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Abstract

Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a challenging task due 

to diffuse opacification in dependent regions which results in little to no contrast at the lung 

boundary. For segmentation of severely injured lungs, local intensity and texture information, as 

well as global contextual information, are important factors for consistent inclusion of 

intrapulmonary structures. In this study, we propose a deep learning framework which uses a novel 

multi-resolution convolutional neural network (ConvNet) for automated segmentation of lungs in 

multiple mammalian species with injury models similar to ARDS. The multi-resolution model 

eliminates the need to tradeoff between high-resolution and global context by using a cascade of 

low-resolution to high-resolution networks. Transfer learning is used to accommodate the limited 

number of training datasets. The model was initially pre-trained on human CT images, and 

subsequently fine-tuned on canine, porcine, and ovine CT images with lung injuries similar to 

ARDS. The multi-resolution model was compared to both high-resolution and low-resolution 

networks alone. The multi-resolution model outperformed both the low- and high-resolution 

models, achieving an overall mean Jacaard index of 0.963±0.025 compared to 0.919±0.027 and 

0.950±0.036, respectively, for the animal dataset (N = 287). The multi-resolution model achieves 

an overall average symmetric surface distance of 0.438 ± 0.315 mm, compared to 0.971 ± 0.368 

mm and 0.657 ± 0.519 mm for the low-resolution and high-resolution models, respectively. We 
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conclude that the multi-resolution model produces accurate segmentations in severely injured 

lungs, which is attributed to the inclusion of both local and global features.
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1. Introduction

X-ray computed tomography (CT) produces high-resolution volumetric reconstructions of 

anatomy. The intensity values in a CT image reflect the density of the tissue, producing high 

contrast between low-density lungs and the surrounding soft tissue. High-resolution CT 

images allow for intricate visualization of lung texture, vasculature, and airway segments. 

CT imaging is routinely utilized for diagnosing lung pathologies, guiding treatment, 

monitoring progression, and characterizing lung diseases.

The acute respiratory distress syndrome (ARDS) is associated with severe respiratory failure 

in the presence of diffuse inflammation, increased pulmonary vasculature permeability, and 

loss of lung tissue aeration (Coppola et al., 2017). Radiographically, this condition presents 

with diffuse bilateral opacification in the dependent lung (Gattinoni et al., 2001; Cereda et 

al., 2019). While a plain chest x-ray image can confirm the diagnosis of ARDS, it may not 

provide specific information on the locus of injury or its spatial heterogeneity. CT thus has 

more clinical utility for diagnostic imaging in ARDS, since it can differentiate pathological 

phenotypes and provide information regarding treatment response (Gattinoni et al., 2006), as 

well as characterize spatial heterogeneity of injury and regional mechanical properties 

(Kaczka et al., 2011; Perchiazzi et al., 2014; Fernandez-Bustamante et al., 2009; Gattinoni et 

al., 2006; Paula et al., 2016; Carvalho et al., 2008). Quantitative CT (qCT) of the lung 

enables objective assessment of injury, in contrast to the subjective interpretation of a 

radiologist. QCT has also been used for evaluating response to mechanical ventilation 

(Black et al., 2008; Godet et al., 2018; Perchiazzi et al., 2011) and monitoring injury 

progression (Cereda et al., 2016, 2017). Spatial and temporal heterogeneity of parenchymal 
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tissue strain in ARDS can also be measured through registration of dynamically imaged 

lungs (Herrmann et al., 2017) or lungs imaged at distending pressures (Kaczka et al., 2011; 

Perchiazzi et al., 2014; Cereda et al., 2017).

In general, CT imaging is not easily nor often performed on humans with ARDS. Patients 

with ARDS are often critically ill and it is too risky to transfer the patient to a CT scanner. 

CT imaging is not required to diagnose ARDS, but rather is used most often clinically to 

assess complications such as infection, pneumothorax, pulmonary embolism, etc. Therefore, 

use of quantitative CT in ARDS is currently more prevalent in research settings with animal 

models of ARDS. We anticipate that quantitative CT may become a more valuable clinical 

tool as automated image analysis software is developed and validated experimentally. For 

example, there is growing support for use of CT scans to facilitate differentiation of ARDS 

phenotypes, or guide patient-specific optimal ventilation settings (Cereda et al., 2019; 

Zompatori et al., 2014; Sheard et al., 2012).

A necessary precursor to the application of qCT in ARDS is lung segmentation, which 

distinguishes intrapulmonary tissues and structures from the surrounding chest wall and 

mediastinum. Intensity-based segmentation methods are widely used for CT images of the 

thorax, since there is normally high contrast between the air-filled lungs and surrounding 

tissues (Brown et al., 1997; Kemerink et al., 1998; Hu et al., 2001; Ukil & Reinhardt, 2004). 

However these methods fail to include dense pathologies, such as non-aerated edematous 

and atelectatic regions commonly observed in ARDS. Lungs with ARDS are particularly 

challenging to segment, since the injury pattern is often diffuse and predominates in 

posterior dependent regions in supine subjects. Lungs with peripheral injury patterns are 

particularly more challenging to segment compared to those with more interior patterns, 

because there is little to no contrast between the injured parenchyma and non-pulmonary 

structures. Furthermore, consolidated regions have no textural features that make it 

distinguishable from the surrounding soft tissue.

Several studies have investigated different segmentation techniques for injured lungs. Shape 

prior methods rely on modeling the variations in lung shape and are better suited for 

segmentation of injured lungs compared to intensity-based methods. Sun et al. (2012) 

proposed a 3D robust active shape model to approximate a lung segmentation in lung cancer 

subjects. The model is initialized using rib cage information and refined used an optimal 

surface finding graph search (Li et al., 2006). Similarly Sofka et al. (2011) use a statistical 

shape model which is initialized using automatically detected landmarks on the carina, ribs, 

and spine. Soliman et al. (2016) proposed a joint 3D Markov-Gibbs random field (MGRF) 

model which combines an active shape model with first and second order appearance models 

to segment normal and pathological lungs. Segmentation-by-registration is another shape-

prior-based approach which uses image registration to find the mapping between the image 

to be segmented and one or more images, i.e. an atlas, with known segmentations. A 

semiautomatic approach using segmentation-by-registration in longitudinal images of rats 

with surfactant depletion was proposed by Xin et al. (2014). A limitation of this approach is 

the requirement of manual segmentation of baseline (i.e., pre-injury) CT scan. Moreover 

their method relies on a relatively time-consuming image registration algorithm, requiring 4 

to 6 hours for completion. Similar segmentation-by-registration approaches have also been 
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proposed (Sluimer et al., 2005; Zhang et al., 2006; van Rikxoort et al., 2009; Pinzón et al., 

2014; Pinzón, 2016). Anatomic information from the airways and rib cage has been used to 

identify the boundaries between injured parenchyma and surrounding soft tissue in injured 

lungs (Cuevas et al., 2009). A wavelet-based approach was proposed by Talakoub et al. 

(2007). However their method may fail for severely injured lungs, for which no discernible 

parenchymal boundary information is present.

Manual segmentation is still widely used for segmentation of lungs with acute injury or 

ARDS, since current automated methods are not reliable. However, manual segmentation is 

tedious, time-consuming, and subject to high intra- and inter-observer variability. 

Furthermore, manual lung segmentations are typically performed on 2D transverse slices of 

the thorax, which limits global context and produces segmentations that may not appear 

smooth in sagittal or coronal sections. For large datasets, such as dynamic (i.e., 4D) CT 

images with multiple phases or time points, manual segmentation is not practical. Thus, 

accurate and efficient segmentation of injured lungs remains a major obstacle limiting the 

clinical use of qCT in ARDS and other heterogeneous lung pathologies.

Recently, deep learning with convolutional neural networks (ConvNets) has dominated a 

wide range of applications in computer vision, with the ability to perform image 

classification, localization, segmentation, and registration that at times surpass human-level 

accuracy. Deep learning enables computers to learn robust and predictive features directly 

from raw data, rather than relying on explicit rule-based algorithms or learning from human-

engineered features. Deep learning systems are also more robust and computationally 

efficient. Within the specialized field of medical imaging, ConvNets successfully detect skin 

cancer (Esteva et al., 2017), classify lung nodules (Shen et al., 2015), and segment various 

anatomic and pathological structures (Prasoon et al., 2013; Li et al., 2014; Ronneberger et 

al., 2015; Anthimopoulos et al., 2016; Shin et al., 2016). A recent survey on deep learning 

applied to medical imaging is given by Litjens et al. (2017).

A major challenge limiting the use of ConvNets for medical image segmentation is 

computing hardware. Graphical processing units (GPUs) are essential for efficient ConvNet 

training, but current GPUs have limited memory. Training ConvNet models using high-

resolution volumetric images requires prohibitively large amounts of GPU memory. As a 

compromise, most methods extract 2D slices or 3D patches with local extent. Figure 1 

illustrates several approaches to low-memory image representation using various degrees of 

downsampling and/or cropping. Approaches relying on aggressive cropping will sacrifice 

global information and 3D smoothness, in favor of high anatomic resolution. By contrast, 

downsampling approaches preserve global context at the expense of small-scale features. 

Another challenge for deep learning in medical imaging is the limited availability of labeled 

training data. Deep learning methods require large training datasets to fit millions of free 

model parameters. Expert annotation of training data is time-consuming and laborious, 

especially for volumetric medical images, which typically have upwards of 500 2D slices for 

a single thoracic CT scan. Furthermore, the pathological derangements associated with rare 

diseases yield very small cohorts of subjects.
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These challenges need to be addressed for successful application of ConvNets for 

segmentation of ARDS lungs. Global contextual information, such as the surrounding 

anatomic features, is necessary for segmentation of injured lungs, since local intensity is 

non-distinguishable from surrounding tissue. Current methods that use 2D slices or 3D 

patches are not ideal, as these do not consider global features. Furthermore, limited 

annotated training data of ARDS lungs is available due to the time necessary to produce 

manual segmentations. The main contributions of this work are:

• A multi-resolution ConvNet model which has the capacity to learn both local and 

global features in large volumetric medical images.

• Fully automated and computationally efficient segmentation of injured lungs 

obtained from CT imaging.

• Segmentation of lungs across multiple mammalian species using limited 

annotated training data.

The multi-resolution ConvNet cascade makes use of both low-resolution and high-resolution 

models to enable multi-scale learning. In a pilot study, we proposed a multi-resolution 

ConvNet model and evaluated the model on a small dataset of porcine subjects with acute 

lung injury (Gerard et al., 2018). In this work, we further evaluate the multi-resolution 

model using an extensive dataset consisting of porcine, canine, and ovine subjects. Given the 

wide variability of animal species and large imaging datasets used in experimental ARDS 

research, the ability of an automated lung segmentation algorithm to generalize across 

species is critical for widespread utility. Furthermore, we show the utility of the multi-

resolution model through comparison with two other ConvNet-based models. We 

hypothesized that a model incorporating both global and local information would be 

superior to models that use only local or global information for this type of injury. The 

importance of global and local information is explored by comparing the proposed model to 

a conventional high-resolution model which uses image slabs, and a low-resolution model 

which uses aggressive downsampling. The high-resolution model sacrifices global 

contextual information in favor of high-resolution information whereas the low-resolution 

model sacrifices high-resolution detail in favor of global context. A transfer learning 

approach is used which allows training the model using a limited amount of mammalian 

ARDS training data, after first pre-training the model using an extensive image database of 

human lungs without ARDS.

2. Datasets and Reference Standards

We utilized a dataset consisting of CT scans from four different species: human, canine, 

porcine, and ovine. Hereinafter the collection of human images is referred to as the human 

dataset, while the collection of canine, porcine, and ovine images is referred to as the animal 

dataset. The human dataset was used to pre-train the model, while the animal dataset was 

used for fine-tuning. The human dataset consisted of 3418 CT scans, including 3113 

subjects with chronic obstructive pulmonary disease (COPD) and 305 subjects with 

idiopathic pulmonary fibrosis (IPF). The animal dataset consisted of 301 scans of subjects 

with various experimental models of ARDS: 76 scans of canine subjects with an oleic acid 

injury, 152 scans of porcine subjects with an oleic acid injury, 27 scans of ovine subjects 
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with a saline lavage injury, and 46 scans of ovine subjects with a lipopolysaccharide (LPS) 

injury.

2.1. Human Dataset

The human dataset consisted of CT scans acquired from three large-scale clinical trials: 

COPDGene, SPIROMICS, and PANTHER-IPF.. COPDGene is a large multi-institutional 

clinical trial studying genetics and imaging biomarkers of COPD subjects (Regan et al., 

2011). The subset of COPDGene subjects used in this study had images acquired at total 

lung capacity (TLC), functional residual capacity (FRC), and residual volume (RV). TLC 

scans were acquired at 120 kVp and 200 mAs. FRC and RV scans were acquired at 120 kVp 

and 50 mAs. SPIROMICS is also a multi-institutional clinical trial studying subpopulations 

and intermediate outcomes in COPD subjects (Couper et al., 2014; Sieren et al., 2016; 

Woodruff et al., 2016). The SPIROMICS subjects used in this study had images acquired at 

TLC and RV (Sieren et al., 2016). The IPF dataset was obtained from an ancillary study of 

PANTHER-IPF (Idiopathic Pulmonary Fibrosis Clinical Research Network et al., 2012, 

2014). This study used high-resolution CT images to identify IPF textural features and their 

relations to disease progression (Salisbury et al., 2017). This dataset consisted of scans 

acquired at TLC (Salisbury et al., 2017).

2.2. Animal Dataset

2.2.1. Porcine Dataset—The porcine dataset was obtained from a study of alternative 

mechanical ventilation modalities to treat ARDS, approved by the University of Iowa 

Institutional Animal Care and Use Committee. Pigs approximately 10 to 15 kg in size were 

scanned under baseline conditions and following maturation of acute lung injury induced by 

infusion of oleic acid into the superior vena cava. 3DCT images were acquired during 

breath-hold maneuvers at constant airway pressures of 0, 5, 10, 15, 20, 25, and 30 cmH2O. 

4DCT images were acquired during mechanical ventilation using three ventilator modalities: 

conventional pressure-controlled ventilation, high-frequency oscillatory ventilation, and 

multi-frequency oscillatory ventilation (Kaczka et al., 2015; Herrmann et al., 2017). All 

images were acquired using a Siemens Somatom Force scanner, with 120 kVp, 90 mA s, and 

0.5 mm slice thickness for 3DCT, or 80 kVp, 150 mAs, and 0.6 mm slice thickness for 

4DCT. The 4DCT images have a limited axial coverage of 5.76 cm, which excludes the 

apices and bases of the lungs.

2.2.2. Canine Dataset—The canine dataset was obtained from a study of respiratory 

mechanics in subjects with acute lung injury (Kaczka et al., 2011), approved by the Johns 

Hopkins University Institutional Animal Care and Use Committee. Dogs approximately 22 

to 33 kg in size were scanned under baseline conditions and following maturation of acute 

lung injury induced by infusion of oleic acid into the pulmonary artery. 3DCT images were 

acquired during breath-hold maneuvers at constant airway pressures of 0, 5, 10, 15, and 20 

cmH2O. Images were acquired using a Siemens Somatom Sensation 16-slice scanner, with 

137 kVp, 165 mA s, and 2.5 mm slice thickness.

2.2.3. Ovine Dataset 1—The first ovine dataset was obtained from a study of prone vs. 

supine positioning to treat subjects with ARDS, approved by the Massachusetts General 
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Hospital Institutional Animal Care and Use Committee. Sheep approximately 20 to 30 kg in 

size were scanned following acute lung injury induced by saline lavage. 3DCT images were 

acquired during breath hold maneuvers at inflation levels corresponding to end-expiration 

(PEEP 5 cmH20), end-inspiration (tidal volume 8 mL/kg), and mean airway pressure during 

mechanical ventilation. Images of prone sheep were rotated 180 degrees to align anatomical 

features in the corresponding supine orientation. Images were acquired using a Siemens 

Biograph combined PET-CT scanner, with 120 kVp, 80 mA s, and 0.5 mm slice thickness.

2.2.4. Ovine Dataset 2—The second ovine dataset was obtained from a study of 

subjects with ARDS, approved by the Johns Hopkins University and University of Iowa 

Institutional Animal Care and Use Committees (Fernandez-Bustamante et al., 2012). 

Subjects approximately 25 to 45 kg in size were scanned under baseline conditions and 

following acute lung injury induced by intravenous infusion of lipopolysaccharide (LPS). 

3DCT images were acquired using respiratory-gated CT imaging at inflation levels 

corresponding to end-expiration and end-inspiration during mechanical ventilation. Images 

were acquired using a Siemens Somatom Sensation 16- or 64-slice scanner, with 120 kVp, 

250 or 180 mA s, and 1.5 or 1.2 mm slice thickness.

2.2.5. Ground Truth—Manual segmentations were generated semi-automatically using 

Pulmonary Analysis Software Suite (PASS, University of Iowa Advanced Pulmonary 

Physiomic Imaging Laboratory (Guo et al., 2008)), and then manually corrected by an expert 

image analyst. The PASS software uses a conventional intensity-based lung segmentation 

followed by large airway removal and hole-filling using morphological operations. Diffuse 

injured regions of the lung were not included in the automated segmentation and thus 

required manual inclusion. Manual correction was performed using 3D Slicer software 

(Fedorov et al., 2012). The expert image analysts were instructed to include injured regions 

using the rib cage for guidance and narrow HU windowing for enhanced boundary 

visualization when necessary. The analysts were instructed to include pulmonary vasculature 

once it enters the lungs to create a smooth boundary at the mediastinum. The vena cava was 

excluded from the segmentation as it only passes through the lung and is not involved in 

pulmonary circulation, although it is fully surrounded by the parenchyma of the accessory 

lobe in porcine, canine, and ovine species. Tracings were primarily done on axial slices, 

however, sagittal and coronal views were also used to provide 3D context and consistent 

boundary identification across axial slices. Five expert image analysts were involved with 

manual corrections. Depending on the injury severity manual correction took anywhere from 

4 to 6 hours per case.

3. Methods

3.1. Overview

A multi-resolution ConvNet model was proposed for the lung segmentation of the CT 

images (Section 3.3.3), designed to handle severely injured lungs across multiple 

mammalian species. The multi-resolution model was compared to the performances of the 

low-resolution (Section 3.3.1) and high-resolution (Section 3.3.2) models alone. All models 

used the same underlying ConvNet architecture, referred to as Seg3DNet (Section 3.2). 
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However, the spatial resolution of the training data was varied. Training images with 

different spatial resolutions result in different ranges of feature scales learned by each 

model. Due to the limited number of scans for each species in the animal dataset, transfer 

learning from the human dataset was used for training all models (Section 3.4).

3.2. Convolutional Neural Network

The underlying ConvNet architecture used in each of the three models was a fully 

convolutional network (FCN) called Seg3DNet (Gerard et al., 2019), see Figure 2. The 

network has an encoder and decoder module, similar to the popular U-Net architecture 

(Ronneberger et al., 2015). However, Seg3DNet was extended to three spatial dimensions 

and the decoder was designed to use less GPU memory. The input and output to the network 

were both images with three spatial dimensions of the same size. The input image was 

transformed to increasingly abstract image representations using a hierarchy of network 

layers. Each intermediate image representation has three spatial dimensions and a fourth 

dimension representing different feature types. Henceforth, we refer to the fourth dimension 

as the channel dimension, analogous to that of RGB images. The output of Seg3DNet is an 

image with |Y| channels, where Y is the class set. The task of lung segmentation is treated as 

a binary segmentation process (i.e., |Y| = 2), where the classes correspond to lung tissue and 

background.

The encoder network consists of L resolution levels, where each resolution level l ∈ {0, …, 

L−1} consists of two convolutional layers followed by a maximum pooling layer. The 

number of filters used in each convolutional layer at level l is defined as Nl = 2l+5 such that 

the number of channels, or activation maps, increases by a factor of two at each level. The 

decoder network upsampled the image representation at the end of each level, back to the 

input image resolution using deconvolution layers, and combined the multi-scale features 

using two subsequent convolutional layers. Each voxel in the output image was a floating 

point number corresponding to the probability that the voxel was part of the lung field.

Convolutional layers use kernels with spatial extent of 3 × 3 × 3 voxels. Zero-padding was 

used such that the spatial size of the image representation remained unchanged. Maximum 

pooling with a kernel size of 2 × 2 × 2 voxels and stride of 2 × 2 × 2 voxels was used which 

effectively spatially downsampled the image representation by a factor of two along each 

spatial dimension, with the number of feature maps remaining unchanged. Batch 

normalization and a rectified linear unit (ReLu) activation function was used after each 

convolutional layer, with the exception of the last layer. The last layer used a softmax vector 

nonlinearity (Equation 1). The output of the softmax function yielded the conditional 

probability distribution that a voxel x belongs to each class y ∈ Y.

P(y |x) = e
f y(x)

∑ j ∈ Y e
f j(x) . (1)

For a binary classification, the predicted probability distribution can unambiguously be 

represented as a single floating-point number. The predicted probability that x belonged to 
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the lung was denoted as y(x). The predicted probability that x belongs to the background is 

therefore 1 − y(x).

3.3. Models

3.3.1. Low-Resolution Model—The low-resolution model consisted of a single 

Seg3DNet, which was trained using aggressively downsampled CT images and lung 

segmentations. All training images were downsampled to constant image size of 64 × 64 × 

64 voxels, regardless of image size. This corresponded to a downsampling factor of roughly 

eight along each spatial dimension. At this size, the entire image can be entered as an input 

to the network, which allowed for global features to be learned. However, exact boundary 

information is lost with downsampling. Images from the 4D porcine dataset, which were 

reconstructed as slabs, were padded with axial slices prior to downsampling to avoid large 

deformation of the lung due to large differences in the axial and transverse image extents. By 

comparison, the other datasets exhibited less differences between axial and transverse image 

extents, resulting in varying degrees of lung deformation and differences in proportion of 

lung to non-lung when resizing all images to a fixed image size. These variations were 

allowed in the training data to make the model robust to different scanning and 

reconstruction parameters and thereby avoid initial preprocessing steps. Gaussian smoothing 

was performed prior to downsampling to avoid aliasing. The intensity range was clipped to 

obtain values between −1024 and 1024 HU and then normalized to have a mean of zero and 

standard deviation of one. The output of the low-resolution model was then upsampled to the 

original resolution using b-spline interpolation.

3.3.2. High-Resolution Model—The high-resolution model consisted of a single 

Seg3DNet, which was trained using high-resolution CT images. The CT images were 

resampled to isotropic voxel sizes: 1 mm voxels for humans, dogs, and sheep and 0.6 mm 

for pigs. Resampling was performed to achieve consistent voxel sizes and relative 

anatomical size scales between scans and species. This corresponded to a downsampling 

factor of less than two along each dimension. At this resolution, the entire CT image was too 

large for GPU memory. Therefore, axial slabs of size 256×256×32 were sampled at multiple 

axial positions for training the model. This limited the amount of global context that could 

be learned by the high-resolution model, since specific anatomic features from the entire 

lung field could not be learned. The intensity range was clipped to obtain values between 

−1024 and 1024 HU and then normalized to have a mean of zero and standard deviation of 

one.

3.3.3. Multi-Resolution Model—The multi-resolution model consisted of two 

Seg3DNets, utilizing both low-resolution and high-resolution models, which were linked to 

allow information learned by the low-resolution model to be exploited by the high-resolution 

model. The two Seg3DNets were trained sequentially. In the first stage, the low-resolution 

model was trained on aggressively downsampled images as described in Section 3.3.1. In the 

second stage, the high-resolution model was trained, similarly to the model described in 

Section 3.3.2. However, the low-resolution model prediction was included in the input, in 

addition to the high-resolution image. Combining the low-resolution and high-resolution 

models eliminated the necessity of choosing between global contextual information and 
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precise boundary detail when training with limited GPU memory. The multi-resolution 

model is illustrated in Figure 3.

3.4. Training

Transfer learning (Oquab et al., 2014) was used for training all models. A model was first 

pre-trained using the human training dataset. The model learned from the human dataset was 

then used to initialize the animal model. Fine-tuning of the network was then performed 

using the animal dataset.

Due to the limited number of animal scans with lung injury, a five-fold cross validation was 

performed for training the animal model. The animal dataset was split into five groups 

(approximately 60 images per group), four of which were used for training. The model 

performance was evaluated on the remaining group. This sequence was performed five 

times, allowing all images in the animal dataset to be used for both training and evaluation. 

Each of the five groups had the same number of images and approximately equal 

representation for each species. Five-fold cross validation was performed for training all 

models, using identical splitting to obtain fair comparisons.

A binary cross entropy loss function was used for training. The loss for each voxel x was 

given by

L(x) = − (y(x) log(y(x)) + (1 − y(x)) log(1 − y(x))) (2)

where y(x) is the true class label for voxel x, y(x) = 1 for lung and y(x) = 0 for background, 

and y(x) is the predicted probability that voxel x belongs to the lung class. The total loss for 

each image was obtained as the average loss over all voxels in the image. The loss function 

was optimized with respect to the free parameters (the convolution kernels), using standard 

backpropagation. Adam optimization (Kingma & Ba, 2014) was used for training, with a 

learning rate of 5 × 10−4 for pre-training and 5 × 10−5 for fine-tuning. Prior to pre-training, 

all free parameters were initialized using Xavier normal initialization (Glorot & Bengio, 

2010). The networks were trained using a P40 NVIDIA GPU with 24 GB RAM. Total 

training time was approximately 48 hours for each model.

3.5. Post-processing

The output predicted by each model was a lung probability image - that is, an image with 

floating point values between 0 and 1, representing the probability that a given voxel 

belonged to the lung. A simple post-processing step was used to obtain a final binary lung 

segmentation, by applying a probability threshold of 0.5. Subsequently, a 3D connected 

component analysis was performed on the thresholded image. The two largest connected 

components were retained, corresponding to the left and right lungs, and any remaining 

components were discarded. In some cases, the left and right lungs form one connected 

component due to adjacent boundaries. These cases were automatically identified based on 

the ratio of volumes for the two largest connected components, and only the largest 

connected component was retained. In all cases, the result was a binary segmentation which 

did not distinguish between left and right lungs.
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3.6. Quantitative Evaluation

The proposed multi-resolution, low-resolution, and high-resolution models were 

quantitatively evaluated by comparison to manual segmentations. Three metrics were used to 

assess agreement: the Jacaard index, average symmetric surface distance (ASSD), and 

maximum surface distance (MSD). The Jacaard index is a measure of volume overlap given 

by

J(P,  M) = P∩M
P∪M , (3)

where |·| is the set cardinality, and P ∩ M and P ∪ M are the intersection and union, 

respectively, of the set of voxels predicted to be lung in the automated segmentation P and 

the set of voxels defined as lung in the manual segmentation M. The Jacaard index has 

values ranging from zero to one, with one indicating perfect agreement. ASSD was used to 

measure the distance between the predicted lung boundary BP and manually generated lung 

boundary BM. The distance between a voxel x and a set of voxels on boundary B was 

defined as

D(x,  B) = min
y∈B

 d(x, y), (4)

where d(x, y) is the Euclidean distance between voxels x and y. The ASSD between BP and 

BM was defined as

ASSD BP, BM = 1
BP + BM

× ∑
x ∈ BP

D x, BM + ∑
y ∈ BM

D y, BP . (5)

The MSD between BP and BM was defined as

MSD BP, BM = max max
x ∈ Bp

 D x, BM , max
y ∈ BM

 D y, BP . (6)

Both ASSD and MSD are greater or equal to zero, with zero being perfect agreement. A 

Friedman test was used to evaluate effect of the model on segmentation performance, as 

measured by Jacaard index, ASSD, and MSD.

4. Results

Axial slice views and surface renderings of segmentations produced by the different models 

are shown in Figure 4 and Figure 5, respectively. Surface renderings, minimum intensity 

projections, and maximum intensity projections are illustrated in Figure 6, to emphasize 

extent of injury and the inclusion of this injury in the predicted segmentation. Multi-

resolution segmentation results for ten subjects are displayed in Figure 7 to emphasize the 

large variations in lung shape and size, as well as variations in injury severity, appearance, 

and spatial distribution.
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Quantitative results for each model are shown in Figure 8. Each row illustrates a different 

metric. The left column shows overall boxplot distributions for each model and the right 

column shows a scatter plot of each result stratified by the percent of lung volume that is 

non-aerated. The percent of lung volume that is non-aerated is used as a surrogate for the 

severity of lung injury. Voxels with HU greater than −100 were considered non-aerated.

The Friedman teat revealed that there was a statistically significant effect of the model on 

segmentation performance as measured by Jacaard index, ASSD, and MSD (p < 0.001). A 

Conover post hoc test revealed that there were a significant differences between each pair of 

models. The multi-resolution model outperformed both low-resolution and high-resolution 

models (p < 0.001) and the high-resolution model outperformed the low-resolution model (p 
< 0.001). Linear regression was used to model the correlation between injury severity and 

segmentation performance. The linear regression slope and coefficient of determination (R2) 

for each model are shown in Table 1.

Results stratified by species and cross validation fold are displayed in Figures 9 and 10, 

respectively. The results show all models performed best on the porcine datasets, and worst 

on the ovine datasets. All folds of the cross validation performed equally well.

5. Discussion

In this study, we developed a method for cross-species fully automatic lung segmentation, 

with emphasis on subjects with acute injury patterns similar to ARDS. This injury is 

particularly challenging to segment due to its diffuse anatomic appearance in dependent lung 

regions, resulting in little to no contrast between the posterior lung boundary and the 

surrounding soft tissue. Thus, a novel multi-resolution ConvNet model was proposed to 

incorporate both high-resolution local features and low-resolution global contextual 

information.

The multi-resolution model was compared to each of its components - a high-resolution 

model and a low resolution-model. All models showed high performance in terms of ASSD 

and Jacaard index, with the multi-resolution model out-performing the others. The 

superiority of the multi-resolution model is a direct consequence of access to both local 

detail and global context. The use of the low-resolution model’s prediction as an additional 

input channel to enhance the high-resolution model resulted in improved prediction beyond 

the capabilities of either individual component. Furthermore, qualitatively the high-

resolution model produced segmentations that were more smooth reflecting the true lung 

topology. Whereas the low-resolution model produced segmentations with “staircasing” 

artifacts resulting from upsampling the low-resolution segmentation.

The high-resolution model has less global context compared to the low-resolution and multi-

resolution models. However, this model is still trained on large 3D slabs. These 3D slabs 

were larger than the 2D slices and small 3D patches used in current ConvNet approaches 

(see Figure 1). This is a direct advantage of the Seg3DNet architecture’s reduced demand on 

GPU memory (Gerard et al., 2019). Thus we may expect models trained on 2D slices or 3D 
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patches to perform worse compared to either the high-resolution or multi-resolution models 

in this study, due to further reductions in global context.

Despite aggressive downsampling, the low-resolution model demonstrated robust 

performance across all levels of injury severity. The same degree of segmentation accuracy 

was obtained in both healthy and severely non-aerated lungs, indicating that the low-

resolution model relies on global context and anatomic features which are consistent despite 

variable lung aeration. Nevertheless, there may be an upper bound of the low-resolution 

model’s performance imposed by the inability to predict precise boundary location without 

local edge information. This is evidence by the comparatively poor performance of the low-

resolution model in well-aerated lungs, for which boundaries are easily detected and global 

context does not provide much additional advantage. Other advantages of the low-resolution 

model include reduced training time, inference time, and GPU memory requirement. 

Therefore this model may be preferred over a 2D slice model, which has very limited global 

context and sacrifices 3D smoothness.

All segmentation models were evaluated on three different mammalian species, consistently 

performing best on the porcine dataset and worst on the ovine dataset. The lower 

performance on the ovine dataset can likely be attributed to the lower amount of training 

data for this species. The proposed method nonetheless showed high performance on all 

species. Rule-based systems often fail to generalize across species, requiring such methods 

to be specially tuned for each dataset. More advanced methods such as statistical shape 

models also cannot seamlessly handle multiple species, since an underlying assumption is 

that the data comes from a Gaussian distribution. By contrast, the ConvNet models used in 

this study be be able to exploit features consistent across mammalian species, such as the 

relative position of various thoracic organs and skeletal structures. The use of multiple 

species in training data may improve the ability of the model to robustly generalize 

mammalian lung segmentation in CT images.

Subjects were stratified by injury severity using percent of non-aerated lung volume as a 

surrogate for injury severity. All models showed a decrease in segmentation performance 

with increasing injury severity for both Jacaard index and ASSD. The high-resolution model 

showed the largest decline in performance with increasing injury severity, indicating that 

global information becomes more important for cases exhibiting a greater extent of injury. 

Although there were small decrements in performance with increasing injury severity, the 

multi-resolution model still demonstrated acceptable performance for subjects with severe 

injury, achieving voxel-level ASSD error for lungs with 30% non-aeration. Another factor to 

consider is the validity of the manual segmentations in these severely diseased cases. Injury 

results in little or no contrast at lung boundaries, and therefore greater subjectivity in manual 

segmentation, which could contribute to an apparent decrease in performance.

Although the proposed method generates lung segmentations that have a smooth surface in 

3D, manual segmentation can vary by several millimeters between slices. Manual 

segmentation was performed on 2D slices, and when the lung boundary is poorly defined 

manually choosing a consistent boundary across slices is very difficult. Defining the 

boundary in lungs with diffuse consolidation is very subjective. Thus the intra- and inter-
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observer variation would likely be quite high on these cases, although it was not assessed in 

this study due to the availability of only a single manual segmentation per image.

The proposed method utilizes transfer learning since there is a limited number of annotated 

images of ARDS subjects. It is assumed that some features learned in the source domain 

(human subjects without ARDS) are useful in the target domain (animal subjects with 

ARDS). However, we did not investigate how much the transfer learning in particular 

improved the segmentation in the target domain, as opposed to simple training from scratch 

on the target domain. In future work, it would be interesting to quantify how much the use of 

transfer learning contributes to reduction of training time, retention of pre-learned features, 

and improved accuracy of predictions. It seems likely transfer learning is most valuable for 

very small training datasets, with diminishing returns as the training dataset size increases.

Several of the datasets used in this study include multiple 3D images of the same subject, 

e.g., 4DCT images or static images acquired at different airway pressures. The proposed 

method is limited to processing a single 3D image and therefore cannot learn patterns 

between multiple images. In future work, we plan to explore a 4D algorithm to exploit 

temporal patterns in image sequences, for example a recurrent neural network. A 4D 

algorithm would be especially useful for cases that have improved aeration resulting in 

higher boundary contrast in some images compares to others in the same sequence.

The run-time for executing the proposed multi-resolution model on a single 3D image was 

40 seconds using a GPU. If a GPU is unavailable, the model could also be executed on a 

CPU with a run-time of approximately 2.5 minutes. This is fully automated and requires no 

user intervention. For comparison, manual segmentation of these images takes anywhere 

from 4 to 6 hours per case, depending on the experience of the analyst or the severity of lung 

injury. Our proposed method mitigates the prohibitive time and labor costs of injured lung 

segmentation, enabling rapid and accurate quantitative CT analysis for ARDS in both 

clinical and experimental settings.

6. Conclusion

In this study, a multi-resolution ConvNet cascade was proposed to enable learning of both 

local and global features in large 3D and 4D CT image sets despite limitations in GPU 

memory. This method was applied to automatic segmentation of lungs with acute injury in 

three different mammalian species. We confirmed that both global and local features are 

important for segmentation of injured lungs by comparing a multi-resolution model to its 

isolated low-resolution and high-resolution components. The proposed multi-resolution 

model performed best in terms of Jacaard Index, ASSD, MSD, as well as segmentation 

boundary smoothness, demonstrating the importance of both global and local features for the 

task of injured lung segmentation. Furthermore, we have demonstrated that the proposed 

method is able to generalize across canine, porcine, and ovine subjects despite a limited 

number of training datasets, due to transfer learning from a large human dataset without 

ARDS and learning anatomic features consistent across species.
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Figure 1: 
Given an image with size and resolution as illustrated in (a), where the grid represents the 

voxel lattice, (b)-(e) illustrate techniques for subsampling the image in order to reduce the 

memory requirement for training a ConvNet on a GPU. (b) downsampling reduces the 

number of voxels by combining intensity values of multiple voxels, thereby decreasing the 

image resolution. In this example, a downsampling factor of four is used for each dimension, 

i.e., the size of the image is reduced from 163 to 43 voxels. If the downsampling factor 

sufficiently large, the memory requirement can be reduced enough to utilize the full image 

extent during training on a GPU. (c)-(e) cropping uses the original image resolution, 

however, only a portion of the image voxels are extracted as denoted by the regions that have 

gridlines in (c)-(e). (c) the slab has full extent in two dimensions, but limited extent in the 

third dimension. (d) the 3D patch has limited extent in all three spatial dimensions. (e) the 

2D slice has full extent in two spatial dimensions, however, no 3D context is available. Note, 

(b) and (d) representations are both 43 voxels, and thus require the same memory, however, 

(b) has global extent with low resolution, whereas (d) has local extent with high resolution. 

The text below each figure describes the relative image resolution, spatial extent, and 

required memory for each scenario.
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Figure 2: 
Seg3DNet architecture consists of an encoder and decoder network. The encoder network 

learns a multi-scale image representation by transforming the input image using 

convolutional and max pooling (i.e. downsampling) layers. The decoder network combines 

the image representations at each scale to produce the output prediction of voxel-wise 

classification probability using deconvolution (i.e. upsampling) and convolutional layers. 

Each image representation (illustrated as cubes) is a 3D image with N channels (denoted in 

lower left of each cube). This can also be thought of as N 3D images, or N activation maps, 

where each activation map represents a different feature type. Different layer operations are 

represented as arrows, e.g. convolutional layers are represented as thick black arrows.
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Figure 3: 
Multi-resolution model. The upper pipeline corresponds to the low-resolution model and the 

lower pipeline corresponds to the high-resolution model. Global information learned in the 

low-resolution model was used in the high-resolution model, denoted by the dashed line.
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Figure 4: 
Lung segmentation results for porcine, canine, and ovine subjects in the top, middle, and 

bottom rows, respectively. True positives, false negatives, and false positives are denoted in 

cyan, magenta, and purple, respectively.
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Figure 5: 
Surface rendering of lung segmentations of porcine, canine, and ovine subjects in the top, 

middle, and bottom rows, respectively.
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Figure 6: 
Multi-resolution model results. (a) contour of predicted segmentation overlaid on CT image, 

(b) surface rendering of predicted segmentation, (c) minimum intensity projection of voxels 

included in predicted segmentation, and (d) maximum intensity projection of voxels 

included in predicted segmentation.
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Figure 7: 
Multi-resolution model segmentation results for representative cases from five porcine 

subjects (first column), three ovine subjects (second column, rows 1–3), and two canine 

subjects (second column, rows 4–5). Each segmentation result is displayed to the right of the 

corresponding CT image. True positives, false negatives, and false positives are denoted in 

cyan, magenta, and purple, respectively.
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Figure 8: 
Quantitative comparison of the three models. Each row depicts a different metric, from top 

to bottom: Jacaard index, ASSD, and MSD. Left column shows overall boxplots for each 

model. Right column shows a scatter plot depicting result for each lung image, stratified by 

the percent of non-aerated volume.
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Figure 9: 
ASSD and Jacaard index distributions stratified by species. Blue is low-resolution model, 

green is high-resolution model, and red is multi-resolution model.
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Figure 10: 
ASSD and Jacaard index distribution stratified by cross validation fold. Blue is low-

resolution model, green is high-resolution model, and red is multi-resolution model.
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Table 1:

Slope and coefficient of determination results for model performance vs. injury severity.

Model
Jacaard index ASSD MSD

Slope R2 Slope R2 Slope R2

Multi-Res −1.20 × 10−3 0.316** 1.33 × 10−2 0.206** 9.96 × 10−2 0.021*

Low-Res −1.13 × 10−3 0.201** 1.06 × 10−2 0.096** 4.70 × 10−2 0.004

High-Res −2.23 × 10−3 0.437** 2.62 × 10−2 0.298** 3.94 × 10−1 0.086**

**
p < 0.001,

*
p < 0.05
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