to brain side) lactoferrins were quantified from radio-activities at different 

compartments at different time. To mimic the experimental condition, the ODE system in 

our model is first solved for 1 h with the initial conditions used in Fig. 6a. In our simulation, 

the point estimates of all parameters presented in Table 5 (except k3) are used. The value of 

k3 is set as zero, which ensures no uptake of lactoferrin. This is similar to the incubation 

condition at 4° C in experimental system with energy inhibitors. Next, the model results are 

used as the initial conditions for species located at apical membrane ({R1}0, {R2}0, 

{AR1,am}0 and {AR2,am}0), while initial values of all other species are set as zero. Then the 

ODE system is solved with estimated rate constants (mode value) presented in Table 5. Fig. 

8 shows the amount of surface-bound, internalized, released and transported lactoferrins as a 

function of time. Within the simulation time (90 minutes), ~ 46% of initial surface bound 

lactoferrins is released into the upper compartment (UC), whereas ~20% of initial surface 

bound lactoferrins is transported to the lower compartment (LC). Intracellular portion 
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reaches a maximum of ~10% within 2 min. Our modeling results indicate that the surface-

bound lactoferrin is gradually decreased with time, and it drops to 34% within 90 minutes. 

This distribution qualitatively agrees with the experimental results (see Fig. 3 of reference 

[21]). A quantitative comparison is not possible because the experiments presented in [21] 

did not quantify species adequately in various compartments.

A quantification of apical versus basal non-lactoferrin bound iron (NLBI) efflux in 

differentiated brain capillary endothelial cells (cultured in the presence of astrocytes) is 

shown in Fig. 8b. Our analysis shows that at any time, the efflux of NLBI from differentiated 

endothelial cells is more concentrated towards the brain side. In addition, as the time 

increases the efflux of NBLI towards blood side decreases while the efflux of NBLI towards 

brain side increases. This result is justified because ferroportin, the non-bound iron 

transporter, is appeared to be more concentrated on the basolateral surface [12]. Moreover, 

our simulation results are inline with experimental data obtained with human brain 

microvascular endothelial cells when C6 cells were cocultured in either a distal or proximal 

orientation [62].

4.5. Effect of initial lactoferrin concentration

In all previous sections, we have used an apo-Lf concentration of 30[μg / ml] and a holo-Lf 

concentration of 50[μg / ml] in the blood side based on the experimental works of Fillebeen 

et al. [21]. However, in normal conditions, the concentration of lactoferrin in the blood is 

much smaller. For example, the plasma lactoferrin concentration is 0.168±0.1[μg / ml] and 

serum lactoferrin concentration is 0.2±0.155[μg / ml] [69] in normal conditions. But various 

health conditions may affect these concentrations. For instance, in cystic fibrosis patients, 

these concentrations are elevated to 0.265±0.224[μg / ml] and 0.650±0.551[μg / ml] in 

plasma and serum, respectively [69]. Moreover, the holo-Lf percentage in the blood varies 

widely from normal conditions to pathological conditions [16]. Thus, in this study, we also 

considered two different scenarios based on the percentage of holo-lactoferrin: 10.2±0.2 and 

71.8±6.5% as reported in the experimental work of Majka et al. [70]. Depending on the 

concentration of Lf and percentage of holo-Lf, four separate cases are studied (see Table 6). 

Model results for these four cases are shown in Fig. 9. To demonstrate the extent of iron 

transported by lactoferrins with respect to transferrins, we also considered the contribution 

of Tf in parallel with Lf. The Tf-mediated iron transport is quantified by using the model 

described in [30] with a blood side holo-Tf (HT) concentration of 1.4[μg / ml] as reported in 

the experimental study of Descamps et al. [71]. As seen from Fig. 9a, with normal 

concentration of Lf (~0.30[μg / ml]), the percentage of holo-Lf has almost no effect on the 

brain iron (as indicated by the solid blue line and blue squared shape symbols). Moreover, in 

comparison to Tf-mediated route, the Lf-mediated iron transport is very low. This indicates 

that, at normal condition, the blood to brain iron transport is primarily led by holo-Tf, 

because the Tf concentration in the blood side is four times higher than that of Lf. Even for 

identical concentration of Lf and Tf in the blood side, Tf-mediated pathway is still the 

dominant transport mechanism. However, for higher lactoferrin concentration in blood (Fig 

9b), our model predicts significantly different amount of Lf-mediated iron in the brain 

depending on the percentage of holo-Lf. For instance, the amount of iron transported by Lf 

increases by 6 fold within two hours for a change in holo-Lf percentage from 10.2% to 

Khan et al. Page 13

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



71.8%. Thus, the effect of holo-Lf percentage is more evident at higher concentration of Lf 

in the blood side. Our results also show that the total amount of lactoferrin in the brain does 

not depend on the percentage of holo-Lf in the blood (data not shown). This is because of 

the fact that both apo- and holo-Lf have the ability to cross the BBB and transport to the 

brain side [21]. Our results reveal that a higher Lf-concetration in the blood yields a higher 

amount of Lf in the brain (data not shown).

4.6. Upregulation of lactoferrin receptors

As stated before, LfR expression on BBB endothelial cells is upregulated in both AD [19] 

and PD [11, 26] patients. Compare to a normal person, the Lf receptors is around 2 ~ 3 times 

higher in PD patient’s BBB endothelial cells [26]. Thus, it is interesting to study the effect of 

LfR upregulation during iron transport across BBB. To understand the role of receptor 

upregulation, a 2-fold increase in high-affinity receptors (R1) density is considered here. Our 

simulation results show that a 2-fold increase in R1 density results in around two-fold 

increase in lactoferrin in the brain side (Fig. 10a). Although, with normal R1 density, the 

amount of Lf in the brain is low compared to Tf, with two fold increase in receptor density, 

the amount of Lf in the brain is almost comparable with Tf in the brain. Like Lf transcytosis, 

the receptor density also has a significant effect on Lf-mediated iron transport and hence on 

the total brain iron as shown in Fig. 10(b). With 2-fold increase in R1 density, the Lf-

mediated pathway contributes to 1/3 of the total brain iron. We also found that, a two-fold 

increase in low-affinity receptor (R2) density has little or no effect on the amount of brain 

lactoferrin or iron (data not shown). The diminishing role of low-affinity receptors are 

expected since internalization does not occur through binding site 2 (R2) and there is 

sufficient amount of lactoferrin available in the blood side. These results suggest that, in PD 

or AD, probably the high-affinity receptor, R1, is upregulated, and more Lf as well as iron is 

transported across the BBB endothelial cells. Moreover, unlike Tf receptors, the Lf receptors 

expression is not regulated by intracellular iron level [26]. Thus, with elevated LfR density, a 

continuous iron transport process across BBB might raise iron concentration to pathological 

levels and could contribute to the neurodegeneration.

5. Conclusions

In this paper, we present a theoretical framework for Lf-mediated iron transport through the 

BBB, and estimate the necessary parameters for this process using experimental data. A 

mass action based kinetic model is developed considering transport pathways for apo-Lf, 

holo-Lf, and iron across the BBB endothelial cells. A Bayesian framework is used to 

estimate the posterior probability distributions of kinetic rate constants as well as other 

hyperparameters. The posterior probability distribution of each parameter is numerically 

evaluated by applying a Markov chain Monte Carlo method in conjunction with the 

Metropolis-Hastings sampling algorithm. From the sampled posterior distribution, the 

statistical properties of each parameter are obtained and analyzed. The validation of 

estimated parameters is demonstrated by comparing the model prediction with experimental 

results. Results of the forward model show that the estimated parameter can effectively 

reproduce the experimental results. Robustness of the model and parameter estimations are 

confirmed by the well-preserved behavior of species concentrations to parameter 
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perturbation. In the absence of Tf-mediated pathway, ~ 20% of surface-bound lactoferrin can 

be transported to the brain side. Within 2 min of simulation time, the intracellular percentage 

of lactoferrin reaches the maximum, and then starts to decrease with time and diminishes 

quickly due to the transport to the brain side.

To understand the relative roles of lactoferrins under different pathological conditions, we 

have also studied the iron transport across BBB considering both Tf- and Lf-mediated 

routes. Our results show that an increase in high-affinity receptor density increases both Lf 

and iron in the brain. But increase in low-affinity receptor density has a negligible effect on 

the brain iron contents. These results indicate that, in PD or AD, high-affinity receptor 

expression is upregulated in the BBB endothelial cells, which in turn increases the 

lactoferrin concentration in the brain. The effect of total lactoferrin content and percentage 

of holo-Lf in the blood are also studied for iron transport across BBB considering both Lf 

and Tf-mediated pathways. From our study, we have found that the total iron in the brain 

depends on the percentage of holo-Lf, total lactoferrin and total transferrin content in the 

blood. Even though Tf-mediated iron transport is dominant, elevated LfR expression along 

with high Lf concentration in the blood can transport significant amount of iron in brain 

during neurodegenerative disorders.
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Highlights

• Role of iron and its transport mechanism are studied to understand brain 

diseases

• A kinetic model ispresented for lactoferrin-mediated iron transport across 

blood brain barrier

• Bayesian inference is used to estimate the kinetic rate parameters

• High affinity, but not low affinity, receptors regulatesthe brain iron and 

lactoferrin contents
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Fig. 1. 
(a) Lactoferrin transcytosis across the BBB and (b) the overall modeling scheme depicting 

the essential pathways and parameters for the Lf-mediated iron transport across the BBB 

endothelial cells.
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Fig. 2. 
Various compartments and their relative sizes in in-vitro Lf-mediated iron transport study.
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Fig. 3. 
Sampling results of parameter k1 for various variances in Metropolis-Hastings algorithm. 

Sampled data for (a) a = 2, (b) a = 5, and (c) a = 7. Histograms and probability distribution 

(pdf) of parameter k1 for (d) a = 2,(e) a = 5, and (f) a = 1. Here, hyperparameter, a is related 

to the magnitude of variance in Metropolis-Hastings algorithm (see Eq. (26)).

Khan et al. Page 23

Biochim Biophys Acta Gen Subj. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Probability distribution function (pdf) of parameters (a) k−1, (b) k2, (c) k−2, (d) k3, (e) k−3, 

(f) k4, (g) k5, (h) k−7, (i) k8, (j) k−8, (k) k9, (l) k−9, (m) k10, (n) k−10 and (o) k11.
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Fig. 5. 
Modified probability density functions (pdf) of parameter (a) k2 and (b) k−2 with external 

constraints.
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Fig. 6. 
Apical to basolateral (specific) transport of (a) lactoferrin and (b) iron across the BBB 

endothelial cells. For figure (a) initial conditions are [AL]0 = 0.375 [nmol / cm3], 

{R1}0=5.98×10−5 [nmol / cm2], {R2}0=5.91×10−4 [nmol / cm2] and other species values are 

set as zero. For figure (b) initial conditions are [HL]0 = 0.625 [nmol / cm3], {R1}0 = 

5.98×10−5 [nmol / cm2], {R2}0 = 5.91×10−4 [nmol / cm2] and other species values are set as 

zero. The equivalent fluxes are calculated from the brain side concentration of lactoferrin 

and iron using molecular weight, brain side volume, and cell surface area.
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Fig. 7. 
Effect of parameter perturbation on (a) lactoferrin and (b) iron transport across BBB. Initial 

conditions for Fig. 7a are the same as in Fig. 6a and for Fig. 7b are same as in Fig. 6b.
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Fig. 8. 
(a) Internalization kinetics of lactoferrin in BBB endothelial cells and (b) comparison of 

apical vs basolateral efflux of non-lactoferrin bound iron (NLBI) in endothelial cells. Initial 

conditions for Fig. 8b are the same as in Fig. 6b.
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Fig. 9. 
Effect of blood lactoferrin concentration and percentage of holo-Lf on Lf and iron transport 

across BBB at (a) low Lf concentration (~0.30 μg / ml) and (b) high Lf concentration (~1.20 

μg / ml). All kinetic rates are same as listed in Table 5. Initial conditions for each case are 

provided in Table 6. Tf-mediated iron transport are quantified by using model developed in 

[30] with a concentration of 1.4 [μg / ml] in the luminal side as reported by Descamps et al. 

[71].
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Fig. 10. 
Effect of lactoferrin receptor upregulation on (a) amount of Lf and Tf in the brain and (b) 

amount of iron in the brain. All the kinetic rates are same as listed in Table 5. Initial 

conditions for each case are provided in Table 6. Tf-mediated iron transport is quantified by 

using the model developed in [30] with a concentration of 1.4 [μg / ml] in the luminal side as 

reported by Descamps et al. [71].
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Table 1

Species considered in the model and their symbols.

Notation Description

HL Holo-Lf, iron-loaded lactoferrin, in the blood side

R1 High-affinity binding sites (receptors)

HR1,am Holo-Lf bound with high-affinity receptors on the apical membrane

R2 Low-affinity binding sites (receptors)

HR2,am Holo-Lf bound with low-affinity receptors on the apical membrane

AL Apo-Lf, iron-free lactoferrin, in the blood side

AR1,am Apo-Lf bound with high-affinity receptors on the apical membrane

AR2,am Apo-Lf bound with low-affinity receptors on the apical membrane

HR1,i Holo-Lf bound with high-affinity receptors inside the cell

AR1,i Apo-Lf bound with high-affinity receptors inside the cell

Fei Free iron inside the cell

Fes Iron stored as ferritin

Feu Iron utilized by the organelles of cell

Febr Iron transported to the brain side

Fe Iron transported to blood side

HR1,bm Holo-Lf bound with high-affinity receptors on the basolateral membrane

AR1,bm Apo-Lf bound with high-affinity receptors on the basolateral membrane

R1,bm Receptor associated with basolateral membrane

HLbr Holo-Lf transported to the brain side

ALbr Apo-Lf transported to the brain side
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Table 2

Governing ordinary differential equations (ODEs) for transcytosis of Lf-mediated iron.

Vu
d HL

dt = − k1 HL R1 + k−1 HR1, am − k2 HL R2 + k−2 HR2, am
(S.1)

Aa
d R1

dt = − k1 HL R1 + k−1 HR1, am − k1 AL R1 + k−1 AR1, am + k11 R1, bm

(S.2)

Aa
d HR1, am

dt = k1 HL R1 − k−1 HR1, am − k3 HR1, am + k−3 HR1, i

(S.3)

Aa
d R2

dt = − k2 HL R2 + k−2 HR2, am − k2 AL R2 + k−2 AR2, am

(S.4)

Aa
d HR2, am

dt = k2 HL R2 − k−2 HR2, am

(S.5)

Vu
d AL

dt = − k1 AL R1 + k−1 AR1, am − k2 AL R2 + k−2 AR2, am
(S.6)

Aa
d AR1, am

dt = − k3 AR1, am + k−3 AR1, i + k1 AL R1 − k−1 AR1, am

(S.7)

Aa
d AR2, am

dt = k2 AL R2 − k−2 AR2, am

(S.8)

V i
d HR1, i

dt = k3 HR1, am − k−3 HR1, i − k4 HR1, i − k9 HR1, i + k−9 HR1, bm

(S.9)

V i
d AR1, i

dt = k4 HR1, i + k3 AR1, am − k−3 AR1, i − k9 AR1, i + k−9 AR1, bm

(S.10)

V i
d Fei

dt = 2k4 HR1, i − k5 Fei + k−5 Fes − k6 Fei − k7 Fei + k−7 Febr − k8 Fei + k−8 Fe
(S.11)

V i
d Fes

dt = k5 Fei − k−5 Fes

(S.12)

V i
d Feu

dt = k6 Fei

(S.13)

V i
d Febr

dt = k7 Fei − k−7 Febr

(S.14)

Vu
d Fe

dt = k8 Fei − k−8 Fe (S.15)

Ab
d HR1, bm

dt = k9 HR1, i − k−9 HR1, bm − k10 HR1, bm + k10 HLbr R1, bm

(S.16)

Ab
d AR1, bm

dt = k9 AR1, i − k−9 AR1, bm − k10 AR1, bm + k−10 ALbr R1, bm

(S.17)

Ab
d R1, bm

dt = k10 HR1, bm + AR1, bm − k−10 HLbr + ALbr R1, bm − k11 R1, bm

(S.18)
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V l
d HLbr

dt = k10 HR1, bm − k−10 HLbr R1, bm

(S.19)

V l
d ALbr

dt = k10 AR1, bm − k−10 ALbr R1, bm

(S.20)
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Table 3

Parameters and initial conditions used for this study.

Cell related parameters

Parameter Values [unit] Reference

Number of cells 400000 [cells / cm2]

[21]

High-Affinity receptors, R1 90000 ± 16000 [per cell]

Low-affinity receptors, R2 890000 ± 70000 [per cell]

The volume of lower compartment, Vl 2.0 [cm3]

The volume of upper compartment, Vu 1.0 [cm3]

Culture plate diameter 30 [mm]

Endothelial cell volume 2000 [μm3 / cell] [72]

Total cell volume, Vi 5.656×10−3 [cm3]

Calculated from above dataArea of apical membrane, Aa 7.07 [cm2]

Area of basolateral membrane, Ab 7.07 [cm2]

Initial conditions for the simulation

Parameter Values [unit] Reference

Apo-lactoferrin, [AL]0 0.375 [nmol / cm3]
[21]

Holo-lactoferrin, [HL]0 0.625 [nmol /cm3]

High-affinity receptors, {R1}0 5.98×10−5 [nmol / cm2]
Calculated from above data

Low-affinity receptors, {R2}0 5.91×10−4 [nmol / cm2]

Known rate constants

Parameter Value [unit] Reference

k−5 7.1021×10−6 [cm3 / s] Claculated from [60]

k6 2.828×10−7 [cm3 / s]
Calculated from [30]

k7 1.021×10−6 [cm3 / s]

Note: The initial values for other ions, proteins or protein complexes are set to zero. The initial ferritin levels inside the cells is set to zero because 
the experimental measurement only counts the radioactive iron provided from outside at the beganing of the experiment.
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Table 4

Performance of Markov chain Monte Carlo scheme with various sampling variances. Although the mean 

varies largely from low variance to high variance, all sampling variances yield similar mode and median. In 

this study, mode is used as point estimate of parameters in the mass-action based mathematical model.

Hyperparameter, 
a

Accepted 
steps

Total 
steps

Acceptance 
rate

Statistics of parameter k1 [cm5 / (nmol.sec)]

Mean Median Mode Standard 
deviation

95% Credible 
interval

2 2×105 2.30×105 87.0% 7.38×10−3 7.32×10−3 7.27×10−3 6.68×10−4 6.07×10−3 

−8.67×10−3

5 2×105 3.71×105 53.9% 7.51×10−3 7.52×10−3 7.59×10−3 6.52×10−4 6.23×10−3 

−8.79×10−3

7 2×105 4.74×105 42.2% 1.21×10−2 8.06×10−3 7.48×10−3 1.203×10−2 0.0 – 
6.023×10−2
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Table 5

Estimated parameters obtained by Bayesian inference. The mode is used as a point estimate for parameters in 

the mass-action based mathematical model.

Parameter [unit] Mean Mode Median

k1 [cm5 / (nmol.sec)] 7.509×10−3 7.586×10−3 7.510×10−3

k−1[cm2 / sec] 2.568×10−3 2.551×10−3 2.530×10−3

k2 | [cm5 / (nmol.sec)] 2.309×10−3 1.467×10−3 2.041×10−3

k−2 [cm2 / sec] 2.013×10−3 1.101×10−3 1.211×10−3

k3 [cm2 / sec] 9.743×10−2 9.759×10−2 9.742×10−2

k−3 [cm3 / sec] 6.481×10−5 5.012×10−5 6.185×10−5

k4 [cm3 / sec] 1.301×10−4 1.309×10−4 1.303×10−4

k5 [cm3 / sec] 7.163×l0−7 7.030×10−7 7.168×10−7

k−7 [cm3 / sec] 1.020×10−7 9.646×10−8 9.845×10−8

k8 [cm3 / sec] 1.092×10−6 1.001×10−6 1.055×10−6

k−8 [cm3 / sec] 2.469×10−5 2.156×10−5 2.381×10−5

k9 [cm3 / sec] 1.218×10−4 1.028×10−4 1.166×10−4

k−9 [cm3 / sec] 5.383×10−5 4.481×10−5 5.044×10−5

k10 [cm3 / sec] 1.545×10−1 7.846×10−2 1.282×10−1

k−10 [cm5 / (nmol.sec)] 6.208×10−2 3.364×10−2 5.236×10−2

k11 [cm3 / sec] 2.193×10−3 2.042×10−3 2.120×10−
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Table 6

Initial conditions for different case study.

Case Lf concentration in blood [μg / ml] HL [%] Tf concentration in blood [μg / ml] HT [%] Density of R1 [nmol / cm2]

A
0.3

10.2

1.4 100
5.98×10−5

B 71.8

C

1.2

10.2

D 71.8

E 100

F 100 1.794×10−4
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