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Abstract

Background: Impulsivity is central to all forms of externalizing psychopathology, including 

problematic substance use. The Cambridge Gambling task (CGT) is a popular neurocognitive task 

used to assess impulsivity in both clinical and healthy populations. However, the traditional 

methods of analysis in the CGT do not fully capture the multiple cognitive mechanisms that give 

rise to impulsive behavior, which can lead to underpowered and difficult-to-interpret behavioral 

measures.

Objectives: The current study presents the cognitive modeling approach as an alternative to 

traditional methods and assesses predictive and convergent validity across and between 

approaches.

Methods: We used hierarchical Bayesian modeling to fit a series of cognitive models to data 

from healthy controls (N = 124) and individuals with histories of substance use disorders (Heroin: 

N = 79; Amphetamine: N = 76; Polysubstance: N = 103; final total across groups N = 382). Using 

Bayesian model comparison, we identified the best fitting model, which was then used to identify 

differences in cognitive model parameters between groups.
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Results: The cognitive modeling approach revealed differences in quality of decision making and 

impulsivity between controls and individuals with substance use disorders that traditional methods 

alone did not detect. Crucially, convergent validity between traditional measures and cognitive 

model parameters was strong across all groups.

Conclusion: The cognitive modeling approach is a viable method of measuring the latent 

mechanisms that give rise to choice behavior in the CGT, which allows for stronger statistical 

inferences and a better understanding of impulsive and risk-seeking behavior.

Keywords

Cambridge gambling task; Impulsivity; Substance use; Cognitive modeling; Decision-making; 
Computational

1. Introduction

Impulsivity is a multidimensional, heritable trait that confers liability to progression along 

the externalizing spectrum, which spans from attention-deficit/hyperactivity disorder in early 

childhood on toward substance use disorders in adulthood (Beauchaine and McNulty, 2013; 

Beauchaine et al., 2017). Defined as a preference for immediate over delayed rewards, 

action taken without forethought, and/or deficient self-control, many behavioral tasks are 

used to make inferences on impulsivity given individuals’ behavior. Recently, the use of 

behavioral tasks in combination with neuroimaging technologies such as functional 

magnetic resonance imaging (fMRI) has revealed neurocognitive mechanisms that give rise 

to risky and impulsive behaviors (Robbins et al., 2012). Importantly, neuroimaging work has 

made it clear that impulsive behavior is equifinal, where different cognitive mechanisms can 

give rise to similar observable behaviors (e.g., Turner et al., 2018). Traditional methods of 

analyzing behavioral task data rely on behavioral summary statistics, which ignore the 

equifinal nature of impulsive behavior and may subsequently decrease power in detecting 

differences in quality of decision making and impulsive behavior among groups.

Cognitive modeling is an alternative to traditional summary methods which allows us to 

identify separable effects of latent cognitive variables that are difficult to observe directly 

from behavioral data alone (e.g. Ahn and Busemeyer, 2016; Busemeyer and Stout, 2002). 

Therefore, cognitive modeling has the potential to more reliably estimate individual 

decision-making differences and subsequently increase statistical power to detect subtle 

differences across groups. Yechiam et al. (2005), for instance, used a cognitive model of the 

Iowa Gambling Task to identify distinct “cognitive profiles” of several clinical groups, such 

as individuals with bilateral lesions in ventromedial prefrontal cortices, patients with 

Huntington’s or Parkinson’s disease, and various subtypes of substance users (cannabis, 

cocaine, alcohol, and polysubstance users), despite traditional analyses finding little 

evidence of group differences. Many others have followed suit (Ahn and Busemeyer, 2016; 

Busemeyer and Stout, 2002; Neufeld, 2015; Stout et al., 2004; for a review of cognitive 

modeling, see Ahn and Busemeyer, 2016; Ahn et al., 2016), and it has become clear that 

cognitive modeling can lead to greater predictive validity and reliability than traditional 

methods (Wiecki et al., 2015). That is, parameter estimates from cognitive models tend to be 

more reliable and correlate better with expected, external measures, as cognitive models tend 
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to base their estimates on the entire data set for each participant, as opposed to simply 

analyzing the means (Busemeyer and Diederich, 2010). Here, we adopt the cognitive 

modeling approach and apply it to the Cambridge Gambling Task (CGT; Rogers et al., 

1999), which is commonly used for neuropsychological assessment in clinical populations 

(Kräplin et al., 2014; Lawrence et al., 2009; Sørensen et al., 2017; Wu et al., 2017), 

including for individuals with substance use disorders (e.g., Ahn and Vassileva, 2016; Ahn et 

al., 2017; Baldacchino et al., 2015; Lawrence et al., 2009; Passetti et al., 2008). To our 

knowledge, this is the first cognitive model developed for the CGT. Below, we describe the 

CGT and common methods of summarizing CGT performance before explaining the 

cognitive modeling approach.

The CGT was developed to assess decision-making and risk-taking outside a learning 

context. In the CGT, a yellow token is hidden in one of ten boxes that appear on a computer 

screen. Some of the boxes are red, others are blue, and the ratio between red and blue boxes 

can range from one red (nine blue) to nine red (one blue) boxes, with each (red, blue)-pair 

having an equal chance of occurring. The CGT proceeds in two stages, where the 

participant: (1) predicts the color of the box hiding the token, and then (2) bets a proportion 

of their accumulated points (see Fig. 1) based on the certainty of their decision. The bet 

proportions are fixed across trials (.05, .25, .5, .75, .95) and presented sequentially with 

delays such that participants must wait to select their preferred bet. Importantly, the 

presentation order is varied across conditions, where ascending and descending blocks 

present the lowest (5%) and highest (95%) bet first, respectively.

Traditionally, performance on the CGT is probed with multiple indices that capture different 

facets of decision-making. The CGT has a number of behavioral measures, including: (1) 

quality of decision-making, (2) impulsivity/delay aversion, (3) risk-taking, (4) deliberation 

time, (5) risk adjustment, and (6) overall proportion bet. First, quality of decision-making 
(QDM) is the percentage of trials where a participant chooses the color with more boxes. 

The first study using the CGT revealed a dissociation between amphetamine and opiate users 

such that amphetamine, but not opiate users, showed lower QDM relative to healthy controls 

(Rogers et al., 1999). However, later studies using more participants showed that QDM is 

similar across individuals with opiate and amphetamine use disorders (Vassileva et al., 2014; 

Wilson and Vassileva, 2018). Other studies consistently show that individuals with alcohol 

use disorder have QDM scores that are indistinguishable from healthy controls (e.g., 

Bowden-Jones et al., 2005; Lawrence et al., 2009; Monterosso et al., 2001; Zois et al., 

2014), which could be due to no true difference or measurement error. Altogether, because 

QDM findings are inconsistent, the external and predictive validity of QDM is unclear2.

Second is impulsivity (IMP), or delay aversion, which is operationalized as the difference in 

average betting ratios chosen across ascending and descending conditions (E[A − D]; Rogers 

et al., 1999), but only counting the optimal trials (i.e., where the participant chose the color 

that had the greater number of boxes). Large, negative differences between conditions 

correspond to more rapid, impulsive betting. For example, someone betting impulsively 

would be expected to choose the “sooner” bets (those shown first) more frequently than the 

2We address the limitations of the CGT in the “Discussion” section.
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“later” bets. Therefore, IMP can be considered an index of intertemporal choice (Dai and 

Busemeyer, 2014) and is conceptually similar to measures of impulsivity derived from delay 

discounting tasks (DDT; Green and Myerson, 1993; Mazur, 1987; Myerson and Green, 

1995; Reynolds, 2006). Importantly, individuals with substance use disorders consistently 

show steeper discounting of future rewards relative to healthy controls (Bickel et al., 2007; 

Dai et al., 2016; Green and Myerson, 1993; Johnson et al., 2015; Mazur, 1987; Miedl et al., 

2014; Myerson and Green, 1995; Reynolds, 2006; Wilson and Vassileva, 2016), a pattern 

that has also been observed in IMP with problem gamblers (e.g., Kräplin et al., 2014; 

Lawrence et al., 2009; Zois et al., 2014; but see Monterosso et al., 2001). Like QDM, 

however, findings regarding differences in IMP among individuals with substance use 

disorders are inconsistent. For example, alcohol dependence has been linked to higher IMP 

relative to controls (Lawrence et al., 2009), but other studies have revealed no differences 

(Czapla et al., 2016; Monterosso et al., 2001; Zois et al., 2014).

We hypothesize that the inconsistent findings using QDM and IMP result, in part, because 

they ignore the equifinal nature of behavior (i.e. the underlying mechanisms). Specifically, 

summary statistics like QDM and IMP are dependent on multiple cognitive mechanisms, 

which may each contribute to measurement error. Using IMP as an example, compare an 

individual who selects (A) all 5% bets, versus someone selecting (B) all 95% bets. Here, 

both individuals are given the same IMP score despite showing clear differences in risk 

valuation (i.e. A is risk-averse while B is risk-seeking). Because risk sensitivity, temporal 

discounting, and other cognitive mechanisms all jointly determine which bet proportion 

participants choose (see eq.’s 4–8 in the Supplementary Materials [SM]3), impulsivity as 

traditionally measured in the CGT is inherently confounded with the effects of other 

cognitive mechanisms. As in temporal discounting paradigms, IMP should provide an 

independent measure of how much the expected utility is discounted with each delayed bet. 

Cognitive modeling allows for the specification of such a measure, which should provide a 

more precise measurement of IMP that can better differentiate groups.

Risk taking (Risk) is a third measure often used to assess decision-making in the CGT. 

However, unlike QDM and IMP, Risk is often operationalized in different ways across 

studies. For example, some studies define Risk as the average betting ratio only on those 

trials where participants choose the optimal color (Risk+; e.g. Kräplin et al., 2014; Zois et 

al., 2014); others as the average betting ratio across all trials (Risk-Avg or Overall 

Proportion Bet; e.g. Bowden-Jones et al., 2005; Lawrence et al., 2009); and still others as the 

average betting ratio for trials in which participants choose the less optimal color (Risk-, e.g. 

Baldacchino et al., 2015). Based on our literature review, we chose to operationalize risk-

taking as the Risk + definition above due to its more widespread use (which is typically 

called ‘Risk Taking’).

As mentioned earlier, there are a number of additional measures from the CGT: Deliberation 

time is the time between the beginning of the trial and the bet choice; overall proportion bet 

records the average betting ratio chosen across all trials, including non-optimal trials and 

trials in which the proportion of red and blue boxes are the same; risk adjustment captures 

3Supplementary material can be found by accessing the online version.

Romeu et al. Page 4

Drug Alcohol Depend. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the tendency for participants to bet more when the odds are in their favor. While we also 

assess the models’ capabilities to capture trends in these data, as well as report on these data, 

these additional measures are not as common, or are very similar to the first three measures, 

and so our focus will be mostly on the three main measures of QDM, Risk+, and IMP.

Because parameters from cognitive models are often difficult to estimate, we use 

hierarchical Bayesian analysis (HBA; Kruschke, 2014; Wagenmakers et al., 2018). HBA has 

many advantages over traditional approaches (e.g., maximum likelihood estimation) and is 

particularly well-suited for estimating group-level effects while accounting for individual-

level variation. Specifically, HBA uses estimates of participant-level parameters to inform 

the group-level estimate, which leads to pooling of information across subjects within each 

group. Once estimated, group-level parameters can then be directly compared to identify 

differences in cognitive mechanisms between groups (Kruschke, 2014; Wagenmakers et al., 

2018)

In sum, the explanatory power of the behavioral CGT data in isolation is quite restricted, and 

here we offer a cognitive model of the CGT as a partial solution. We develop models based 

on both expected utility theory (von Neumann and Morgenstern, 1944) and ideas from 

prospect theory (Kahneman and Tversky, 2013/1979) and use Bayesian model comparison 

to determine which model is most generalizable. Further, we evaluate the predictive validity 

of the model relative to traditional behavioral summary methods (QDM, IMP, Risk+, etc.) by 

comparing model parameters and traditional measures of CGT behavior across control 

participants and multiple groups of currently abstinent individuals with a history of pure 

amphetamine, pure heroin, and polysubstance use disorders. Additionally, we examine 

convergent validity between traditional methods and our proposed alternatives. We expect to 

find steeper delay discounting of bets in all substance using groups relative to healthy 

controls. Further, we hypothesize that cognitive modeling will reveal differences in the 

groups’ parameter estimates that many of the behavioral measures will fail to detect.

2. Methods

2.1. The cognitive models

The full mathematical details for each model are relegated to the SM (see S1 Table for 

complete mathematical details4), but we provide a verbal description here. All models 

assume that a color and bet is chosen based on its “strength” (i.e., expected utility) relative to 

all other options (von Neumann and Morgenstern, 1944). Comparing the strength of each 

possible choice to the summed strength of all choices (Luce’s choice rule; Busemeyer and 

Stout, 2002) yields a probability of choosing that particular option, so that our models output 

probability mass functions for each stage of the task. In particular, the probability of 

choosing a betting option is proportional to the expected utility of that option. Note also that 

the expected utility of each option is conditioned on the color choice. The color choice will 

be based on distortions of the available color data during the task, where the distorted values 

are our “expected utilities” in this context.

4Supplementary material can be found by accessing the online version.
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We tested a total of 12 different models that varied assumptions regarding the color and bet 

utility functions. Below, we limit our discussion to what we term the Cumulative model 

(CM), which provided the best fit to the data relative to competing models and was deemed 

more generalizable5. The CM bases the expected utility on the accumulated points up to the 

given trial (i.e. based on what the resulting “Point” value would be in Fig. 1), contrasting 

models such as in Prospect Theory which assume that only the potential outcomes determine 

an option’s expected utility6. Additionally, we assume that both the color choice 

probabilities and bet proportions are used to determine the expected utility for each option 

(the assumed dependence). Formally, we can represent the expected utility of each option as:

EU X Color = P Color Chosen Wins ⋅ Utility Points After Gain    + P Opposite Color Wins
⋅ Utility Points After Loss

That is, the expected utility of option X, given the chosen color, is a weighted average of the 

utility of the cumulative point values across gaining or losing points on the current trial. We 

assume that the Expected Utility (EU) is computed for each of the possible bets, the strength 

of which determines the probability of bet choice.

The CM has a total of 5 free parameters that are estimated for each participant/group. First, 

subjective probabilities for the color choice are captured by α (0 ≤ α ≤ 5), which “distorts” 

the objective probabilities of the token being under a red versus blue box. Higher values for 

α indicate underweighting of low and overweighting of high probabilities, which leads to 

more optimal color choices. A value of α = 1 indicates objective probability weighting. 

Therefore, probability distortion is our proposed cognitive mechanism that captures what is 

traditionally referred to as QDM. To account for biases that participants might have toward 

one color (which can introduce noise in estimation of probability distortion), we also include 

a color bias parameter c (0 ≤ c ≤ 1) where values closer to 1 indicate a bias for red. Note that 

CM uses the “distorted” color probabilities to generate color choice probabilities, but the 

objective color probabilities are used to weight the bets in the EU equation above7.

For calculating the value of gaining/losing a bet, we include a utility parameter ρ (0 ≤ ρ < + 

∞) which governs how sensitive participants are to losses relative to gains. Specifically, we 

set ρ = 1 for gains and freely estimated ρ for losses, which allows for ρ to capture variations 

in loss sensitivity that can lead to risk-seeking (ρ < 1) or risk-averse (ρ > 1) behavior. 

Therefore, ρ should (anti-)align with traditional measures of Risk (i.e., Risk+8).

To capture the tendency to select immediate over delayed bets, the expected utility is then 

“discounted” for the time delay for each bet option. Specifically, the CM assumes that 

waiting for an option diminishes its subjective value linearly. The slope of this linear descent 

is given by β (0 ≤ β < + ∞), which is interpreted here as the impulsivity parameter (IMP) 

5The best-fitting model described here is termed “Model 12 (M12)” in the SM. Supplementary material can be found by accessing the 
online version.
6Note that we tested variants of this idea from Prospect Theory, which we here call the Immediate Models (IM), and the CM provided 
the best fit (See SM; Supplementary material can be found by accessing the online version.
7We tested subjective versus objective probability weighting for the EU, and the CM with objective bet weighting provides the best fit 
across all groups.
8We also tested variants of this loss aversion mechanism; details can be found in the SM. Supplementary material can be found by 
accessing the online version.
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and is akin to the discounting rate measured in delay discounting paradigms. Greater descent 

in value due to time delays (higher β) indicates higher impulsivity. Finally, the discounted 

expected utilities for each bet option are exponentiated, scaled with γ (0 ≤ γ < + ∞), and 

then compared to the utility of other bet options to generate a probability of selecting a given 

bet (known as Luce’s choice rule, Busemeyer and Stout, 2002). Higher (lower) values for γ 
indicate that participants are making more deterministic (random) choices with respect to 

their model-predicted expected value for each option. Table 1 summarizes each of the CM’s 

parameters and their respective psychological interpretations.

2.2. Experimental details

Because the experimental details have been explained elsewhere (Ahn and Vassileva, 2016; 

Vassileva et al., 2014; Wilson and Vassileva, 2016), we only touch on some highlights here. 

More information can be found in the SM9.

First, our final sample consisted of 124 healthy controls10 (i.e., those not having current or 

lifetime diagnosis of substance dependence) and three groups of participants with a history 

of substance-dependence based on DSM-IV criteria: (a) a “pure” (i.e., mono-dependent) 

heroin dependent group (N = 79); (b) a “pure” amphetamine dependent group (N = 76); and 

(c) a polysubstance dependent group (N = 103). This final sample excludes eighteen 

participants across the four groups for reasons we elaborate below. The majority of 

substance dependent participants were in protracted abstinence, i.e. in DSM-IV sustained 

full remission for twelve months or longer (heroin: 78%; amphetamine: 59%; polysubstance: 

64%). All participants were recruited in Sofia, Bulgaria, as part of a larger study on 

impulsivity among substance users. All participants provided informed consent. The 

demographic data for the final sample is found in Table 2; more information on the 

procedures can be found in (Ahn and Vassileva, 2016; Vassileva et al., 2014) and in the 

SM11.

We administered the CGT using the CANTAB® battery (Cognition, 2016) to all 

participants. We excluded 18 participants due to clear signs of boredom (details in the 

SM12): (i) Controls = 7; (ii) HeroiN = 5; (iii) Amphetamine = 2; (iv) Polysubstance = 4. Our 

initial sample consisted of 437 participants; 18 of whom needed to be removed due to clear 

signs of boredom, and an additional 37 control participants were removed because, after 

further inspection, they were found to be ineligible13. Additionally, 2 participants had 

missing summary CGT data (as outputted by CANTAB) and demographic data but complete 

trial-by-trial data (which is used in the models). This leaves us with a final sample of N = 

382 participants, with two people missing summary and demographic data. The behavioral 

results below used those with complete summary CGT data (N = 380).

9Supplementary material can be found by accessing the online version.
10Earlier versions of this article included some controls with a history of cannabis dependence or low IQ who were incorrectly 
allowed into the study. These controls have now been removed from all analyses; however, earlier analyses considered the impact of 
these controls on the results, and these considerations are discussed in the section “Previous Analyses” in the Supplementary material. 
Supplementary material can be found by accessing the online version.
11Supplementary material can be found by accessing the online version.
12Supplementary material can be found by accessing the online version.
13More detail on this can be found in the section “Previous Analyses” in the supplement. Supplementary material can be found by 
accessing the online version.

Romeu et al. Page 7

Drug Alcohol Depend. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results

3.1. Behavioral results

We performed an ANOVA on each of the behavioral measures available to us from the CGT: 

(1) QDM, (2) IMP/delay aversion, (3) Risk +/Risk-Taking, (4) Deliberation Time, (5) Risk 

Adjustment, and (6) Overall Proportion Bet (OPB).

There were no significant group differences on: QDM, with F(3, 376) = 0.54, ns (p = 0.66); 

Delay Aversion/IMP, with F(3, 376) = 2.30, p = 0.08; Deliberation time, with F(3, 376) = 

1.17, p = 0.32; Overall Proportion Bet, with F(3, 376) = 2.38, p = 0.07; and Risk 

Adjustment, with F(3, 376) = 0.74, p = 0.53. Note that the degrees of freedom are two less 

than they should be given a total N of 392, since one polysubstance and one heroin 

participant had missing summary data.

However, Risk+ (Risk-Taking) was found to be significant, with F(3, 376) = 2.79, p = 0.04. 

A Bonferroni correction on Risk+, with 3 comparisons and an alpha-level set at 0.05, 

revealed that only the comparison between controls and polysubstance users was significant, 

t(224) = −2.66, p = 0.0083; the negative t statistic indicates that polysubstance users were 

higher in Risk + than controls.

Thus, most of the behavioral measures suggest that there is minimal evidence of group 

differences on the task, with the exception of Risk+, where polysubstance users scored 

significantly higher than controls on both measures. Thus, while there are multiple measures 

of risk in the CGT, for simplicity we focus on the comparison between ρ and Risk+, as Risk 

+ was the only measure to have a significant difference.

3.2. Cognitive modeling results

Details on the procedures used to fit, check and determine the best model are included in the 

SM14. Briefly, we fit twelve competing models to each group separately, resulting in both 

group and individual-level posterior estimates for each model and group (see S1 Table for 

mathematical details15). We checked convergence to target distributions using both 

graphical and quantitative measures (Gelman and Rubin, 1992), and then used the leave-one-

out information criterion to determine which model described the data best while penalizing 

for model complexity (Vehtari et al., 2017).

Additionally, we conducted posterior predictive simulations to check how well the CM could 

describe each groups’ choice patterns across different color ratios and conditions. Fig. 2 

shows that the CM provided an excellent fit to both the color choice and bet proportions 

across conditions in the control group. Results were similar for the other groups (see S2 and 

S3 Tables for mean squared error measures across all models and groups16). (Note that the 

model follows the hypothesized effect of color ratio on betting choice.) Because the CM 

provided an accurate account of all groups’ color choice and betting behavior, we used it to 

infer substance-specific differences in cognitive mechanisms between groups.

14Supplementary material can be found by accessing the online version.
15Supplementary material can be found by accessing the online version.
16Supplementary material can be found by accessing the online version.
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Fig. 3 shows the group-level posterior estimates for the CM for each group. Note that 

posterior distributions reflect uncertainty in the parameter estimates, where areas of higher 

density reflect more probable parameter values. To compare groups in a Bayesian manner, 

we computed differences between group-level parameters (see Fig. 4A and 4B). For brevity, 

we focus on reporting comparisons where the 95% highest density interval (HDI) of the 

difference between group parameters excludes/nearly excludes 0 (Kruschke, 2014). 

However, we do not endorse binary interpretations of “significant differences” using this 

threshold and instead refer the reader to the graphical comparisons to judge whether 

parameter differences are meaningful. In particular, the Bayesian method of analysis allows 

us to make statements about the probability of certain parameter comparisons. The 

probabilities within Fig. 4 demonstrate those probabilities of interest.

Overall, we found strong evidence for large differences between controls and substance 

users. First, amphetamine users, and polysubstance users to a lesser extent, showed evidence 

for less probability distortion (lower α) than healthy controls, which reflects a greater 

willingness to make less optimal bets (analogous to QDM). Additionally, amphetamine and 

heroin users, and polysubstance users to a lesser extent, showed evidence for larger β 
parameters compared to the healthy controls, which is indicative of higher impulsivity (i.e. 

greater discounting of time delay when placing bets) in the substance using groups. 

Specifically, all substance using groups had an estimated 96% or greater probability of 

having higher β parameters relative to controls, as seen in Fig. 4. Furthermore, all substance 

using groups showed greatly reduced sensitivity to loss (lower ρ) relative to controls 

(estimated 98% or greater probability of lower ρ relative to controls), which leads to taking 

more risky bets. This follows since reduced sensitivity makes losses less painful, and hence 

the person will be more willing to take riskier bets17. Notably, a difference in ρ between 

polysubstance users and controls is consistent with our findings using traditional measures 

of Risk+.

In addition to identifying differences between healthy controls and substance users, the CM 

differentiated well among substance using groups (Fig. 4B). For example, amphetamine 

users showed evidence of lower probability distortion of color choices (α) relative to heroin 

users (98% of the posterior samples were greater than 0) possibly indicating a quantitatively 

worse decision-making process in the color choice. Specifically, amphetamine users appear 

to probability match to a some-what greater degree than heroin users, where probability 

matching is the less optimal strategy in this situation (Shanks et al., 2002). Additionally, 

pure substance users (i.e. pure amphetamine and pure heroin users) showed more risk-

sensitivity to losses (ρ) relative to polysubstance users (estimated 99% or greater 

probability). Notably, there were no strong differences in impulsivity (β) among substance 

using groups. Finally, heroin users showed a smaller bias for the red color choice (c) relative 

to polysubstance users. That is, the heroin users had a greater propensity to choose blue over 

red than polysubstance users. While not theoretically important, this result underscores the 

17While in the context of the CM, the parameter estimates are consistent with what was expected (i.e., that substance users are less 
sensitive to losses), the manner in which the risk sensitivity parameter has been implemented in our model makes its interpretation 
opposite to traditional measures of risk: in our model, ρ < 1 actually means risk seeking, since the parameter’s interpretation is tied to 
loss sensitivity. We discuss this unorthodoxy more below.
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importance of modeling choice biases that could obscure inferences on more meaningful 

model parameters18. In fact, such biases may be partly responsible for inconsistent findings 

using traditional measures of QDM and IMP. Further, our finding that ρ differed between 

substance using groups shows that the CM is more sensitive to differences in risk sensitivity 

compared to traditional measures in the CGT (Risk+).

Finally, to test convergent validity between QDM, IMP, and Risk + to similar corresponding 

measures offered by the CM, we computed the posterior means for each participant’s α, β, 

and ρ parameters and compared them to each participant’s QDM, IMP, and Risk + scores, 

respectively. Fig. 5 shows the Pearson’s correlations between cognitive model parameters 

and traditional behavioral summary measures. Notably, correlations were high across all 

groups and measures (all |r|s ≥.75), suggesting that the CM captures facets of decision-

making similar – but not identical – to those inferred using traditional summary statistics 

derived from the CGT. Importantly the CM maintained strong convergent validity with 

traditional measures while also identifying group differences to which traditional measures/

analyses were not sensitive.

4. Discussion

We have presented a modeling perspective on measuring latent cognitive mechanisms that 

give rise to choice behavior in the Cambridge Gambling Task (CGT). Specifically, we 

developed a suite of cognitive models that made different assumptions about how individuals 

make choices on the CGT, and we used hierarchical Bayesian modeling and Bayesian model 

comparison to identify the model that provided the best fit to empirical data collected from 

both healthy controls and multiple groups of individuals with histories of substance use 

disorders. Finally, we probed the best-fitting model to determine which cognitive 

mechanisms varied across groups. The model that performed the best (CM; coded as M12 in 

the SM) used a slowly-growing (i.e. logarithmic), cumulative utility function, and it 

demonstrated expected differences among the groups in its proxy measure of impulsivity 

(β). In particular, we found that all the substance dependent groups showed evidence of 

higher β’ s than the healthy controls, an indication of greater impulsivity (i.e. greater 

discounting of delayed bets) within these groups than in controls. The CM further 

demonstrated differences among substance using groups that are consistent with prior 

literature. For example, we found that amphetamine use was linked to lower probability 

distortion (α) relative to heroin use, which indicates less optimal color choices, and is 

consistent with elevated sensation seeking predicting amphetamine rather than heroin use 

(Ahn and Vassileva, 2016). We additionally found evidence for differences in risk-seeking 

behavior across the groups, and even within the substance-using groups (e.g. monosubstance 

users not differing, but evidence for a difference between mono- and polysubstance users).

The models developed in this article were an initial attempt to model the CGT, and so there 

is certainly room for improvement. For instance, it may be that our proxy measure of 

18After running an independent-samples t-test against the two groups’, heroin and polysubstance, rates of choosing red, we observed 
t(180) = −1.90, p = 0.06, ns. Additionally, we found that the mean rate of choosing red for the two groups were 0.4753 and 0.4901 for 
the heroin and polysubstance use groups, respectively. This leads us to conclude that this result should be interpreted with caution, and 
any serious consideration of this result should await further replication.
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impulsivity is too crude, and may conflate related but distinct constructs such as sensation-

seeking, novelty-seeking, and various types of trait impulsivity, to name a few (Magid et al., 

2007). Possible improvements could see how these different forms of impulsivity could be 

implemented into the model. In addition, because the functional form of the bet utility 

function of the CM is specific to loss sensitivity, we caution readers and those interested in 

employing the model that the CM risk aversion parameter should not be interpreted in the 

same manner as risk aversion traditionally measured in economic tasks. In particular, the 

risk aversion parameter is: (1) opposite in direction to that of traditional measures of risk 

aversion, and (2) estimated using an unorthodox function – which provided the best fit to all 

groups in the current study. Therefore, those interested in traditional measures of risk 

aversion should not rely wholly on our CGT model (more on this can be found in the SM19).

There are some limitations to this study that should be kept in mind. First, the design of the 

CGT complicates not only any design for a model, but also the interpretation of results from 

such a model. The design allows multiple cognitive components of decision-making to be 

assessed at once, in a fairly realistic gambling simulation; however, this possibly comes at 

the cost of “watering down” any possible assessment of these components individually. If we 

accept that cognitive models lead to more reliable and valid results, then these comments 

easily apply to any traditional measures of the CGT as a corollary. Indeed, as the CGT 

engages a variety of cognitive processes that may not be reliably assessed, this may partially 

explain the inconsistent results in the literature. While the CGT may arguably give a more 

ecologically valid assessment of decision-making processes, this comes at the cost of lower 

reliabilities for any measures derived from it.

Finally, these results came from a rare group of former pre-dominantly mono-dependent 

substance users, currently in protracted abstinence. It has been suggested that long-term 

recovery from addiction may involve developing capacities such as unusually strong impulse 

control, that may exceed those of individuals who have never been addicted (Humphreys and 

Bickel, 2018). However, it is unclear if factors other than type of substance use could have 

driven the results we observed, e.g. the gender imbalance in our sample (mostly male), 

length of abstinence, individual differences in history and severity of substance use, or co-

occurring psychopathology. These factors may have differed across our groups, which may 

have affected our results. Future studies should examine the influence of these potentially 

confounding variables on CGT model parameters.

Nonetheless, these results potentially testify to the long-term effects of chronic substance 

use on decision-making capabilities; while it is certainly possible that diminished decision-

making capabilities could have caused the substance use in our sample, our experimental 

design does not allow us to determine the direction of causality. However, our results are 

congruent with a meta-analysis of the long-term effects of alcohol use disorder (Stavro et al., 

2013) and opioid use disorder (Biernacki et al., 2016). Our sample being mostly in 

protracted abstinence may also explain why we only found a marginally non-significant 

behavioral difference among groups in the raw data, whereas others have found significant 

differences (Kräplin et al., 2014; Lawrence et al., 2009; Zois et al., 2014). Indeed, cognitive 

19Supplementary material can be found by accessing the online version.
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functioning has been shown to improve gradually with abstinence (Garavan et al., 2013; 

Stavro et al., 2013). Therefore, future research should determine if our results generalize to 

groups of active substance users or whether they are specific to substance users in protracted 

abstinence.

5. Conclusion

Cognitive modeling offers a powerful, valid alternative to traditional summary measures of 

behavioral performance on the CGT. We used hierarchical Bayesian modeling to develop 

and test multiple cognitive models on CGT data from healthy controls and several groups of 

substance users in protracted abstinence. Further, we used Bayesian model comparison to 

determine the best-fitting, most generalizable model. To our knowledge, this is the first 

cognitive model developed specifically for the CGT. We added the best-fitting model to 

hBayesDM, an R package that will allow interested researchers to easily apply the CM to 

data collected from the CGT (Ahn et al., 2017). We refer interested readers to the tutorial on 

our GitHub repository (https://github.com/CCS-Lab/hBayesDM) for details on installing and 

using hBayesDM to fit the CM to CGT data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stages of the CGT.

The CGT progresses through two stages before the outcome of the token (and subsequently 

of the chosen bet) is revealed. First, participants must guess which color hides the token. 

Once a color is chosen, bet proportions (.05, .25, .5, .75, .95) are shown in either ascending 

or descending order, where each bet is shown for 5 s in total. Note that the “bet box” shows 

the number of points that can be gained/lost for each bet proportion rather than the bet 

proportions themselves.
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Fig. 2. 
Comparison of Posterior Predictive Simulations versus Actual Average Choices.

Posterior predictive simulations generated from the best fitting model (CM with log 

valuation function; Model 12 in the Supplementary Text). Simulations from the model were 

generated for each individual after fitting the model, conditional on their actual choices. 

Resulting individual level predictions were then averaged across participants within groups 

and plotted against the actual behavioral choices averaged across participants within groups. 

Note that these graphs depict only healthy control data, though results were consistent across 

groups. We refer the reader to S2 and S3 Tables for comparison of posterior predictive 
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simulations across models and groups. (A) Simulations versus actual behavioral data for 

color choices. Note that a choice of blue was coded as 0, and a choice of red was coded as 1. 

Thus, averages close to zero indicate more choices of blue, and those closer to 1 indicate 

more choices of red. (B) Simulations versus actual behavioral data for bet choices. The y-

axis here now represents the average betting ratio that was chosen versus predicted. Note 

that while the shapes for the ascending and descending cases are similar, the descending 

graph is shifted upward relative to the ascending graph—this difference indicates impulsivity 

and is captured by β in the CM model.
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Fig. 3. 
Posterior Distributions for the Means of Each Parameter Across Groups.

The posterior densities (distributions) for the means of each parameter, color-coded by 

group. Note that parameters are estimated from the CM model with a log valuation function 

(Model 12 in the Supplementary Text).
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Fig. 4. 
Group Differences in Posterior Estimates of Parameters Using Model 12.

(A) Posterior distribution of differences in estimated parameters between groups, using the 

best-fitting model (CM model with log valuation function; termed M12 in Supplementary 

Text). Each column shows the difference distributions between Controls and one of the 

substance-using groups. These differences are comparing each of the CM model hyper-

parameters (i.e. the parameters reflecting group-level means). The solid red bars indicate the 

95% Highest Density Interval (HDI) for each difference, meaning where 95% of the “mass” 

of the posterior distribution lies. Note that we do not endorse binary interpretations of 

significance using HDIs, and instead interpret the posterior distributions as continuous 

measures of evidence. The vertical dashed lines show where zero lies in each graph. The 

numbers overlaying each subplot indicate the proportion of the posterior distribution above 

and below 0, which can be interpreted as the model-estimated probability of a difference in 

parameter values between groups (where .50 indicates no evidence for a difference, and 

more peaked and diffuse distributions indicate more and less certainty in the inferred 

difference, respectively). (B) Posterior distributions of the differences in group-level CM 

model parameters between substance use groups. Solid and dashed lines and overlaying 

numbers are interpreted in the same way as for (A).
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Fig. 5. 
Convergent validity between traditional metrics and cognitive model parameters.

Convergent validity between traditional measures of QDM, IMP, and Risk + and 

corresponding cognitive model parameter alternatives. The α parameter captures distortion 

of color choice probabilities, which leads to more or less optimal color choices and is 

analogous to traditional measures of QDM. The β parameter captures how much participants 

discount the utility of each bet with the passing of time and is analogous to traditional 

measures of IMP. The ρ parameter captures risk sensitivity, where values of ρ < 1 indicate 

less sensitivity to losses than gains and values of ρ > 1 have the opposite interpretation. 

Therefore, ρ < 1 reflects risk-seeking behavior, and ρ > 1 indicates risk-averse behavior. 

Note that the correlations between ρ parameters and Risk + scores are negative because ρ is 

specific to losses, so the interpretation is reversed. The cognitive model parameters are log-

transformed. All p-values < < 0.001.
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Table 1

The parameters in the model.

Parameter Range of Values Interpretation

α 0 ≤ α ≤ 5 Color probability weighting

ρ 0 ≤ ρ < + ∞ Risk aversion

c 0 ≤ c ≤ 1 Bias for choosing RED

β 0 ≤ β < + ∞ Impulsivity

γ 0 ≤ γ < + ∞ Variability/noise in betting choice

A compendium of the parameters in the models. The second column gives the permissible values for that particular parameter (note that β and γ are 
not bounded above). The final column gives the psychological interpretation of the parameter based on how its values affect the output of the 
models. See section 2 for more details.
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