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Abstract

In many application areas, data are collected on a categorical response and high-dimensional 

categorical predictors, with the goals being to build a parsimonious model for classification while 

doing inferences on the important predictors. In settings such as genomics, there can be complex 

interactions among the predictors. By using a carefully-structured Tucker factorization, we define 

a model that can characterize any conditional probability, while facilitating variable selection and 

modeling of higher-order interactions. Following a Bayesian approach, we propose a Markov 

chain Monte Carlo algorithm for posterior computation accommodating uncertainty in the 

predictors to be included. Under near low rank assumptions, the posterior distribution for the 

conditional probability is shown to achieve close to the parametric rate of contraction even in ultra 

high-dimensional settings. The methods are illustrated using simulation examples and biomedical 

applications.
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1 Introduction

Classification problems involving high-dimensional categorical predictors have become 

common in a variety of application areas, with the goals being not only to build an accurate 

classifier but also to identify a sparse subset of important predictors. For example, genetic 

epidemiology studies commonly focus on relating a categorical disease phenotype to single 

nucleotide polymorphisms encoding whether an individual has 0, 1 or 2 copies of the minor 

allele at a large number of loci across the genome. In such applications, it is expected that 

interactions play an important role, but there is a lack of statistical methods for identifying 

important predictors that may act through both main effects and interactions from a high-

dimensional set of candidates. Our goal is to develop nonparametric Bayesian methods for 

addressing this gap focusing on unordered categorical data.

There is a rich literature on methods for prediction and variable selection from high or ultra 

high-dimensional predictors with a categorical response. The most common strategy would 
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rely on logistic regression with the linear predictor having the form xi′β, with xi = (xi1,…,xip)

′ denoting the predictors and β = (β1,…,βp)′ regression coefficients. In high-dimensional 

cases in which p is the same order of n or even p > n, classical methods such as maximum 

likelihood break down but there is a rich variety of alternatives ranging from penalized 

regression to Bayesian variable selection. Popular methods include L1 penalization 

(Tibshirani, 1996) and the elastic net (Zou and Hastie, 2005), which combines L1 and L2 

penalties to accommodate p ≫ n cases and allow simultaneous selection of correlated sets of 

predictors. For efficient L1 regularization in generalized linear models including logistic 

regression, Park and Hastie (2007) proposed a solution path method. Genkin et al. (2007) 

propose a related Bayesian approach for high-dimensional logistic regression under Laplace 

priors. Wu et al. (2009) applied L1 penalized logistic regression to genome wide association 

studies. Potentially, related methods can be applied to identify main effects and epistatic 

interactions (Yang et al., 2010), but direct inclusion of interactions within a logistic model 

creates a daunting dimensionality problem limiting attention to low-order interactions and 

modest numbers of predictors.

These limitations have motivated a rich variety of nonparametric classifiers, including 

classification and regression trees (CART) (Breiman et al., 1984) and random forests (RFs) 

(Breiman, 2001). CART partitions the predictor space so that samples within the same 

partition set have relatively homogeneous outcomes. CART can capture complex 

interactions and has easy interpretation, but tends to be unstable computationally and lead to 

low classification accuracy. RFs extend CART by creating a classifier consisting of a 

collection of trees that are all used to vote for classification. RFs can substantially reduce 

variance compared to a single tree and result in high classification accuracy, but provide an 

uninterpretable machine that does not yield insight into the relationship between specific 

predictors and the outcome. Moreover, through our simulation results in section 6, we found 

that random forests did not behave well in high dimensional low signal-to-noise cases.

Our focus is on developing a new framework for nonparametric Bayes classification through 

tensor factorizations of the conditional probability P(Y = y | X1 = x1,…,Xp = xp), with Y ∈ 
{1,…,d0} a categorical response and X = (X1,…,Xp)′ a vector of p categorical predictors. 

The conditional probability can be expressed as a d1 × ⋯ × dp tensor for each class label y, 

with dj denoting the number of levels of the jth categorical predictor Xj. If p = 2 we could 

use a low rank matrix factorization of the conditional probability, while in the general p case 

we could consider a low rank tensor factorization. Such factorizations must be non-negative 

and constrained so that the conditional probabilities add to one for each possible X, and are 

fully flexible in characterizing the classification function for sufficiently high rank. Dunson 

and Xing (2009) and Bhattacharya and Dunson (2012) applied two different tensor 

decomposition methods to model the joint probability distribution for multivariate 

categorical data. Although an estimate of the joint pmf can be used to induce an estimate of 

the conditional probability, there are clear advantages to bypassing the need to estimate the 

high-dimensional nuisance parameter corresponding to the marginal distribution of X.

We address such issues using a Bayesian approach that places a prior over the parameters in 

the factorization, and provide strong theoretical support for the approach while developing a 
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tractable algorithm for posterior computation. Some advantages of our approach include (i) 

fully flexible modeling of the conditional probability allowing any possible interactions 

while favoring a parsimonious characterization; (ii) variable selection; (iii) a full 

probabilistic characterization of uncertainty providing measures of uncertainty in variable 

selection and predictions; and (iv) strong theoretical support in terms of rates at which the 

full posterior distribution for the conditional probability contracts around the truth. Notably, 

we are able to obtain near a parametric rate even in ultra high-dimensional settings in which 

the number of candidate predictors increases exponentially with sample size. Such a result 

differs from frequentist convergence rates in characterizing concentration of the entire 

posterior distribution instead of simply a point estimate. Although our computational 

algorithms do not yet scale to massive dimensions, we can accommodate 1, 000s of 

predictors.

2 Conditional Tensor Factorizations

In section 2.1, we briefly introduce the tensor factorization techniques and describe their 

relevance to high-dimensional classification. In section 2.2, we study the relationship 

between our model and the multinomial logit model for categorical predictors.

2.1 Tensor factorization of the conditional probability

Although there is a rich literature on tensor decompositions, little is in statistics. The focus 

has been on two factorizations that generalize matrix singular value decomposition (SVD). 

The most popular is parallel factor analysis (PARAFAC) (Harshman, 1970; Harshman and 

Lundy, 1994; Zhang and Golub, 2001), which expresses a tensor as a sum of r rank one 

tensors, with the minimal possible r defined as the rank (Fig.1). The second approach is 

Tucker decomposition or higher-order singular value decomposition (HOSVD), which was 

proposed by Tucker (1966) for three-way data and extended to arbitrary orders by De 

Lathauwer et al. (2000). HOSVD expresses d1 × ⋯ × dp tensor A = ac1⋯cp
 as

ac1⋯cp
= ∑

h1 = 1

k1
… ∑

hp = 1

kp
gh1⋯hp

∏
j = 1

p
uh jc j

( j) , (1)

where kj(≤ dj) is the j-rank for j = 1,…, p, U( j) = (ust
( j)) are orthogonal matrices called mode 

matrices, and G = gh1⋯hp
 is a core tensor, with constraints on G such as low rank and 

sparsity imposed to induce better data compression and fewer components compared to 

PARAFAC (Fig.2). This is intuitively suggested by comparing Fig.1 and Fig.2: PARAFAC 

can be considered as a special case of HOSVD when the core tensor G is restricted to be 

diagonal. In HOSVD, the j-rank kj is the rank of the mode j matrix A(j), defined by 

rearranging elements of the tensor A into a dj × d1 ⋯ dj−1dj+1 ⋯ dp matrix such that each 

row consists of all elements ac1⋯cp
 with the same cj. Although kj can be close to dj, low 

rank approximations of A can lead to high accuracy and provide satisfactory results (Eldén 

and Savas (2009),Vannieuwenhoven et al. (2012)).
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For probability tensors, we need nonnegative versions of such decompositions (Kim and 

Choi (2007)) and the concept of rank changes accordingly (Cohen and Rothblum, 1993). In 

the following, we solely consider nonnegative HOSVD, where all quantities in (1) are 

nonnegative. Moreover, we relax the orthogonality constraint on the mode matrix U(j) in 

HOSVD since orthogonality is not a natural constraint for nonnegative vectors. We define k 
= (k1, …, kp) to be a multirank of a nonnegative tensor A if: 1. A has a representation (1) 

with k; 2. k has the minimum possible size, which is defined by |k | = ∏ j = 1
p k j. Note that the 

rank in this definition might not be unique but representations with different multirank k 
have the same number of parameters in the core tensors. This suggests that the multirank k 
reflects the best possible tensor compression level.

The conditional probability P(Y = y|X1 = x1, …, Xp = xp) can be structured as a d0 × d1 × ⋯ 
× dp dimensional tensor. We call such tensors conditional probability tensors. Let 

𝒫d1, …, dp
d0  denote the set of all conditional probability tensors, so that P ∈ 𝒫d1, …, dp

d0

implies

P y | x1, …, xp ≥ 0 ∀y, x1, …, xp, ∑
y = 1

d0
P y | x1, …, xp = 1 ∀x1, …, xp .

To ensure that P is a valid conditional probability, the elements of the tensor must be non-

negative with constraints on the first dimension for Y. A primary goal is accommodating 

high-dimensional covariates, with the overwhelming majority of cells in the table 

corresponding to unique combinations of Y and X unoccupied. In such settings, it is 

necessary to encourage borrowing information across cells while favoring sparsity.

Our proposed model for the conditional probability has the form:

P y | x1, …, xp = ∑
h1 = 1

k1
⋯ ∑

hp = 1

kp
λh1h2…hp

(y) ∏
j = 1

p
πh j

( j) x j , (2)

with all positive parameters subject to

∑
c = 1

d0
λh1h2…hp

(c) = 1, for any possible combination of h1, h2, …, hp ,

∑
h = 1

k j
πh

( j) x j = 1, for any possible pair of j, x j .

(3)

Here we impose normalizing constraints so that model (2) admits a latent variable 

representation. These normalizing constraints can always be satisfied by properly rescaling 

λh1h2…hp
(y)′s and πh

( j)′s as indicated by Theorem 1 below.
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Analogous to HOSVD, we preserve the names core tensor for Λ = λh1⋯hp
(y)  and mode 

matrices for π = {πh j
( j) x j }. More specifically, the dj × kj matrix π(j) with (u, v)th element 

πv
( j)(u) will refer to the jth mode matrix. Similar to the definition of multirank for 

nonnegative tensors, we define k = (k1, …, kp) to be a multirank of the conditional 

probability tensor P if: 1. P has a representation (2) satisfying the constraints (3) with k; 2. k 
has the minimum possible size |k|. In the rest of this article, we always consider the 

representation (2) with a multirank k. Intuitively, (d0 − 1)|k| is equal to the degrees of 

freedom of the core tensor Λ, and controls the complexity of the model. By allowing |k| to 

gradually increase with sample size, one can obtain a sieve estimator. The value of kj 

controls the number of parameters used to characterize the impact of the jth predictor. In the 

special case in which kj = 1, the jth predictor is excluded from the model, so sparsity can be 

imposed by setting kj = 1 for most j’s.

The following theorem provides basic support for factorization (2)–(3) through showing that 

any conditional probability has this representation. The proof of this theorem, which can be 

found in the appendix, sheds some light on the meaning of k1, …, kp and how it is related to 

a sparse structure of the tensor.

Theorem 1 Every d0 × d1 × d2 × ⋯ × dp conditional probability tensor P ∈ 𝒫d1, …, dp
d0

can be decomposed as (2), with 1 ≤ kj ≤ dj for j = 1, …, p. Furthermore, λh1h2…hp
(y) and 

πh j
( j) x j  can be chosen to be nonnegative and satisfy the constraints (3).

According to Theorem 1, the tensor factorization model (2) provides a fully flexible 

modeling of the conditional probability and allows arbitrary order of interactions. We can 

simplify the representation through introducing p latent class indicators z1, …, zp for 

X1,...,Xp, with Y conditionally independent of (X1, …, Xp) given (z1, …, zp). The model can 

be written as

Y i | zi1, …, zip ∼ Multinomial 1, …, d0 , λzi1, …, zip
,

zi j | X j ∼ Multinomial( 1, …, k j , π1
( j) X j , …, πk j

( j) X j ),
(4)

where λzi1, …, zip
= λzi1, …, zip

(1), …, λzi1, …, zip
d0 . Marginalizing out the latent class 

indicators, the conditional probability of Y given X1, …,Xp has the form in (2). In a 

supplementary appendix of this paper, we characterize more desirable properties, which only 

rely on the structure of our proposed model.

2.2 Connection with logit models

This subsection discusses the relationship between the conditional tensor factorization 

model and the logit model for multinomial response (Agresti, 2002). In particular, we 
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assume in this subsection that d1 = ⋯ = dp = d and consider the following baseline-category 

logit model for categorical predictors,

log
P y | x1, …, xp

P d0 | x1, …, xp
= λ0(y) + ∑

1 ≤ j ≤ p
λx j

j (y) + ∑
1 ≤ j < k ≤ p

λx jxk
jk (y)

+ ∑
1 ≤ j < k < l ≤ p

λx jxkxl
jkl (y),

(5)

for y = 1, …, d0 − 1, where d0 is the baseline-category, {λ0(y) : y = 1, …, d0 − 1} are the (d0 

− 1) intercepts, {λa
j(y):a ∈ {1, …, d}, 1 ≤ j ≤ p, y = 1, …, d0 − 1} are the (d0 − 1)p main effects, 

{λab
jk (y): (a, b) ∈ {1, …, d}2, 1 ≤ j < k ≤ p, y = 1, …, d0 − 1} are the d0 − 1 p

2  two-way 

interaction effects and so on. For identifiability, we assume that main effects and interactions 

are zero if xj = d for some j included. For every q ∈ {1, …, p}, all q-way interaction terms 

constitute a q-dimensional symmetric tensor.

By comparing (5) and (2), we find that our conditional tensor factorization model provides a 

parsimonious reparametrization of the multi-factor logit model. For example, every multi-

factor logit model can be represented by a conditional tensor factorization model with k1 = 

… = kp = d. By letting some kj be 1 in (2), we exclude all effects of the jth predictor in (5), 

corresponding to restricting all j-indexed main/interaction effects to be zero. Therefore, (2) 

corresponds to a multi-factor logit model that incorporates all possible interaction effects 

among the important predictors (Xj s.t. kj > 1). Moreover, (2) controls the degrees of 

freedom (df) (d0 − 1)|k| of all nonzero interaction effects in (5) by a parsimonious 

reparametrization, corresponding to a low rank structure on the inverse-logit-transformed 

interaction tensor. Even with a variable selection procedure, the interaction effects in (5) 

among important predictors are still completely arbitrary, leading to a df of (d0 − 1)ds, where 

s is the number of selected important predictors. Under the same set of important predictors, 

the df of (2) can be significantly lower than that of (5). Therefore, the conditional tensor 

factorization model can be viewed as a special multinomial logit model with a sparse and 

parsimonious interaction structure.

One can potentially introduce tensor factorizations directly on interaction tensors. However, 

comparing to (5), (2) has advantages of treating all response levels in a symmetric way and 

providing a latent variable interpretation (4), leading to convenient posterior computation.

3 Bayesian Tensor Factorization

In this section, we will provide a Bayesian implementation of the tensor factorization model 

and prove the corresponding posterior convergence rate.
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3.1 Prior specification

To complete a Bayesian specification of our model, we choose independent Dirichlet priors 

for the parameters Λ = λh1, …, hp
, h j = 1, …, k j, j = 1, …, p  and 

π = {πh j
( j) x j , h j = 1, …, k j, x j = 1, …, d j, j = 1, …, p},

λh1, …, hp
(1), …, λh1, …, hp

d0 ∼ Diri 1/d0, …, 1/d0 ,

π1
( j) x j , …, πk j

( j) x j ∼ Diri 1/k j, …, 1/k j , j = 1, …, p .
(6)

These priors have the advantages of imposing non-negative and sum to one constraints, 

while leading to conditional conjugacy in posterior computation. The hyperparameters in the 

Dirichlet priors are chosen to favor placing most of the probability on a few elements, 

inducing near sparsity in these vectors.

If kj = 1 in (2), by constraints (3) π1
( j) x j = 1, P(y|x1, …, xp) will not depend on xj and 

Y ⊥ X j | X j′, j′ ≠ j. Hence, I(kj > 1) are variable selection indicators. In addition, kj can be 

interpreted as the number of latent classes for the jth covariate. Levels of Xj are clustered 

according to their relations with the response variable in a soft probabilistic manner, with k1, 

…, kp controlling the complexity of the latent structure as well as sparsity. Because we are 

faced with extreme data sparsity in which the vast majority of combinations of Y, X1, …,Xp 

are not observed, it is critical to impose sparsity assumptions. Even if such assumptions do 

not hold, they have the effect of massively reducing the variance, making the problem 

tractable. A sparse model that discards predictors having less impact and parameters having 

small values may still explain most of the variation in the data, resulting in a useful classifier 

that has good performance in terms of the bias-variance tradeoff even when sparsity 

assumptions are not satisfied.

To embody our prior belief that only a small number of kj’s are greater than one, we want

P k j = k ≈ Q( j, k) ≜ 1 − r
p I(k = 1) + r

d j − 1 p
I(k > 1),

for j = 1, …, p, where I(A) is the indicator function for the event A and r is the expected 

number of predictors included. This specification accommodates variable selection. To 

further include a low rank constraint on the conditional probability tensor, we impose 

|k | = ∏ j = 1
p k j to be less than or equal to M. Intuitively, M controls the effective number of 

parameters in the model. This low rank constraint in turn restricts the maximum number of 

predictors to be log2 M. We note that in the setting in which p > n some such constraint is 

necessary.

To summarize, the effective prior on the kj’s is
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P k1 = l1, …, kp = lp ∝ Q 1, l1 ⋯Q p, lp I ∏
j = 1

p
l j ≤ M . (7)

Let γ = (γ1, …, γp)′ be a vector having elements γj = I(kj > 1) indicating inclusion of the 

jth predictor. Since ∏ j = 1
p l j ≤ M implies inclusion of at most log2M predictors, the induced 

prior for γ resembles the prior in Jiang (2006). Potentially, we can put a more structured 

prior on the components in the conditional tensor factorization, including sparsity in Λ. 

However, the theory shown in the next part provides strong support for prior (6)–(7).

3.2 Posterior convergence rates

Before formally describing the sparsity and low rank assumptions, we first introduce some 

notation and definitions. Suppose we obtain data for n observations yn = (y1, …, yn)′, which 

are conditionally independent given Xn = (x1, …, xn)′ with xi = xi1, …, xipn
′, xij ∈ {1, …, 

d} and pn ≫ n. We exclude the n subscript on p and other quantities when convenient and 

assume that d = maxj{dj} is finite and does not depend on n. An important special case is 

when all dj’s are the same. Let P0 denote the true data generating model, which can be 

dependent on n. Let ϵn be a sequence converging to zero while keeping nϵn
2 ∞. This 

sequence will serve as the convergence rate in the sense that under a certain metric d to be 

defined later, the posterior of the conditional probability tensor P will asymptotically 

concentrate within an ϵn d-ball centered on the truth P0. We use the notation f ≺ g to mean 

f/g → 0 as n → ∞. Next, we describe all the assumptions that are needed for the main 

theorem.

To determine the posterior convergence rate, two things are competing with each other: 1. 

variable selection among the high dimension covariates; 2. the approximation abilities of 

near low rank tensors. The assumption below characterizes the first.

Assumption A. There exists a sequence ϵn satisfying ϵn → 0, nϵn
2 ∞ and 

∑nexp −nϵn
2 < ∞ such that logpn ≺ nϵn

2/logMn.

Recalling the definition of Mn as the prior upper threshold for the size |k | = ∏ j = 1
p k j, log Mn 

can be interpreted as the maximum number of predictors to be selected and cannot exceed 

log n. As a result, Assumption A implies that the high dimensional variable selection per se 

imposes a lower bound for ϵn as lognlogpn/n. As a result, to obtain a convergence rate of 

n−(1 − α)/2 up to some logarithmic factor, pn is allowed to increase with n as fast as O enα
.

To characterize the low rank tensor assumption, rather than assume that most of the 

predictors have no impact on Y, we consider the situation similar to Jiang (2006) that most 

have nonzero but very small influence. Specifically, parameterizing the true model P0 in our 

tensor form with kj = dj for j = 1, …, pn (this is always possible for any P0), we assume:
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Assumption B. Mnlog 1/ϵn ≺ nϵn
2 and there exists a multirank sequence k(1), k(2), … with |

k(n)| ≤ Mn, such that

∑
j = 1

pn
max
x j

∑
h j > k j

(n)

d j
πh j

( j) x j ≺ ϵn
2,

where f ≺ g means f/g → 0 as n → ∞.

This is a near low rank restriction on P0. This assumption intuitively means that the true 

tensor P0 could be approximated within error ϵn
2 by a truncated tensor with multirank k(n), 

whose size is less than nϵn
2/log 1/ϵn . Assumption B includes the sparsity assumption where 

only order o(n) predictors are important as a special case. In high-dimensional problems, 

sparsity assumptions are ubiquitous (Bülmann and van de Geer, 2011). Under this sparsity 

assumption, although pn is allowed to be exponentially large in n, contributions of most xj’s 

are zero and the sum in Assumption B only involves order o(n) terms. Theoretically, a lower 

bound of ϵn attributed to the low rank approximation could be identified as the minimum ϵ 
such that

∃ multirank k, s . t . |k | < nϵ2/log(1/ϵ) and ∑
j = 1

pn
max
x j

∑
h j > k j

d j
πh j

( j) x j ≤ ϵ2 .

The overall ϵn will be the minimum of this lower bound and the one determined by 

Assumption A. Assumption B includes the special case when P0 is exactly of low multirank 

k(0). In such case, all k(n) could be chosen as k(0) and Assumption B puts no constraint on ϵn, 

leading a convergence rate to be entirely determined by the variable selection in Assumption 

A as logpn/n (Corollary 6 below). In section 6 of real data applications, we will provide 

empirical evidence of this near low multirank assumption.

The last assumption can be considered as a regularity condition.

Assumption C. P0(y|x) ≥ ϵ0 for any x, y for some ϵ0 > 0.

Under this assumption, the Kullback-Leibler divergence would be bounded by the sup norm 

up to a constant, where the latter is easier to characterize in case of our model. This 

condition can be interpreted as that for every covariates x, the response y cannot be perfectly 

predicted. As a counterpart, for Gaussian regression problems a similar assumption would 

require the noise variance to be bounded away from 0 (applying Theorem 2.1 in Ghosal et 

al. (2000) instead of Theorem 5 in Appendix B). Although pursuing a simplest set of 

assumptions for our theorem to hold is insteresting, it is not the primary focus of the current 

paper.

The next theorem states the posterior contraction rate under our prior (6)–(7) and 

Assumption A-C. Recall that rn is a hyperparameter in the prior.
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Theorem 2 Assume the design points x1, …, xn are independent observations from an 
unknown probability distribution Gn on {1, …, d}pn. Moreover, assume the prior is specified 
as in (6)–(7). Assume that A, B and C hold. Denote 

d P, P0 = ∫ ∑y = 1
d0 |P y | x1, …, xp −P0 y | x1, …, xp |Gn dx1, …, dxp , then

Πn P:d P, P0 ≥ Mϵn | yn, Xn 0 a . s . P0
n,

where Πn(A|yn,Xn) is the posterior probability of A given the observations.

The following corollary tells us that the posterior convergence rate of our model can be very 

close to n−1/2 under appropriate near low rank conditions.

Corollary 3 For α ∈ (0, 1), ϵn = n−(1−α)/2 log n will satisfy the conditions in Theorem 2 if 
Mn ≺ nα log n, pn ≺ exp(nα/log n) and there exists a sequence of multiranks k(n) with size at 
most Mn such that

∑
j = 1

pn
max
x j

∑
h j > k j

(n)

d j
πh j

( j) x j ≺ n−(1 − α)log2n .

As mentioned after Assumption B, if the truth is exactly lower multirank, then with a small 

modification to the proof of Theorem 2, we can eliminate the log Mn factor in Assumption 

A, leading to the following result.

Corollary 4 If the truth P0 has multirank k with a finite number of components kj > 1, then 
with Mn chosen to be a sufficiently large number, the posterior convergence rate ϵn could be 
at least logpn/n.

In order to model any arbitrary conditional probability tensor, lasso needs to include all dpn 

interaction terms among pn predictors. As a result, the best achievable rate of lasso becomes 

logd
pn/n = pnlogd /n (Raskutti et al., 2011), which is suboptimal compared to the rate 

logpn/n of our model under the low rank assumption.

Since (d0 − 1)Mn could be interpreted as the maximum effective number of parameters in 

the model, which should be at most the same order as the sample size n, we suggest to set 

Mn = n as a default for the prior defined in section 3.1 to conceptually provide as loose an a 
priori upper bound as possible. Results tend to be robust to the choice of Mn as long as it is 

not chosen to be small. Since M ≥ |k | ≥ 2
# j:k j > 1

, the maximum number of predictors 

included in the model is log2 n. This suggests that we can choose (log2 n)/2 = log4 n as a 

default value for r in the prior.
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4 Posterior Computation

In section 4.1, we consider fixed k = (k1, …, kp)′ and use a Gibbs sampler to draw posterior 

samples. Generalizing this Gibbs sampler, we developed a reversible jump Markov Chain 

Monte Carlo (RJMCMC) algorithm (Green, 1995) to draw posterior samples from the joint 

distribution of k = {kj : j = 1, …, p} and (Λ, π, z). However, for n and p equal to several 

hundred or more, we were unable to design an RJMCMC algorithm that was sufficiently 

efficient to be used routinely. Hence, in section 4.2, we propose a faster two stage procedure 

based on approximated marginal likelihood.

4.1 Gibbs sampling for fixed k

Under (6) the full conditional posterior distributions of Λ, π and z all have simple forms, 

which we sample from as follows.

1. For hj = 1, …, kj, j = 1, …, p, update λh1, …, hp
 from the Dirichlet conditional,

λh1, …, hp
(1), …, λh1, …, hp

(d) | − ∼ Diri 1
d + ∑

i = 1

n
1 zi1 = h1, …, zip = hp, yi = 1 ,

…, 1
d + ∑

i = 1

n
1 zi1 = h1, …, zip = hp, yi = d .

2. Update π(j)(k) from the Dirichlet full conditional posterior distribution,

{π1
( j)(k), …, πk j

( j)(k)} | − ∼ Diri 1
k j

+ ∑
i = 1

n
1 zi j = 1 1 xi j = k ,

…, 1
k j

+ ∑
i = 1

n
1 zi j = k j 1 xi j = k .

3. Update zij from the multinomial full conditional posterior, with

P zi j = h | − ∝ πh
( j) xi j λzi, 1, …, zi, j − 1, h, zi, j + 1, …, zi, p

yi .

4.2 Two step approximation

We propose a two stage algorithm, which identifies a good model in the first stage and then 

learns the posterior distribution for this model in a second stage via the Gibbs sampler of 

section 4.1. We first propose an approximation to the marginal likelihood. For simplicity in 

exposition, we focus on binary Y with d0 = 2, but the approach generalizes in a straight-

forward manner, with the beta functions in the below expression for the marginal likelihood 

replaced with functions of the form Γ a1 Γ a2 ⋯Γ ad0
/Γ a1 + ⋯ + ad0

. To motivate our 

approach, we first note that πh j
( j) x j  can be viewed as providing a type of soft clustering of 

the jth feature Xj, controlling borrowing of information among probabilities conditional on 
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combinations of predictors. To obtain approximated marginal likelihoods to be used only in 

the initial model selection stage, we propose to force πh j
( j) x j  to be either zero or one, 

corresponding to a hard clustering of the predictors. The example in a supplementary 

appendix gives a heuristic argument on the variance-bias tradeoff by using the degenerate 

approximation, suggesting the degenerate approximation to be adequate for model selection. 

Under this approximation, the marginal likelihood has a simple expression.

For a given model indexed by k = {kj, j = 1, …, p}, we assume that the levels of Xj are 

clustered into kj groups A1
( j), …, Ak j

( j). For example, with levels {1, 2, 3, 4, 5}, A1
( j) = {1, 2, 3}

and A2
( j) = {4, 5}. Then it is easy to see that the marginal likelihood conditional on k and

A is ℒ(y |k, A) =

∏
h1, …, hp

1
Beta(1/2, 1/2)Beta 1

2 + ∑
i = 1

n
I(xi1 ∈ Ah1

(1), …, xip ∈ Ahp
(p), yii

= 1),

1
2 + ∑

i = 1

n
I(xi1 ∈ Ah1

(1), …, xip ∈ Ahp
(p), yi = 0) .

Having an expression for the marginal likelihood, we apply a stochastic search MCMC 

algorithm (George and McCulloch, 1997) to obtain samples of (k1, …, kp) from the 

approximated posterior distribution. This proceeds as follows.

1. For j = 1 to p, do the following. Given the current model indexed by k = {kj : j = 

1, …, p} and clusters A = {Ah
( j):h = 1, …, k j, j = 1, …, p}, propose to increase kj to 

kj + 1 (if kj < d) or reduce it to kj − 1 (if kj > 1) with equal probability.

2. If increase, randomly split a cluster of Xj into two clusters (all splits have equal 

probability). For example, if dj = 5, kj = 2 and the levels of Xj are clustered as {1, 

2, 3} and {4, 5}. There are 4 possible splitting schemes: three ways to split {1, 2, 

3} and one way to split {4, 5}. We randomly choose one. Accept this move with 

acceptance rate based on the approximated marginal likelihood.

3. If decrease, randomly merge two clusters and accept or reject this move.

4. If kj remains 1, propose an additional switching step that switches kj with a 

currently “active predictor” j′ whose k j′ > 1 and randomly divide the cluster of 

Xj into k j′ clusters.

Estimating approximated marginal inclusion probabilities of kj > 1 based on this algorithm, 

we keep predictors having inclusion probabilities great than 0.5; this leads to selecting the 

median probability model, which in simpler settings has been shown to have optimality 

properties in terms of predictive performance (Barbieri and Berger, 2004).
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5 Simulation Studies

To assess the performance of the proposed approach, we conducted two simulation studies 

and calculated the misclassification rate on the testing samples.

5.1 Fully nonparametric classification

In the first simulation study, we generate the cells in the true conditional probability tensor 

in a completely random way. Each simulated dataset consisted of N = 3, 000 instances with 

p of the covariates X1, …,Xp, each of which has d = 4 levels, and a binary response Y. Two 

scenarios were considered: moderate dimension setting where p = 3, 4, 5 and high 

dimension setting where p = 20, 100, 500. Note that although p = 20 appears less than the 

training size n, the effective number of parameters is equal to 420. Similarly, we can call p = 

3 moderate since the effective number of parameters is equal to 43 = 64. Fixing p, four 

training sizes n = 200, 400, 600 and 800 were considered. We assumed that the true model 

had three important predictors X1,X2 and X3, and generated P(Y = 1|X1 = x1,X2 = x2,X3 = 

x3) independently for each combination of (x1, x2, x3); this was done once for each 

simulation replicate prior to generating the data conditionally on P(Y |X). To obtain an 

average Bayes error rate (optimal misclassification rate) around 15% (standard deviation is 

around 2%), we generated the conditional probabilities from f(U) = U2/{U2 + (1 − U)2}, 

where U ~ Unif(0, 1). For each dataset, we randomly chose n samples as training with the 

remaining N − n as testing. We implemented the two stage algorithm on the training set and 

calculated the misclassification rate on the testing set.

As a general default, we chose r = ⎡log4 n⎤ as the expected number of important 

predictors in the prior and M = log n as the maximum model size, where ⎡x⎤ stands for 

the minimal integer ≥ x. Under our sample size settings, r and M ranged from 4 to 5 and 7 to 

9, respectively. To investigate the robustness of the proposed method in the high dimension 

settings, we also report the results under r = 6 and M = 20 (labelled by TF2 in Table 2) for 

each combination of training size n and covariate dimension p. We ran 1,000 iterations for 

the first stage and 2,000 iterations for the second stage, treating the first half as burn-in. We 

compared the results applied to the same training-test split data with classification and 

regression trees (CART, tree package in R), random forests (RF, randomForest package) 

(Breiman, 2001), neural networks (NN, nnet package) with two layers of hidden units, lasso 

penalized logistic regression (LASSO, glmnet package) (Friedman et al., 2010), support 

vector machines (SVM, e1071 package) and Bayesian additive regression trees (BART, 

BayesTree package) (Chipman et al., 2010). The penalizing regularization parameter for 

LASSO was chosen by cross validation under default tuning parameter settings using the 

cv.glmnet function. The tuning parameters for other methods were chosen by their default 

settings. In the moderate dimension scenario, we enumerated all orders of interactions as 

input covariates for NN, LASSO and SVM. NN was not implemented for p = 5 since the 

available R code was unable to fit the model with 45 = 1024 covariates. In the high 

dimension scenario, since the number of interactions grows exponentially fast, we only 

included (d − 1) × p dummy variables for the main effects as input covariates for NN, 

LASSO and SVM under p = 100 and 500 cases, and included d2 × p
2 + (d − 1) × p = 3100
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dummy variables for the main effects and all two-way interaction terms as input covariates 

for LASSO and SVM under p = 20 (NN was not implemented since the available R code 

cannot fit the model with 3100 covariates). Moreover, we added the kernel SVM with 

Gaussian radial basis function as another competitor as suggested by a reviewer.

Figure 3 illustrates the computational costs of our two stage algorithm in the simu-lation 

example. Under p = 5(500) and n = 800(800) the first stage of our algorithm took about 

1s(2s) to draw 40(1) iterations and the second stage took about 1s(1s) to draw 50(50) 

iterations in MATLAB. Since the computational costs in the second stage only depend on 

the sizes of the models selected by the first stage, they appeared similar across the covariate 

dimension p. As can be seen, the computational cost under p = 500 and n = 200 in the 

second stage is significantly less than those under p ∈ {5, 20, 100} and n = 200, because 

only a few covariates is selected into the second stage under the former setting. Figure 4 

plots the approximated log marginal posterior versus the number of iterations for the model 

selection sampler in the first stage under p = 100 and n = 600. The sampler was quite 

efficient, with a burn-in of 100 iterations in the first stage and 200 iterations in the second 

stage sufficient and autocorrelations rapidly decreasing to zero with increasing lag time.

Table 1 displays the results under moderate dimension settings. When p = 3, the effective 

number 43 = 64 of parameters is much smaller than the sample size, resulting in the good 

performances of all methods, among which LASSO was the best under n = 200 and 400. 

Nevertheless, our method had a rapid decreasing misclassification rate and achieved 

comparable performance to the best competitors when n = 400 and 600. As p increases to 4 

and 5, irrelevant covariates are included. As can be seen from table 1, the best methods 

under p = 3, including NN, LASSO and SVM, had noticeably worse performance than our 

method and RF. Especially, it was interesting that RF had better performance under p = 4 

and 5 than under p = 3. We guess that when all covariates were important, RF tended to 

overfit the model and lead to poor classification performance on the test samples. 

Nonetheless, our method still had the best performance and tended to be robust to the 

inclusion of irrelevant covariates.

Table 2 displays the results under high dimension settings. The differences become more 

perceptible. All the competing methods broke down and had worse performance than TF. 

Under p = 20, the performance of LASSO2—LASSO with all two-way interaction terms 

included—slightly improved over the LASSO with only main effect terms included, but was 

still unsatisfactory. On the other hand, both SVM2 and SVMk had similar misclassification 

rates as SVM. In the very challenging case in which the training sample size was only 200 

and p = 500, all methods had poor performance. However, as the training sample size 

increased, the proposed conditional tensor factorization method rapidly approached the 

optimal 15%, with excellent performance even in the n = 600, p = 500 case. In contrast, the 

competitive methods had consistently poor performance. In this challenging setting 

involving a low signal strength, a modest sample size, and moderately large numbers of 

candidate predictors, CART appeared to be the best competing method. In addition, by 

comparing the misclassification rates between TF and TF2, we found that TF is quite robust 

to the choice of (r, M), especially when the covariate dimension p is not too large or the 

sample size n is not too small. In the n = 200, p = 500 and n = 400, p = 500 cases, TF2 
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becomes worse than TF since irrelevant covariates have higher tendency to be included in 

the model for TF2 than for TF. However, we find that even for TF2, the final models 

produced by the first stage of our algorithm have size less than 5, suggesting that TF is 

robust to the choice of the maximum model size M.

In addition to the clearly superior classification performance, our method had the advantage 

of providing variable selection results. Table 3 provides the average approximated marginal 

inclusion probabilities for the three important predictors and remaining predictors in the 

high dimension settings. Consistently with the results in Table 2, the method fails to detect 

the important predictors when p = 500 and the training sample size is only n = 200. But as 

the sample size increases appropriately, TF assigns high marginal inclusion probabilities to 

the important predictors and low ones to the unimportant predictors. In addition, to assess 

the fitting performances, we calculated the empirical average MSE defined as

aMSE = 1
N ∑

i = 1

N
{P Y = 1| xi1, …, xip − P Y = 1| xi1, …, xip }2,

where (xi1, …, xip) is the vector of covariates of the ith sample and P is the fitted conditional 

probability. The aMSE approached to zero rapidly as testing size increased and tended to be 

robust to the covariate dimension as long as the method could identify the important 

predictors.

5.2 Parametric classification

In the second simulation study, the true conditional probability tensor is induced by the 

following logistic model with two-way interaction terms, which is a special case of the 

baseline-category logit model (5) under binary response:

logP(Y = 1| X)
P(Y = 0| X) = − 4I X1 = 1 + 2I X1 = 2 − 2I X2 = 2 + 4I X2 = 3 + 4I X3 = 1

+ 6I X1 = 1 ∪ X1 = 3 I X2 = 1 − 8I X3 = 1 I X4 = 2 ∪ X4 = 3 .

This true model includes 5 main effects of important 3 predictors X1,X2 and X3 and 4 two-

way interaction effects of (X1,X2) and (X3,X4). Similar to the previous nonparametric 

example, each simulated dataset consisted of N = 3, 000 instances with p of the covariates 

X1, …, Xp, each of which has d = 4 levels, and a binary response Y. We choose the 

dimensionality p = 4, 7 and 10 and four training sizes n = 200, 400, 600 and 800. For the 

three competitors: CART, RF and LASSO, we only include dp = 16, 28 and 40 main effects 

and d2 p
2 = 96, 336 and 720 two-way interaction effects and ignore the remaining 144, 

16020 and 1047816 higher-order interactions. In contrast, we do not need to impose such a 

restriction to speed up computation for TF, which can capture possible high-order interaction 

effects if they exist. The implementations of these methods are the same as those of the 

previous example.
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Table 4 displays the results. As can be seen, even though in a parametric setting, TF still 

tended to outperform competitors since each competitor needed to include a large number of 

two-way interactions in order to capture interaction effects.

6 Applications

We compare our method with other competing methods in three data sets from the UCI 

repository. The choices of hyperparameters r and M are the same as those in Section 5.1. 

Similarly, we also applied TF2, the TF under r = 6 and M = 20, to illustrate the robustness of 

the method. The first data set is Promoter Gene Sequences (abbreviated as promoter data 

below). The data consists of A, C, G, T nucleotides at p = 57 positions for N = 106 

sequences and a binary response indicating instances of promoters and non-promoters. We 

use n = 85 training samples and N − n = 21 test samples in each random training-test split 

for 100 times.

The second data set is the Splice-junction Gene Sequences (abbreviated as splice data 

below). These data consist of A, C, G, T nucleotides at p = 60 positions for N = 3, 175 

sequences. Each sequence belongs to one of the three classes: exon/intron boundary (EI), 

intron/exon boundary (IE) or neither (N). Since its sample size is much larger than the first 

data set, we compare our approach with competing methods in two scenarios: a small 

sample size and a moderate sample size. In the small(moderate) sample size case, each time 

we randomly select n = 200(2, 540) instances as training and calculate the misclassification 

rate on the testing set composed of the remaining 2, 975 instances. We repeat this for each 

method for 100 training-test splits and report the average misclassification rate.

The third data set describes diagnosing of cardiac Single Proton Emission Computed 

Tomography (SPECT) images. Each of the patients is classified into two categories: normal 

and abnormal. The database of 267 SPECT image sets (patients) has 22 binary feature 

patterns. This data set has been previously divided into a training set of size 80 and a testing 

set of size 187.

We considered the same competitors as those in the simulation part. Among them, BART 

was not implemented in the splice data since we were unable to find a multi-class 

implementation of their approach.

Table 5 shows the results. Our method produced at worst comparable classification accuracy 

to the best of the competitors in each of the cases considered. Among the competitors, 

Random Forests (RF) provided the best competitor overall, which is consistent with our 

previous experiment under high dimensional settings. We expect our approach to do 

particularly well when there is a modest training sample size and high-dimensional 

predictors. We additionally have an advantage in terms of interpretability over several of 

these approaches, including RF and BART, in conducting variable selection. As we expect, 

TF2 tends to have slightly worse classification performance than TF in the Promoter data 

where the covariate dimension p is relatively large comparing to the limited sample size n = 

85. However, TF2 has similar performance as TF in the other three applications.
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Table 6 displays the selected variables along with their associated mode ranks. As can be 

seen, in the promoter data and splice data, nearby nucleotide sequences are selected. These 

results are reasonable since for nucleotide sequences, nearby nucleotides form a motif 

regulating important functions. For the splice data, the number of variables selected by our 

model increases from 4 under n = 200 to 6 under n = 2540. This gradual increase in the 

model size suggests that the splice data may possess a near low multirank structure 

characterized by Assumption B, where the optimal number of selected variables is 

determined by the bias-variance tradeoff. As the training size further grows, more important 

variables would be selected into the model. In contrast, the number of selected variables in 

the SPECT data remains the same as the training size grows, suggesting that an exact low 

multirank assumption may be valid. It is notable that in each of these cases we obtained 

excellent classification performance based on a small subset of the predictors. Moreover, for 

the nucleotide sequences data, most selected variables have low mode ranks kj comparing to 

the full size dj = 4. Therefore, these variable selection results provide empirical verifications 

of the near low multirank assumption B in section 3.2.

7 Discussion

This article proposes a framework for nonparametric Bayesian classification relying on a 

novel class of conditional tensor factorizations. The nonparametric Bayes framework is 

appealing in facilitating variable selection and uncertainty about the core tensor dimensions 

in the Tucker-type factorization. One of our major contributions is the strong theoretical 

support we provide for our proposed approach. Although it has been commonly observed 

that Bayesian parametric and nonparametric methods have practical gains in numerous 

applications, there is a clear lack of theory supporting these empirical gains.

Interesting ongoing directions include developing faster approximation algorithms and 

generalizing the conditional tensor factorization model to accommodate broader feature 

modalities. In the fast algorithms direction, online variational methods (Hoffman et al., 

2010) provide a promising direction. Regarding generalizations, we can potentially 

accommodate continuous predictors and more complex object predictors (text, images, 

curves, etc) through probabilistic clustering of the predictors in a first stage, with Xj then 

corresponding to the cluster index for feature j. We can also generalize the tensor 

factorization model from the current classification framework to a broader regression 

framework involving mixed categorical and continuous variables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proof of Theorem 1

First reshape P(y|x1, …, xp) according to x1 as a matrix A(1) of size d1 × d0d2d3 … dp, with 

the hth row a long vector,

P(1 |h, 1, …, 1, 1), P(1 |h, 1, …, 1, 2), …, P 1 |h, 1, …, 1, dp ,

P(1 |h, 1, …, 2, 1), …, P 1 |h, 1, …, 2, d j , …, P d0 |h, d2, …, dp − 1, dp ,

denoted A(1){h, (y, x2, …, xp)}. Apply nonnegative matrix decomposition for A(1), we 

obtain

P y | x1, …, xp = A(1) x1, y, x2, …, xp = ∑
h1 = 1

k1
λh1x2…xp

(1) (y)πh1
(1) x1 , (8)

where k1 ≤ d1 corresponds to the nonnegative rank of the matrix A(1) (Cohen and Rothblum, 

1993). Without loss of generality, we can assume that the parameters satisfy the constraints 

∑y = 1
d0 λh1x2…xp

(1) (y) = 1 for each (h1, x2, …, xp), ∑h1 = 1
k1 πh1

(1) x1 = 1 for each x1, 

λh1x2…xp
(1) (y) ≥ 0, and πh1

(1) x1 ≥ 0. Otherwise, we can always define new λ’s and π’s satisfying 

the above constraints with the same k1 through the original λ’s and π’s as following:

λh1x2…xp
(1) (y) =

λh1x2…xp
(1) (y)

sh1x2…xp
,

πh1
(1) x1 = sh1x2…xp

πh1
(1) x1 ,

where sh1x2…xp
= ∑y = 1

d0 λh1x2…xp
(1) (y). With this definition, the decomposition (8) for the new 

(λ, π)’s and the normalizing constraint ∑y = 1
d0 λh1x2…xp

(1) (y) = 1 are easy to verify. We only 

need to check the normalizing constraint for π:

∑
h1 = 1

k1
πh1

(1) x1 = ∑
h1 = 1

k1
∑

y = 1

d0
λh1x2…xp
(1) (y)πh1

(1) x1

= ∑
y = 1

d0
P y | x1, …, xp = 1,

where we have applied (8) and the fact that P is a conditional probability.
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Taking λh1x2…xp
(1) (y) from (8) with argument x2, we can apply the same type of 

decomposition to obtain

λh1x2…xp
(1) (y) = ∑

h2 = 1

k2
λh1h2x3…xp
(2) (y)πh2

(2) x2 ,

subject to ∑y = 1
d0 λh1h2…xp

(2) (y) = 1, for each (h1, h2, …, xp), ∑h2 = 1
k2 πh2

(2) x2 = 1, for each x2, 

λh1h2…xp
(2) (c) ≥ 0, and πh2

(2) x2 ≥ 0. Plugging back into equation (8),

P y | x1, …, xp = ∑
h1 = 1

k1
∑

h2 = 1

k2
λh1h2x3…xp
(2) (y)πh1

(1) x1 πh2
(2) x2 .

Repeating this procedure another (p − 2) times, we obtain equation (2) with 

λh1h2…hp
(y) = λh1h2…hp

(p) (y) and constraints (3).

Remark: As we can seen from the proof, kj can be considered as the nonnegative matrix rank 

corresponds to certain transformation of the jth mode matrix of the tensor P.

Appendix B: Proof of Theorem 2

To prove Theorem 2 we need some preliminaries. The following theorem is a minor 

modification of Theorem 2.1 in Ghosal et al. (2000) and the proof is included in a 

supplemental appendix. For simplicity in notation, we denote the observed data for subject i 

as Xi with Xi ∼iid P ∈ 𝒫, P ~ Π, and the true model P0.

Theorem 5 Let ϵn be a sequence with ϵn → 0, nϵn
2 ∞, ∑nexp −nϵn

2 < ∞. Let d be the 

total variance distance, C > 0 be a constant and sets 𝒫n ⊂ 𝒫. Define the following 

conditions:

1. logN ϵn, 𝒫n, d ≤ nϵn
2;

2. Πn 𝒫\𝒫n ≤ exp −(2 + C)nϵn
2 ;

3. Πn(P:‖log P
P0

‖
∞

< ϵn
2) | > exp −Cnϵn

2 .

If the above conditions hold for all n large enough, then for M > 16 + 8C,

Πn P:d P, P0 ≥ Mϵn | X1, …, Xn 0 a . s . P0
n .
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In our case, Xi include the response yi and predictors xi, P is the random measure 

characterizing the unknown joint distribution of (yi, xi) and P0 is the measure characterizing 

the true joint distribution. As our focus is on the conditional probability, P(y|x), we fix the 

marginal distribution of X at it’s true value P0(x) and model the unknown conditional P(y|x) 

independently of the marginal of X. By doing so, it is straightforward to show that we can 

ignore the marginal of X in using Theorem 2 to study posterior convergence. We simply 

restrict 𝒫 to the set of joint probabilities such that P(x) = P0(x). The total variation distance 

between the joint probabilities P and P0 is equivalent to the distance between the 

conditionals defined in Theorem 2 by the identity

∫ ∑
y = 1

d0
|P y, x1, …, xp − P0 y, x1, …, xp |dx1⋯dxp =

∫ ∑
y = 1

d0
|P y | x1, …, xp − P0 y | x1, …, xp |dGn dx1, ⋯, dxp .

Therefore, we will not distinguish the joint probability and the conditional probability and 

use P to denote both of them henceforth.

To prove Theorem 2, we also need upper bounds on the distance between two models 

specified by (2) when the models are the same size and when they are nested.

Lemma 6 Let P and P be two models specified by (3) with parameter (k, λ, π) and (k, λ, π), 
respectively. Assume that P and P have the same multirank k = k = k1, …, kp . Then

d(P, P) ≤ ∑
y = 1

d0
max

h1, …, hp
|λh1h2…hp

(y) − λh1h2…hp
(y)| + d0 ∑

j = 1

p
max
x j

∑
h j = 1

k j
|πh j

( j) x j − πh j
( j) x j | .

Proof of Lemma 6 By definition of d(P, P), we only need to prove that for any y = 1, …, d0 

and any combination of (x1, …, xp),

|P y | x1, …, xp − P y | x1, …, xp | ≤ max
h1, …, hp

|λh1h2…hp
(y) − λh1h2…hp

(y)|

+ ∑
j = 1

p
∑

h j = 1

k j
|πh j

( j) x j − πh j
( j) x j | .

(9)

Actually,

|P y | x1, …, xp − P y | x1, …, xp | ≤ A + ∑
s = 1

p
Bs,

where
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A = ∑
h1 = 1

k1
⋯ ∑

hp = 1

kp
|λh1h2…hp

(y) − λh1h2…hp
(y)| ∏

j = 1

p
πh j

( j) x j

≤ max
h1, …, hp

|λh1h2…hp
(y) − λh1h2…hp

(y)| ∑
h1 = 1

k1
⋯ ∑

hp = 1

kp
∏
j = 1

p
πh j

( j) x j

= max
h1, …, hp

|λh1h2…hp
(y) − λh1h2…hp

(y)|,

where the last step is by using the second equation in (4), and

Bs = ∑
h1 = 1

k1
⋯ ∑

hp = 1

kp
λh1h2…hp

(y)|πhs
(s) xs − πhs

(s) xs | ∏
j = 1

s − 1
πh j

( j) x j ∏
j = s + 1

p
πh j

( j) x j

≤ ∑
hs = 1

ks
|πhs

(s) xs − πhs
(s) xs |,

where the last step is again by using the second equation in (3) and the fact that 

λh1h2…hp
(y) ≤ 1. Combining the above inequalities we can obtain (9).

Lemma 7 Let P and P be two models as in (3) with parameters (k, λ, π) and (k, λ, π), 
respectively. Suppose P is nested in P, i.e. satisfying:

1. k j ≤ k j, f or j = 1, …, p, ;

2. λh1⋯hp
= λh1⋯hp

, f or h j ≤ k j, j = 1, …, p;

3. πh j
( j) x j = πh j

( j) x j , for hj < kj, and πk j
( j) x j = ∑h j ≥ k j

πh j
( j) x j .

Then

d(P, P) ≤ d0 ∑
j = 1

p
max
x j

∑
h j = k j

k j
πh j

( j) x j .

Proof of Lemma 7 By condition (c), P can be considered as model P′ of size k j with π′ = π

and λ′ satisfying:

λh1h2⋯hp
′ (y) = λ

min h1, k1 , min h2, k2 , ⋯, min hp, kp
(y),

for y = 1, …, d0 and h j ≤ k j, j = 1, …, p.
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As a result, by condition (b)

|P y | x1, …, xp − P y | x1, …, xp |

≤ ∑
h1 = 1

k1
… ∑

hp = 1

k p
|λ

min h1, k1 ⋯min hp, kp
(y) − λh1…hp

(y)| ∏
j = 1

p
πh j

( j) x j

= ∑
h1 = 1

k1
+ ∑

h1 = k1 + 1

k
∑

h2 = 1

k2
⋯ ∑

hp = 1

k p
|λ

min h1, k1 ⋯min hp, kp
(y) − λh1…hp

(y)| ∏
j = 1

p
πh j

( j) x j

≤ ∑
h1 = k1 + 1

k1
∑

h2 = 1

k2
⋯ ∑

hp = 1

k p
|λ

min h1, k1 ⋯min hp, kp
(y) − λh1…hp

(y)| ∏
j = 1

p
πh j

( j) x j

+ ∑
h1 = 1

k1
∑

h2 = 1

k2
+ ∑

h2 = k2 + 1

k2
⋯ ∑

hp = 1

k p
|λ

min h1, k1 ⋯min hp, kp
(y) − λh1…hp

(y)| ∏
j = 1

p
πh j

( j) x j

≤ ⋯

≤ ∑
h1 = k1 + 1

k1
∑

h2 = 1

k1
⋯ ∑

hp = 1

k p
|λ

min h1, k1 ⋯min hp, kp
(y) − λh1…hp

(y)| ∏
j = 1

p
πh j

( j) x j

+ ⋯ + ∑
h1 = 1

k1
⋯ ∑

hp − 1 = 1

kp − 1
∑

hp = kp + 1

k p
|λ

min h1, k1 ⋯min hp, kp
(y) − λh1…hp

(y)| ∏
j = 1

p
πh j

( j) x j .

Here the last inequality holds because |λ
min h1, k1 ⋯min hp, kp

(y) − λh1…hp
(y)| = 0 if hj ≤ kj for 

all j. Hence, the lemma can be proved by noticing the constraints (3) and the fact that 

λh1…hp
(y) ∈ [0, 1].

Proof of Theorem 2 We verify conditions (a)-(c) in Theorem 5. As we described previously, 

we do not need to distinguish the joint probability and the conditional probability under our 

prior specification. Each model one-to-one corresponds to a triplet (k, λ, π), where 

k = k1, …, kpn
 is the multirank, λ = λh1, …, hpn

(y): y = 1, …, d0, h j ≤ k j, j = 1, …, pn  is the 

core tensor and π = {πh j
( j) x j :h j ≤ k j, x j = 1, …, d j, j = 1, …, pn} is the mode matrices. Note 

that the dimension of λ and π depend on k. Let the sieve 𝒫n be all conditional probability 

tensors with multirank satisfying ∏ j = 1
pn k j ≤ Mn. Since the inclusion of the jth predictor is 

equivalent to kj > 1, models in 𝒫n will depends on at most rn = log2Mn predictors.
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Condition (a): By the conclusion of lemma 6, we know that an ϵn-net En of 𝒫n can be 

chosen so that for each (k, λ, π) ∈ 𝒫n that satisfies constraints (3), there exists (k, λ, π) ∈ En

such that k = k, maxy, h1, …, hpn
|λh1h2…hpn

(y) − λh1h2…hpn
(y)| <

ϵn
d0 rn + 1

 and 

maxx j, h j
|πh j

( j) x j − πh j
( j) x j | <

ϵn
dd0 rn + 1

 for j satisfying kj > 1. Hence, for fixed k, we can 

pick ϵn d-balls of the form

∏
h1, …, hpn, y

λh1h2…hpn
(y) ±

ϵn
d0 rn + 1

× ∏
j:k j > 1

∏
h j = 1

k j
∏

x j = 1

d j
πh j

( j) x j ±
ϵn

dd0 rn + 1
,

where the first product is taken for all integer vector h1, …, hpn
, y  satisfying 1 ≤ y ≤ d0 and 1 

≤ hj ≤ kj. For fixed k with ∏ j = 1
pn k j ≤ Mn in 𝒫n, there are at most d0Mn such λh1h2…hpn

(y)’s

and rnd2πh j
( j) x j ’s. Equally spaced grids for λ and π can be chosen so that the union of ϵn d-

balls centering on the grids covers the set of all models in 𝒫n with multirank k. Note that 

there are at most drnpn
rn different multirank k in 𝒫n. This count follows by first choosing at 

most rn important predictors with kj > 1, then choosing at most drn for these kj’s. Hence, the 

log of the minimal number of size-ϵn balls needed to cover 𝒫n is at most

log drnpn
rn + d0Mnlog

d0 rn + 1
2ϵn

+ rnd2log
dd0 rn + 1

2ϵn
.

By the conditions in the theorem, each term will be bounded by nϵn
2/3 for n sufficiently large.

Condition (b): Because Πn 𝒫n
c = 0 in our case, this condition is trivially satisfied. Actually, 

this condition will still be satisfied as long as Πn(∏ j
pnk j > Mn) ≤ exp −(2 + C)nϵn

2 , which 

implies that the prior probability assigned to complex models is exponentially small.

Condition (c): As P0 is lower bounded away from zero by ϵ0, log P
P0 ∞

< ϵn
2 is implied by 

P − P0 ∞ < ϵ0ϵn
2 for n large enough (ϵn → 0 as n increases). Let (λ, π) denote parameters 

for the true model P0. Consider approximating P0 by model P with (k(n), λ, π), where k(n) is 

specified in the theorem. Applying lemma 7 to bound d P, P0 , where P (regard as the P) with 

k(n), λ, π  is nested in P0 (regard as the P), and then estimating the difference between P and 

P by lemma 6, we have
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d P, P0 ≤ ∑
y = 1

d0
max

h1 ≤ k1
(n), …, hpn

≤ kpn
(n)

|λh1h2…hpn
(y) − λh1……hpn

(y)|

+ d0 ∑
j:k j

(n) > 1
max

x j
∑

h j = 1

k j
(n)

|πh j
( j) x j − πh j

( j) x j | + d0 ∑
j = 1

pn
max

x j
∑

h j > k j
(n)

πh j
( j) x j .

(10)

Applying (9) in lemma 6 and combining (10) and condition (iv) in Theorem 2, 

log P
P0 ∞

< ϵn
2 is implied by

max
h1 ≤ k1

(n), …, hpn ≤ kpn
(n), y

|λh1…hp
(y) − λh1…hpn

(y)| ≺
ϵn
2

rn + 1,

max
h j ≤ k j

(n), x j

|πh j
( j) x j − πh j

( j) x j | ≺
ϵn
2

rn + 1 d
.

Note that the prior probability P(k = k(n)) is at least rn/ pn
rn rn/ pnd

rn 1 − rn/ pn
pn − rn. 

Here 1 − rn/ pn
pn − rn is defined to be 1 if rn = pn. As rn/pn → 0, logΠn k = k(n)  is bounded 

below by 2rnlog rn/ pn ≥ − 2rnlogpn.

Moreover, since the Dir(1/dj, …, 1/dj) and Dir(1/d0, …, 1/d0) priors for λh1h2…hpn
( ⋅ ) and 

π.
( j) x j  have density lower bounded away from zero by a constant not involving n,

logΠn P: log P
P0 ∞

< ϵn
2

≻ − d0Mnlog
rn + 1

ϵn
2 − rnd2log

rn + 1 d

ϵn
2 − 2rnlogpn .

By the assumptions in the theorem, for any C > 0, for n sufficiently large, 

logΠn(P:‖log P
P0

‖
∞

< ϵn
2) > − Cnϵn

2.
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Figure 1: 
A diagram describes PARAFAC for 3 dimensional tensor. The lines in the middle 

correspond to the mode vectors corresponding to each mode of the tensor. The rightmost 

representation draws analogy to the matrix SVD.
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Figure 2: 
A diagram describes HOSVD for 3 dimensional tensor. The smaller cube G is the core 

tensor and the rectangles are the mode matrices u(j)’s corresponding to each mode of the 

tensor.
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Figure 3: 
Computational cost of the two stage algorithm for TF. The first (second) plot shows the 

computational time for every 1(50) iteration in the first(second) stage, under different 

combinations of sample sizes n ∈ {200, 400, 600, 800} and covariate dimensions p ∈ {5, 20, 

100, 500}. The displayed results are based on 100 replicates.
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Figure 4: 
Mixing behavior of the model selection sampler in the first stage. Approximated log 

marginal posteriors are plotted versus numbers of iterations over 50 simulations under p = 

100 and n = 600 (grey curves). The black curve corresponds to the averaged curve.
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Table 1:

Simulation study results for moderate dimension case. RF: random forests, NN: neural networks, SVM: 

support vector machine, BART: Bayesian additive regression trees, TF: Our tensor factorization model. 

Misclassification rates and their standard deviations over 100 simulations are displayed.

n = 200 n = 400 n = 600 n = 800

CART 0.371(0.056) 0.357(0.066) 0.341(0.072) 0.335(0.064)

RF 0.277(0.034) 0.254(0.039) 0.243(0.034) 0.235(0.032)

NN 0.212(0.033) 0.188(0.038) 0.181(0.043) 0.175(0.037)

p = 3 LASSO 0.206(0.031) 0.178(0.027) 0.169(0.023) 0.167(0.021)

SVM 0.320(0.065) 0.195(0.065) 0.168(0.023) 0.167(0.026)

BART 0.354(0.044) 0.311(0.041) 0.279(0.036) 0.266(0.036)

TF 0.243(0.041) 0.181(0.031) 0.168(0.023) 0.165(0.021)

CART 0.376(0.055) 0.360(0.066) 0.342(0.072) 0.336(0.071)

RF 0.278(0.028) 0.223(0.029) 0.195(0.025) 0.189(0.026)

NN 0.353(0.044) 0.266(0.039) 0.235(0.039) 0.223(0.037)

p = 4 LASSO 0.323(0.036) 0.256(0.030) 0.219(0.025) 0.201(0.023)

SVM 0.325(0.032) 0.257(0.024) 0.219(0.025) 0.202(0.023)

BART 0.378(0.042) 0.329(0.041) 0.282(0.035) 0.269(0.034)

TF 0.241(0.041) 0.183(0.031) 0.170(0.023) 0.164(0.021)

CART 0.384(0.054) 0.364(0.067) 0.342(0.071) 0.342(0.063)

RF 0.324(0.031) 0.267(0.031) 0.230(0.028) 0.218(0.063)

NN - - - -

p = 5 LASSO 0.415(0.046) 0.366(0.048) 0.314(0.032) 0.298(0.025)

SVM 0.414(0.042) 0.374(0.036) 0.335(0.029) 0.306(0.029)

BART 0.395(0.027) 0.353(0.036) 0.335(0.031) 0.306(0.029)

TF 0.242(0.042) 0.184(0.031) 0.168(0.022) 0.164(0.022)
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Table 2:

Simulation study results in the high dimension setting. RF: random forests, NN: neural networks, SVM: 

support vector machine, SVM2: SVM with all two-way interaction terms included, SVMk: kernel SVM with 

Gaussian radial basis function, LASSO2: LASSO with all two-way interaction terms included, BART: 

Bayesian additive regression trees, TF: Our tensor factorization model, TF2: TF under a different 

hyperparameter setting. Misclassification rates and their standard deviations over 100 simulations are 

displayed.

n = 200 n = 400 n = 600 n = 800

CART 0.446(0.026) 0.365(0.040) 0.340(0.061) 0.335(0.087)

RF 0.463(0.022) 0.443(0.026) 0.411(0.027) 0.391(0.022)

NN 0.50l(0.009) 0.491(0.008) 0.505(0.042) 0.475(0.020)

LASSO 0.442(0.04l) 0.413(0.026) 0.372(0.033) 0.362(0.046)

LASSO2 0.440(0.043) 0.405(0.036) 0.352(0.038) 0.335(0.042)

p = 20 SVM 0.507(0.01l) 0.482(0.012) 0.495(0.011) 0.471(0.023)

SVM2 0.483(0.035) 0.491(0.032) 0.478(0.030) 0.481(0.036)

SVMk 0.473(0.016) 0.485(0.018) 0.482(0.017) 0.470(0.020)

BART 0.448(0.026) 0.404(0.036) 0.371(0.032) 0.343(0.030)

TF 0.249(0.036) 0.182(0.036) 0.171(0.026) 0.162(0.022)

TF2 0.254(0.040) 0.186(0.037) 0.170(0.025) 0.165(0.024)

CART 0.474(0.022) 0.424(0.042) 0.382(0.045) 0.361(0.051)

RF 0.461(0.019) 0.478(0.026) 0.431(0.025) 0.425(0.021)

NN 0.501(0.010) 0.493(0.008) 0.488(0.013) 0.476(0.014)

LASSO 0.453(0.031) 0.425(0.031) 0.418(0.041) 0.398(0.033)

p = 100 SVM 0.489(0.011) 0.477(0.013) 0.479(0.013) 0.460(0.025)

SVMk 0.490(0.021) 0.478(0.017) 0.474(0.015) 0.468(0.019)

BART 0.468(0.015) 0.459(0.025) 0.412(0.012) 0.401(0.031)

TF 0.327(0.114) 0.179(0.026) 0.170(0.021) 0.164(0.024)

TF2 0.352(0.129) 0.177(0.028) 0.172(0.024) 0.165(0.025)

CART 0.493(0.09) 0.454(0.052) 0.406(0.032) 0.369(0.084)

RF 0.478(0.022) 0.470(0.020) 0.442(0.027) 0.429(0.021)

NN 0.501(0.009) 0.484(0.023) 0.469(0.030) 0.444(0.019)

LASSO 0.458(0.012) 0.464(0.023) 0.399(0.021) 0.415(0.017)

p = 500 SVM 0.488(0.017) 0.486(0.024) 0.476(0.017) 0.459(0.015)

SVMk 0.493(0.019) 0.480(0.020) 0.466(0.017) 0.464(0.019)

BART 0.479(0.013) 0.463(0.025) 0.419(0.028) 0.425(0.014)

TF 0.452(0.098) 0.205(0.083) 0.172(0.022) 0.164(0.021)

TF2 0.473(0.088) 0.226(0.095) 0.173(0.024) 0.164(0.023)
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Table 3:

Simulation study variable selection results in the high dimensional case. Rows 1–3 within each fixed p are 

approximated inclusion probabilities of the 1st,2nd,3rd predictors. Max is the maximum inclusion probability 

across the remaining predictors. Ave is the average inclusion probability across the remaining predictors. 

These quantities are averages over 10 trials.

n = 200 n = 400 n = 600 n = 800

p = 20

X1 1.00 1.00 1.00 1.00

X2 1.00 1.00 1.00 1.00

X3 1.00 1.00 1.00 1.00

Max 0.00 0.00 0.00 0.00

Ave 0.00 0.00 0.00 0.00

aMSE 0.074(0.013) 0.025(0.005) 0.014(0.004) 0.009(0.002)

X1 0.74 1.00 1.00 1.00

p = 100

X2 0.70 1.00 1.00 1.00

X3 0.72 1.00 1.00 1.00

Max 0.21 0.00 0.00 0.00

Ave 0.01 0.00 0.00 0.00

aMSE 0.089(0.026) 0.027(0.003) 0.014(0.002) 0.009(0.002)

p = 500

X1 0.23 0.91 1.00 1.00

X2 0.24 0.90 1.00 1.00

X3 0.21 0.91 1.00 1.00

Max 0.28 0.07 0.00 0.00

Ave 0.00 0.00 0.00 0.00

aMSE 0.134(0.034) 0.036(0.037) 0.014(0.003) 0.009(0.002)
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Table 4:

Simulation study results for parametric classification. Misclassification rates and their standard deviations over 

100 simulations are displayed.

n = 200 n = 400 n = 600 n = 800

p = 4 CART 0.237(0.029) 0.215(0.028) 0.205(0.027) 0.196(0.024)

RF 0.217(0.024) 0.195(0.023) 0.190(0.022) 0.178(0.023)

LASSO 0.247(0.028) 0.229(0.028) 0.222(0.025) 0.216(0.023)

TF 0.201(0.025) 0.187(0.024) 0.184(0.024) 0.179(0.022)

p = 7 CART 0.271(0.034) 0.221(0.028) 0.214(0.026) 0.199(0.027)

RF 0.229(0.022) 0.200(0.020) 0.196(0.023) 0.186(0.021)

LASSO 0.264(0.029) 0.237(0.021) 0.227(0.025) 0.224(0.024)

TF 0.210(0.028) 0.193(0.025) 0.190(0.026) 0.181(0.023)

p = 10 CART 0.284(0.028) 0.235(0.026) 0.217(0.025) 0.212(0.029)

RF 0.242(0.030) 0.212(0.023) 0.209(0.021) 0.203(0.021)

LASSO 0.276(0.034) 0.243(0.025) 0.235(0.026) 0.233(0.027)

TF 0.229(0.035) 0.201(0.022) 0.192(0.020) 0.180(0.022)
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Table 5:

UCI Data Example. RF: random forests, NN: neural networks, SVM: support vector machine, BART: 

Bayesian additive regression trees, TF: Our tensor factorization model, TF2: TF under a different 

hyperparameter setting. Misclassification rates are displayed based on 100 random training-test splits (Except 

for the SPECT data set, which has been previously divided).

Data Promoter (n=85) Splice (n=200) Splice (n=2540) SPECT (n=80)

CART 0.220(0.066) 0.164(0.029) 0.058(0.012) 0.312(−)

RF 0.064(0.015) 0.122(0.023) 0.048(0.011) 0.235(−)

NN 0.180(0.032) 0.217(0.031) 0.170(0.031) 0.278(−)

LASSO 0.077(0.018) 0.136(0.020) 0.118(0.020) 0.277(−)

SVM 0.147(0.022) 0.273(0.044) 0.061(0.011) 0.246(−)

BART 0.105(0.017) - - 0.225(−)

TF 0.068(0.018) 0.116(0.020) 0.056(0.010) 0.198(−)

TF2 0.072(0.019) 0.118(0.021) 0.056(0.010) 0.198(−)
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Table 6:

Variable selection results. The selected variables are displayed, with their associated mode ranks kj’s included 

in the parenthesis.

Important variables selected

Promoter (n=106) 15th(2), 16th(2), 17th(3), 39th(3)

Splice (n=200) 29th(2), 30th(2), 31st(2), 32nd(2)

Splice (n=2540) 28th(2), 29th(2), 30th(2), 31st(2), 32nd(2), 35th(2)

SPECT (n=80) 11th(2), 13th(2), 16th(2)

SPECT (n=267) 11th(2), 13th(2), 16th(2)
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