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Abstract

Glia have been implicated in Alzheimer’s disease (AD) pathogenesis. Variants of the microglia 

receptor TREM2 increase AD risk and activation of “disease-associated microglia” (DAM) is 

dependent on TREM2 in mouse models of AD. We surveyed gene expression changes associated 

with AD pathology and TREM2 in 5XFAD mice and human AD by snRNA-seq. We confirmed 

the presence of Trem2-dependent DAM and identified a novel Serpina3n+C4b+ reactive 

oligodendrocyte population in mice. Interestingly, remarkably different glial phenotypes were 

evident in human AD. Microglia signature was reminiscent of IRF8-driven reactive microglia in 

peripheral nerve injury. Oligodendrocyte signatures suggested impaired axonal myelination and 

metabolic adaptation to neuronal degeneration. Astrocyte profiles indicated weakened metabolic 

coordination with neurons. Notably, the reactive phenotype of microglia was less palpable in 

TREM2 R47H and R62H carriers than in non-carriers, demonstrating a TREM2 requirement in 

both mouse and human AD, despite the marked species-specific differences.

Alzheimer’s disease (AD) is the most common form of dementia. Pathologically, amyloid 

beta (Aβ) peptides produced by neurons form extracellular aggregates that initiate disease; 

intraneuronal tau hyperphosphorylation and aggregation ensue, causing neuronal and 

synaptic dysfunction and cell death1. Reactive astrocytosis and microgliosis are secondary 

cellular responses to pathology that occur in diseased brain regions2 and may have both 

negative and positive effects3,4.

A slew of -omics studies in recent years has yielded complementary snapshots of glial 

responses to pathology in the AD brain5,6,7,8,9. These studies have largely concluded that 

microglia undergo the most prominent changes in diseased brains, due to a combination of 

increased microglia numbers along with a robust transcriptional activation signature on a 

per-microglia basis. Such activated microglia, which have been referred to as disease-

associated microglia (DAM), has a transcriptional signature quite distinct from that of 

homeostatic microglia that markedly declines in mouse models of AD10,11,12.

Studies of genetic risk for sporadic AD have suggested that microglia not only respond to 

disease but modulate disease course13. Most notably, a hypomorphic variant in the 

microglial receptor TREM2, R47H, increases the risk of AD several fold, as do other 

TREM2 variants, such as R62H, although with reduced penetrance14. Mechanistically, loss 

of TREM2 function in AD mouse models restricts the ability of microglia to surround Aβ 
plaques15,16, proliferate, and convert to DAM10,15,17, which in turn leads to more profound 

neuritic dystrophy18,19. These findings suggest that changes in the AD brain are a 

combination of direct Aβ-mediated pathology and secondary responses by TREM2-

dependent activated microglia.

Methods to study single nuclei have recently been developed, enabling transcriptomic 

analysis of essentially all brain cell types20,21. Single nuclei analysis of human AD brain 

specimens has revealed a microglial transcriptional response that partially recapitulates the 
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mouse DAM signature along with perturbation of oligodendrocytes and myelination that is 

gender-dependent20. Nonetheless, little is known about how TREM2-dependent microglial 

functions impact the AD brain as a whole.

In this study, we comprehensively surveyed transcriptional changes associated with AD 

pathology and TREM2 deficit in brains from 5XFAD mice undergoing Aβ accumulation22 

as well as brain specimens from AD patients with or without the R62H and R47H TREM2 
variants by single-nucleus RNA sequencing (snRNA-seq). We found that transcriptional 

signatures of the human AD response identified in microglia, astrocytes and 

oligodendrocytes were remarkably different from those observed in mice. However, AD 

patients carrying the R47H and, to a minor extent, the R62H variant of TREM2 showed a 

defective microglial transcriptional activation, demonstrating that TREM2 impacts microglia 

function in both a mouse model of Aβ accumulation and human AD.

Results

snRNA-seq reveals a Trem2-dependent microgliosis at early stages of Aβ accumulation

To investigate the impact of Aβ and microglial activation across cell types in mouse, we 

performed snRNA-seq on 7-month-old 5XFAD, Trem2-deficient 5XFAD 

(Trem2−/− 5XFAD), wild-type (WT), and Trem2−/− mice (3 mice/genotype) (Fig. 1a, 

Extended Data Fig. 1a). A total of 73,419 individual nuclei were arranged by t-distributed 

stochastic neighbor embedding (t-SNE) in two dimensions for visualization. Unsupervised 

clustering revealed a total of 11 distinct clusters across all samples (Fig. 1b). These clusters 

were manually identified based on expression of known cell-type specific markers (Fig. 1c, 

Extended Data Fig. 1b) as neurons (Clusters 0, 1, 3, 4, 5), oligodendrocytes (Cluster 2), 

astrocytes (Cluster 6), microglia (Cluster 7), oligodendrocyte precursor cells (OPCs, Cluster 

8), and endothelial cells (Cluster 9) (Fig. 1d). Containing few nuclei, Cluster 10 could not be 

assigned and was omitted from further analyses. For all four genotypes, all clusters were 

similarly represented in each of the 3 mice analyzed and most nuclei had similar numbers of 

unique molecular identifiers (UMIs) (Fig. 1e and Extended Data Fig. 1c). Notably, the 

microglia cluster was much larger in the 5XFAD cortex than in the Trem2−/− 5XFAD and 

non-5XFAD cortices (Fig. 1e,f), further evidence that Aβ pathology induces an expansion of 

microglia that is partially TREM2-dependent.

We also surveyed 15-month-old mice with an advanced stage of pathology by snRNA-seq of 

nuclei pooled from the cortices or the hippocampi of 3 mice per genotype (Extended Data 

Fig. 2a–c). Most clusters were similarly represented in all samples, with the exception of 

certain neuron clusters overrepresented in the cortex or in the hippocampus (Extended Data 

Fig. 2d). Interestingly, the difference between microglial clusters in 5XFAD and 

Trem2−/− 5XFAD cortices was minimal at this stage (Extended Data Fig. 2d); this suggests 

that, although delayed by Trem2-deficiency, microgliosis can reach a plateau at late stages of 

disease when aging becomes the major factor. Moreover, we noticed that the 

Trem2−/− 5XFAD cortex contained a neuronal cluster with significantly fewer UMIs but 

relatively high expression of peptidylglycine alpha-amidating monooxygenase (Pam) 

(Extended Data Fig. 2e,f), which may represent dystrophic neurons that accumulate over 

time as a result of ineffective microglial control of AD pathology due to lack of Trem218,19.
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DAM signature is Trem2-dependent at early and late stages of Aβ accumulation

We next focused on differentially expressed genes (DEGs) on a per-cluster basis, specifically 

comparing 5XFAD vs. WT (Aβ effects) and 5XFAD vs. Trem2−/− 5XFAD (Trem2 
dependence) in both 7-month-old (Fig. 2a–c) and 15-month-old datasets (Extended Data Fig. 

3a,b). We first performed a detailed analysis of microglia-specific changes. DAM genes, 

including Cst7, Csf1, Apoe, Trem2, Lpl, Lilrb4a, MHC-I (H2-d1), MHC-II (Cd74), and 

various cathepsin genes were notably upregulated in 5XFAD compared to WT mice. 

Homeostatic genes, such as P2ry12, Selplg, Tmem119, and Cx3cr1 were downregulated. 

These results were highly concordant between the 7-month- and 15-month-old datasets (Fig. 

2d) and with previously published single cell RNA-seq data of sorted microglia10,11,12. 

Furthermore, we found significantly higher expression of Cst7, Csf1, MHC-I (H2-K and 

b2m), among other genes, in 5XFAD than in Trem2−/− 5XFAD microglia, recapitulating the 

Trem2-dependent upregulation of these genes reported in the literature. Taking advantage of 

the single-cell resolution of our data, we re-clustered microglia of 7-month-old mice to 

distinguish 4 sub-clusters (Fig. 2e). Of these, sub-cluster 1 was highly represented in 

5XFAD mice, less so in Trem2−/− 5XFAD mice and barely detectable in WT and Trem2−/− 

mice (Fig. 2f). This sub-cluster specifically expressed DAM genes (Fig. 2g), indicating that 

both Aβ and Trem2 are required for DAM. Similarly, re-clustering of microglia from 15-

month-old mice revealed that one distinct sub-cluster was exclusively represented in 5XFAD 

mice and enriched in DAM genes (Extended Data Fig. 3c–e). These findings demonstrate 

that our analysis pipeline is robust enough to discern the major transcriptional features of 

Aβ- and TREM2-induced microglia activation.

snRNA-seq reveals an Aβ-dependent oligodendrocyte reactive signature

We next examined oligodendrocytes, OPCs, astrocytes, and neuronal subsets in 7- and 15-

month-old mice. Oligodendrocytes harbored the most strikingly upregulated genes. Volcano 

plot of 5XFAD vs WT oligodendrocytes in 7-month-old mice revealed a significant 

upregulation of three genes in particular – the complement component C4b, the serine 

protease inhibitor Serpina3n, and MHC-I (H2-D1) – in 5XFAD brains (Fig. 3a), which was 

even more marked in mice at 15 months of age (Fig. 3b), suggesting a progressive 

oligodendrocyte response to Aβ-accumulation. Increased expression of C4b and Serpina3n 
was partially dependent on Trem2 in 7-month-old (Extended Data Fig. 4a) but not in 15-

month-old mice (Extended Data Fig. 4b), suggesting that the reactive oligodendrocyte 

response to Aβ pathology may be influenced by microgliosis at early stages of disease. 

Corroborating this conclusion, an oligodendrocyte cell line upregulated C4 when exposed to 

Aβ, as well as alpha-2-macroglobulin and cytokines known to be released by microglia 

(Extended Data Fig. 4c,d).

Next, we validated the oligodendrocyte Aβ-associated signature at the protein-level by 

immunofluorescence (IF). 5XFAD brains contained more Olig2+ nuclei indicative of 

oligodendrocyte lineage cells than did non-5XFAD brains (Fig. 3c). However, no enrichment 

of oligodendrocytes adjacent to plaques was observed (Extended Data Fig. 4e,f). Co-staining 

for either Serpina3n or C4b along with nuclear Olig2 showed perinuclear expression of 

Serpina3n and C4b in oligodendrocyte lineage cells of 5XFAD and Trem2−/− 5XFAD brains 

(Fig. 3d–g). These Aβ-reactive Serpina3n+Olig2+ cells were markedly enriched in plaque-

Zhou et al. Page 4

Nat Med. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bearing brain regions (Fig. 3h,i). The increase in oligodendrocytes that express Serpina3n in 

5XFAD brains was confirmed by staining with CA2 as an alternative oligodendrocyte 

marker (Extended Data Fig. 4g–i). We also detected little colocalization of Serpina3n with 

astrocytes (Extended Data Fig. 4j) and Aβ plaques (Extended Data Fig. 4k).

What is the impact of C4b and Serpina3n secretion by oligodendrocytes? Given that 

formation of Aβ plaques is increased in mice transgenic for Serpina3n23,24, we asked 

whether Serpina3n and/or C4b can accelerate Aβ aggregation in vitro. We found that 

addition of C4b to Aβ42 peptides strongly accelerated aggregation of Aβ; Serpina3n alone 

modestly promoted aggregation at high Aβ42 concentrations and did not synergize with C4b 

(Extended Data Fig. 4l). Altogether, these results demonstrate that Aβ accumulation in mice 

is paralleled by an increase in the number and reactive state of oligodendrocytes that may be 

partially dependent on TREM2, at least at early stages of disease. Reactive oligodendrocytes 

secrete C4b and Serpina3n, which may facilitate Aβ aggregation.

Transcriptional changes in neuronal and other non-neuronal populations in response to 
Aβ are minimal

Cell types other than microglia and oligodendrocytes evinced more limited transcriptional 

responses to Aβ. OPCs strongly upregulated C4b, with a fold change and p-value similar to 

oligodendrocyte activation genes (Extended Data Fig. 5a). Astrocytes upregulated Gfap and 

C4b, but to a lesser extent than did oligodendrocytes (Extended Data Fig. 5b). Egr1, a 

transcriptional regulator that mediates cell survival and proliferation, was substantially 

downregulated in excitatory neuron clusters (Extended Data Fig. 5c–e). In addition to genes 

with known connections to AD, we identified scores of additional genes that are moderately 

upregulated in the 5XFAD model in various cell types (Extended Data Fig. 5a–g) 

independently of TREM2 (Supplementary Table 1). We conclude that the impact of Aβ 
beyond microglia and oligodendrocytes is limited.

Bulk proteomic analysis validates Trem2-dependent and -independent activation genes at 
the protein level

To validate Aβ and TREM2 effects on the murine brain using an independent modality, we 

employed quantitative mass spectrometry-based proteomics of whole brain tissue from 10-

month-old 5XFAD mice that were Trem2-deficient or expressed either the common variant 

(CV) (CV-5XFAD) or the R47H hypomorphic variant (R47H-5XFAD) of human TREM2 
instead of endogenous Trem217. Proteomic analysis yielded a list of proteins more abundant 

in CV-5XFAD than in CV brains that were largely concordant with genes identified by 

snRNA-seq, but with a significant number of additions (Extended Data Fig. 6a). For 

example, proteins such as the neurotrophic factor Midkine25, were found to be highly 

upregulated, despite being unchanged in our snRNA-seq analysis. To ascertain the cell type 

of origin for upregulated proteins identified by proteomic analysis, we linked them to our 

per-cluster average expression data from snRNA-seq (Extended Data Fig. 6a). The majority 

of upregulated proteins were most highly expressed in microglia. However, genes expressed 

by oligodendrocytes, astrocytes, and endothelial cells were also substantially represented at 

the protein level (Extended Data Fig. 6b). Of special note, Serpina3n and C4b were among 

the top 20 most upregulated proteins, validating these as important activation markers. 
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Ingenuity Pathway Analysis (IPA) of the most highly upregulated proteins identified 

immune pathways overwhelmingly as the most significant in this regard (Extended Data Fig. 

6c). The majority of microglia-expressed proteins were less abundant in Trem2−/− 5XFAD 

and R47H-5XFAD brains than in CV-5XFAD brains.

In addition to total proteins, we also analyzed phosphorylation from the same samples. 

Interestingly, phosphopeptides that increased most dramatically from CV to CV-5XFAD 

generally did not originate from proteins with the greatest total-level changes, with the 

exception of Spp1, which was in the top 20 phosphopeptides. As done for proteomics 

analysis, we matched cluster-by-cluster expression in snRNA-seq for the genes 

corresponding to each phosphopeptide (Extended Data Fig. 6d). Upregulated 

phosphopeptides were more typically expressed in neuronal than in glial populations. IPA 

pathway analysis of the most upregulated phosphopeptides identified synaptic signaling 

pathways as the most significantly upregulated in CV-5XFAD mice compared to CV mice 

(Extended Data Fig. 6e). We speculate that protein phosphorylation is a response to AD 

pathology that occurs more prominently in neurons than in glial cells.

Human brain AD gene signatures are distinct from those of the 5XFAD model

We sought to verify key findings observed in the mouse model in human AD. We performed 

snRNA-seq of post-mortem samples of dorsolateral pre-frontal cortexes from 11 AD patients 

with the common variant (CV) of TREM2, 10 AD patients bearing the TREM2 R62H 

variant, and 11 controls, all obtained from the Rush AD center (Supplementary Table 2). We 

analyzed a total of 66,311 individual nuclei with a median of 1,312 genes per nucleus, which 

were visualized in two dimensions by t-SNE (Fig. 4a). Most samples had a median of over 

2,000 UMIs per nucleus (Extended Data Fig. 7a). Unsupervised clustering revealed a total of 

10 distinct clusters across all samples, which were manually assigned based on expression of 

known cell-type specific markers (Extended Data Fig. 7b,c). The smallest cluster could not 

be assigned and was omitted from further analyses. We identified oligodendrocyte (Oli0 and 

Oli1), excitatory neuron (Ex0 and Ex1), inhibitory neuron (In), astrocyte (Astro), microglia 

(Micro), OPCs and endothelial cell (Endo) clusters (Fig. 4a). Most clusters were represented 

similarly in AD and control samples (Fig. 4b). However, the neuronal clusters, especially 

that enriched for neurofilament genes NEFL and NEFM (Ex1), were underrepresented in 

AD compared to control samples (Fig. 4b, Extended Data Fig. 7d,e), likely reflecting 

neuronal loss associated with AD and consistent with NEFL being identified as an AD 

biomarker in the cerebrospinal fluid (CSF)26 (Supplementary Table 3). On the other hand, 

the proportion of astrocytes was increased in AD compared to control samples, indicating 

reactive astrocytosis (Fig. 4b). Nuclei distribution of TREM2 R62H AD samples was more 

similar to TREM2 CV AD than to controls.

We next identified DEGs of each cluster in AD with TREM2 CV compared with controls 

(Supplementary Table 4). Top DEGs for each cluster were plotted into a heatmap (Extended 

Data Fig. 8a). Consistent with neuronal loss in AD, we observed downregulation of many 

neuronal genes, albeit with a fold change less than 1.5 (Supplementary Table 4). Non-

neuronal populations, including microglia, astrocytes and oligodendrocytes, evinced more 

substantial changes. In the microglia cluster, genes normally considered as ‘homeostatic” in 
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mouse (TMEM119, P2RY12, CX3CR1) were, in fact, notably upregulated in AD compared 

to controls (Fig. 4c), along with higher expression of the transcription factor IRF8. This 

signature was remarkably similar to the IRF8-driven reactive phenotype that mouse 

microglia adopt in peripheral nerve injury (PNI)27. Other genes previously reported to be up-

regulated in human AD but not as part of the DAM signature, including SORL1, A2M, and 
CHI3L1, were also highly upregulated (Fig. 4c). Noteworthy, SORL1 polymorphisms have 

been linked to susceptibility to AD28 and CHI3L1 is a prognostic fluid biomarker for 

preclinical AD26 (Supplementary Table 3). MHCII, TREM2, CD68, and APOE were among 

the few DAM gene homologues upregulated in human AD samples compared to controls 

(Extended Data Fig. 8b). Other DAM gene homologues were either similarly expressed in 

AD and control samples (TYROBP), not detected (CST7, GPNMB, LPL), or even 

downregulated (SPP1) in human AD microglia (Extended Data Fig. 8b,c). Finally, AD 

microglia expressed fewer transcripts of genes involved in iron and divalent metal ion 

transport (SLC25A37) and storage (HAMP, FTH1) (Fig. 4c). Accordingly, gene ontology 

(GO) analysis identified metal ion homeostasis as the top pathway downregulated in 

microglia (Fig. 4d). Interestingly, altered iron homeostasis has been associated with 

senescence29.

IF and immunohistochemistry (IHC) analyses corroborated increased expression of IRF8 in 

AD versus control samples, together with other markers indicative of microglial responses to 

Aβ, such as Iba1, CD68, and HLA-DR (Fig. 4e,f). To further substantiate the contribution of 

IRF8 in driving the AD-related upregulation of “homeostatic” markers, we showed that 

overexpression of Irf8 in mouse microglia-like cell cultures upregulated the expression of 

P2RY12, which was conversely reduced in Irf8−/− cells (Fig. 4g,h, Extended Data Fig. 8d,e).

To determine whether a distinct AD-associated microglia subpopulation similar to mouse 

DAM exists in human AD brain, we re-clustered all microglia nuclei into 7 sub-clusters 

(Micro0-6) (Fig. 4i). Of these, sub-cluster Micro0 was highly enriched for expression of AD 

reactive genes (Fig. 4j, Extended Data Fig. 8f). Similar to the DAM signature, which 

becomes detectable in WT mice during aging, this human AD-associated signature was 

present in aged controls, and highly upregulated during disease. Altogether, these data 

suggest that the signature of human microglia in AD is quite distinct from that of DAM in 

the 5XFAD model10,11: it is reminiscent of the reactive phenotype observed in PNI and may 

be in part instructed by IRF8.

The astrocyte signature indicates increase in glial scaring and loss of metabolic 
coordination between neurons and astrocytes

We noticed that a subpopulation of astrocytes evident in controls was not present in AD 

(Extended Data Fig. 8g,h). By re-clustering all of the astrocyte nuclei, we demarcated 6 sub-

clusters (Astro0-5) of astrocytes and confirmed the contraction of Astro3 in AD samples 

(Fig. 5a). This sub-cluster was highly enriched for genes down-regulated in AD astrocytes 

(Fig. 5b), which include those controlling free-fatty acid (FA) transport (FABP5), storage in 

lipid droplets (HILPDA), as well as oxidation and detoxification of the resulting reactive 

oxygen species (SOD2) (Fig. 5c). Collectively, these genes have been implicated in the 

coordination of lipid and oxidative metabolism between neurons and astrocytes30. AD 
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astrocytes also had elevated expression of genes encoding the proteoglycan NCAN and 

collagen COL5A3, which were enriched in Astro0 and Astro1 (Fig. 5b,c). These 

extracellular matrix molecules may contribute to glial scarring, probably preventing axonal 

regeneration31. Notably, NCAN polymorphisms have been associated with bipolar disorder, 

schizophrenia and major depression32. Overall, the AD astrocyte profile was quite different 

from that of A1 astrocytes induced by inflammatory mediators released by microglia33, 

reiterating a lack of bona fide inflammation in the AD brain.

AD-reactive oligodendrocytes reflect functional and metabolic adaptation to axonal 
degeneration

A heatmap of oligodendrocyte-specific gene expression in AD versus controls revealed 

significant downregulation of genes that promote myelination through modification of the 

actin cytoskeleton, such as Stathmin 4 (STMN4)34, axonal guidance, like Semaphorin3B 

(SEMA3B)35, and differentiation of precursor cells into mature myelin-forming cells 

(MIR219A2)36 (Fig. 5d), suggesting that the expression of these genes may no longer be 

elicited due to axonal degeneration. On the other hand, oligodendrocytes upregulated the 

expression of genes controlling pH and electrolytes (CA2), osmotic imbalance (SLC38A2), 

lipid accumulation (MID1IP1) and oxidative stress (SEPP1) (Fig. 5d). Expression of these 

genes may facilitate metabolic responses to the accumulation of degradation products 

derived from axonal degeneration. Changes in gene expression were detected in distinct 

subpopulations of oligodendrocytes identifiable after re-clustering (Fig. 5e,f, Extended Data 

Fig. 8i). Upregulated genes, such as CA2, marked sub-cluster Oligo3, while downregulated 

genes such as MIR219A2, delineated clusters Oligo1 and Oligo2. The human homologues 

of mouse Serpina3n and C4b, SERPINA3 and C4B, which were upregulated in reactive 

oligodendrocytes in the 5XFAD model, were predominantly expressed in astrocytes rather 

than oligodendrocytes in the human brain (Fig. 5g), further evidence for a human-mouse 

difference in the cell type of origin; moreover, SERPINA3 expression was reduced rather 

than increased in the AD brains (Fig. 5c).

Taken together, we characterized an AD-associated signature in microglia, astrocytes and 

oligodendrocytes that is quite distinct from the AD signature identified in mouse Aβ models. 

Interestingly, genes enriched in Oligo1 and Micro1 (down-regulated in AD) corresponded to 

genes previously identified as downregulated during human aging and early onset AD 

patients from public datasets (Extended Data Fig. 9). Consistently, genes enriched in Micro0 

and Oligo0 (upregulated in AD) correlated with upregulation during aging and early onset 

AD, further supporting our findings.

Whole brain nCounter mRNA analysis corroborates AD glial signatures and verifies 
neuronal loss

We next analyzed the same Rush cohort samples using a NanoString neuropathology gene 

expression panel that does not require gene amplification (Extended Data Fig. 10a, 

Supplementary Table 2,5). As this analysis was performed on bulk brain specimens, we 

verified the cell type of origin of each DEG by mapping them onto our human brain nuclei t-

SNE plot (Extended Data Fig. 10b). NanoString data confirmed increased expression of 

microglia IRF8, and oligodendrocyte CA2 in AD compared to controls (Fig. 5h,i), as well as 
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increased astrocyte expression of EGFR, which has been proposed as a potential receptor for 

Aβ37, and a regulator of astrocytes in multiple sclerosis38.

Moreover, these data exposed diminished expression of genes encoding for neurotrophic 

factors (BDNF), neurotransmitters (ADCYAP1), molecules involved in axon guidance 

(PLXNC1), plasticity (ARC)39, synaptic vesicles (V-ATPase G subunits (ATP6V1G2) and 

ion channels (RIMS1) (Fig. 5h,i), indicating neuronal cell death. Notably, reduced 

ADCYAP1 in human CSF and brain specimens has been associated with cognitive decline in 

mild cognitive impairment due to AD40 (Supplementary Table 3).

NanoString analysis on a different set of samples from the occipital cortex of AD patients 

and age-matched controls derived from the Niigata Brain Research Institute (BRI) (Extended 

Data Fig. 10c, Supplementary Table 2,5) confirmed increased expression of microglia 

“homeostatic” (TMEM119) and non-homeostatic genes (MHCII, TREM2, AIF1) in AD 

samples, as well as genes implicated in inhibiting myelination, such as EFNA141 (Extended 

Data Fig. 10c). Moreover, reduced expression of genes encoding neurotransmitters (VIP), 

stress hormones (CRH), as well as molecules involved in plasticity (CAMK2G), actin-

bundling (PLS1), and metabolism (CYCS) of neurons was seen in AD samples compared to 

controls (Extended Data Fig. 10c), validating the neuronal depletion observed in the Rush 

cohort. Pathway analysis documented an increase in activated microglia and neuronal 

functional pathways in both the BRI and Rush cohorts (Extended Data Fig. 10d). It is 

noteworthy that gene signatures indicative of glial responses and neuronal depletion detected 

by NanoString in the Rush and the BRI cohorts differed somewhat between the two sets of 

specimens, likely reflecting differences in the transcriptional and functional profiles of glia 

and neurons in prefrontal and occipital cortices, respectively.

Brain signatures of AD carrying TREM2 variants demonstrate reduced microglial response

Finally, we examined the impact of rare human TREM2 variants on AD signatures. We first 

analyzed 10 pre-frontal cortex samples from Rush cohort derived from AD patients carrying 

the R62H TREM2 variant, which is associated with a 1-2-fold increase in the risk of 

developing AD. Overall, AD patients carrying R62H and those carrying CV TREM2 had 

very similar transcriptional profiles, as seen by t-SNE plot (Fig. 6a). AD R62H carriers 

clustered more closely with AD CV carriers than with controls, especially within the non-

neuronal clusters (Fig. 6a). All AD patients, R62H carriers and CV carriers, had similar 

numbers of microglia. However, some microglial AD-reactive genes were downregulated in 

AD R62H carriers (TREM2, HLA-DRA and CHI3L1) (Fig. 6b). Expression of AD-reactive 

oligodendrocyte genes was lower in AD R62H carriers than in AD CV carriers, yet was 

significantly higher in AD R62H carriers than in controls (Fig. 6c). Conversely, not much 

difference was seen in astrocytes when comparing R62H to CV samples (Fig. 6d). Validating 

the snRNA-seq data, NanoString analysis corroborated a mild reduction in expression of 

microglial genes such as TMEM119, IL10RA and HPGDS in the R62H samples compared 

to CV AD samples (Fig. 6e,f, Extended Data Fig. 10e).

We next examined AD patients carrying the R47H variant, who have a higher risk (2-4-fold) 

of developing AD than do R62H carriers. Since the Rush cohort included only two of these 

cases, we chose a different set of human AD brain samples from the Alzheimer’s Disease 
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Research Center at Washington University (ADRC), which included parietal cortical tissues 

from 5 AD patients carrying the R47H variant together with 5 matched specimens from AD 

patients without TREM2 variants (Supplementary Table 2,5). NanoString nCounter mRNA 

analyses documented a marked decrease in the expression of several microglia genes, 

including IRF8, HLA-DRA, and AIF1, in the R47H samples (Fig. 6g), suggesting fewer 

microglia in the R47H than in the CV TREM2 brain specimens and/or reduced expression of 

these microglial genes on a per cell basis. According to pathway analysis, R47H brains also 

had elevated expression of genes involved in oxidative stress and lipid metabolism, along 

with decreased expression of genes involved in autophagy, growth factor signaling, and 

neural connectivity (Fig. 6h). Overall, the R47H variant seems to have a greater impact than 

the R62H variant on microglial response to AD pathology, consistent with the relatively 

higher penetrance of the R47H variant for AD.

Discussion

Our multi-pronged analyses of AD pathology in both mouse and human brains demonstrates 

a remarkable discordance between the transcriptional signatures indicative of cellular 

responses in human AD and those seen in the 5XFAD mouse model of Aβ accumulation. In 

mice accumulating Aβ, microglia swap their “homeostatic” signature with a DAM signature 

that is partially Trem2-dependent10,11. During human AD, microglia acquire a quite distinct 

signature characterized by increased expression of “homeostatic” genes (TMEM119, 

CX3CR1, P2RY12) along with genes absent in the DAM signature, such as A2M, CHI3L1 
and IRF8. This signature evokes the reactive microglia phenotype described in a mouse 

model of PNI that is driven, at least in part, by IRF827 and MafB42. We validated IRF8 
expression in human AD microglia by NanoString and IF and showed that IRF8 drives the 

expression of microglial markers linked to AD, suggesting that IRF8 is likely a major driver 

of this signature.

Astrocyte signatures also markedly differed between the mouse model and human AD. In 

the 5XFAD model, astrocytes assumed a very modest Aβ-dependent signature marked by 

expression of Gfap. In human AD, we noted clear contraction of a subset expressing a 

metabolic signature indicative of lipid uptake, storage, oxidation and detoxification, likely 

reflecting loss of metabolic coordination between neurons and astrocytes. Neuronal loss in 

AD may dampen the need for astrocytic scavenger functions devoted to disposal of neuronal 

toxic waste. In parallel, astrocytes upregulated a signature indicative of extracellular matrix 

protein synthesis related to glial scarring.

In human AD, oligodendrocytes expressed fewer transcripts of genes controlling axonal 

myelination through axon guidance (SEMA3B), rearrangement of actin cytoskeleton 

(STMN4) and maturation of myelin-forming cells (MIR219A2). These functions may no 

longer be elicited due to neuronal loss and axonal degeneration. In parallel, oligodendrocytes 

elevated expression of genes sensitive to changes in pH and electrolytes (CA2), osmotic 

imbalance (SLC38A2), lipid accumulation (MID1IP1), and oxidative stress (SEPP1), which 

may be indicate a response to accumulation of degradation products derived from axonal 

degeneration. These oligodendrocyte signatures are distinct from those recently associated 

with multiple sclerosis21 and senescence43. In the 5XFAD model, oligodendrocytes adopted 
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a reactive signature including C4b and Serpina3n that was not evident in human AD 

samples, although both transcripts were detected in human astrocytes. Moreover, C4b was 

particularly effective in inducing Aβ aggregation in vitro. Together these data expand 

previous studies in mouse models of Aβ aggregation suggesting a pathogenic role for C4b 

and Serpina3n23,24,44,45, as well as genetic studies linking the human homologue 

SERPINA3 to AD risk46, yet functions of Serpina3n remain unclear.

In neuronal populations, human AD samples showed diminished expression of genes 

controlling neurotransmission (ADCYAP1), plasticity (ARC), synaptic vesicles 

(ATP6V1G2), ion channels (RIMS1), and axon guidance (PLXNC1). Defects in some of 

these molecules have been implicated in impaired memory39 and associated with mild 

cognitive impairment in AD40. A clear reduction in the expression of genes controlling 

memory networks was not evident in the 5XFAD mouse model, in which neuronal 

pathology is limited to neurite dystrophy. This difference may help explain the considerable 

disparity between human and mouse signatures of reactive glial cells.

Our human data are partially concordant with a recent study examining human AD and 

control samples by snRNA-seq20. Several cell type-specific upregulated genes identified by 

Mathys et al., including MHC class II and APOE in microglia and QDPR, CA2, and 

SLC38A2 in oligodendrocytes, were also upregulated in our AD samples. We also 

distinguish additional genes upregulated in AD, a novel astrocyte cluster depleted in AD, 

upregulation of certain “homeostatic” microglia genes, and a potential role for IRF8 in 

microglia reactivity. Some of these transcriptional changes correspond to protein changes 

previously detected in the CSF as AD biomarkers (see Supplementary Table 3). Importantly, 

we documented a measurable impact of the human R47H and R62H variants on microglia 

responses, while astrocyte and oligodendrocyte reactive signatures were not obviously 

affected. Notably, NanoString analysis revealed that the precise glial and neuronal gene 

signatures varied slightly between the three distinct cohorts analyzed, reflecting disparate 

demographics and/or differing regions of the brain from which the samples were obtained. 

Future snRNA-seq studies examining different cohorts and brain regions may shed further 

light on the spectrum of AD-related transcriptional changes.

Online Methods

Mice

WT (C57BL/6J) and 5XFAD (Tg6799) mice were purchased from Jackson Laboratory. 

Trem2−/−, Trem2−/− 5XFAD, CV 5XFAD and R47H 5XFAD mice were generated as 

previously described15,17 and are available upon reasonable requests. All mice were bred 

and housed in specific pathogen-free conditions. The Institutional Animal Care and Use 

Committee at Washington University in St. Louis approved all protocols used in this study. 

No animals were excluded from analysis. Animals used for snRNA-seq were sacrificed at 7 

or 15 months of age. 3 male mice per genotype (WT, Trem2−/−, 5XFAD and 

Trem2−/− 5XFAD) were used. Animals used for validation with IF were the same as used for 

snRNA-seq, or were sacrificed at the age of 5 months as stated in the figure legends, with 3 

male, 3 female 5XFAD and 1 male, 5 female Trem2−/− 5XFAD mice. Animals used for 

proteomics and phospho-proteomics were sacrificed at the age of 10 months with 1 male and 

Zhou et al. Page 11

Nat Med. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 female per genotype. Investigators were not blinded to experimental groups, but all 

samples and data were processed in a high-throughput or automated fashion.

Human samples

Post-mortem human brain samples were obtained from Rush Alzheimer’s Disease Center at 

Rush University, the Knight Alzheimer’s Disease Research Center (ADRC) at Washington 

University and the Brain Research Institute (BRI) at Niigata University. Post-mortem 

prefrontal cortical tissues from 11 AD patients with TREM2 common variant (CV), 10 AD 

patients carrying TREM2 R62H variant, and 11 age-matched controls from the Rush cohort 

were analyzed by snRNA-seq. Sex was balanced between AD (CV) and control individuals, 

with 7 females and 4 males in each group; the AD (R62H) group has 5 females and 5 males. 

Post-mortem frozen prefrontal cortical tissues from 12 controls, 13 AD patients with 

TREM2 CV and 11 patients with TREM2 R62H variant from the Rush cohort, parietal 

cortical tissues from 5 AD patients with TREM2 CV and 5 patients with TREM2 R47H 

variant from the ADRC, and occipital cortical tissues from 10 controls and 10 AD patients 

with TREM2 CV from the Japan BRI cohort were analyzed by NanoString nCounter 

platform. Characteristics of donors of the human tissues at the time of collection is indicated 

in Supplementary Table 2. Pre-mortem consent was obtained from each subject with the 

approval by the Institutional Review Board (IRB) of each institution. For human IHC, 

autoptical samples were retrieved from the archive of the Department of Pathology (Spedali 

Civili of Brescia) and study was conducted in compliance with policies approved by the 

Ethics Board of Spedali Civili di Brescia, University of Brescia for retrospective and 

exclusively observational study on archival material obtained for diagnostic purpose and 

patient consent was not needed (Delibera del Garante n. 52 del 24/7/2008 and DL 

193/2003). AD patients were a female of 66 and a male of 62 years old, respectively. Control 

brain was from a 72-year-old male died for cardiac failure.

Isolation of nuclei from frozen brain tissue

Flash frozen brain tissue was homogenized in a Dounce homogenizer in Lysis Buffer (10 

mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, and 0.025% NP-40), and incubated on 

ice 15 minutes. The suspension was filtered through a 30 μm filter to remove debris and 

pelleted at 500 x g 5 min at 4° C. Nuclei were washed and filtered twice with Nuclei Wash 

(1% BSA in PBS with 0.2 U/μL RNasin (Promega)). Nuclei pellets were resuspended in 500 

μL Nuclei Wash and 900 uL 1.8 M Sucrose. This 1400 μL mixture was carefully layered on 

top of 500 μL 1.8 M sucrose and centrifuged at 13,000 x g 45 min 4oC to separate the nuclei 

from myelin debris. The nuclei pellet was resuspended in Nuclei wash at 1000 nuclei/μL and 

filtered through a 40 μm FlowMi Cell Strainer.

Single-nucleus RNA-Seq

Isolated mouse nuclei from 7-month-old cohort and human nuclei were subjected to droplet-

based 5’ end massively parallel single-cell RNA sequencing using Chromium Single Cell 5’ 

Reagent Kits as per manufacturer’s instructions (10x Genomics). Isolated mouse nuclei from 

15-month-old cohort were subjected to droplet-based 3’ end massively parallel single-cell 

RNA sequencing using Chromium Single Cell 3’ Reagent Kits as per manufacturer’s 

instructions (10x Genomics). The libraries were sequenced using Illumina sequencers at the 
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McDonnell Genome Institute. Sample demultiplexing, barcode processing, and single-cell 

counting was performed using the Cell Ranger Single-Cell Software Suite (10x Genomics). 

Cellranger count was used to align samples to the reference genome (mm10, hg38), quantify 

reads, and filter reads with a quality score below 30.

Processing data with Seurat package and quality control—The Seurat package in 

R was used for subsequent analysis47. For quality control, nuclei with mitochondrial content 

greater than 5 percent were removed. Nuclei that are duplets or multiplets were filtered out 

by two steps. First, nuclei with more than one marker gene expressed were removed. Then 

cells with high UMI and gene number per cell were filtered out. Cutoffs for UMI and gene 

number were determined based on histograms showing cell density as a function of UMI/

gene counts. For 7-month-old mouse brain snRNA-seq analysis, a cutoff of 300–9,000 UMI, 

300–5,600 Gene was applied. After filtering, a total of 73,419 individual nuclei across all 

genotypes were remained, with a median of 3,941 UMIs and 2,378 genes per nucleus for 

downstream analysis. For human brain snRNA-seq, a cutoff of 400–20,000 UMI, 400–7,000 

Gene was applied. After filtering, 66,311 nuclei were remained across 11 AD (CV), 10 AD 

(R62H) and 11 control samples, with a median of 1,951 UMIs and 1,312 genes per nucleus 

for downstream analysis. For 15-month-old mouse brain snRNA-seq analysis, genes 

expressed in fewer than 3 nuclei and nuclei that expressed less than 400 or greater than 3500 

genes were removed for downstream analysis. After filtering, 38,230 nuclei were remained. 

Data was normalized using a scaling factor of 10,000, and nUMI was regressed with a 

negative binomial model. Principal component analysis was performed using the top 3000 

most variable genes and t-SNE analysis was performed with the top 20 PCAs. Clustering 

was performed using a resolution of 0.6.

Clustering and finding markers—Principal component analysis was performed prior to 

clustering and the first 10 PC’s were used based on the ElbowPlot. Clustering was 

performed using the FindClusters function which works on K-nearest neighbor (KNN) graph 

model with the granularity ranging from 0.1–0.9 and selected 0.2 for the downstream 

clustering. For identifying the markers for each cluster, we performed differential expression 

of each cluster against all other clusters identifying negative and positive markers for that 

cluster. Nuclei from broad cell types (astrocytes, microglia and oligodendrocytes clusters) 

were taken and re-clustered to further analyze the sub-clusters in each cell type.

Analysis of gene differential expression

Differential expression of genes between conditions was done using the MAST algorithm48 

of Seurat package in R, which implements a two-part hurdle model. Log2(fold change) of 

average expression and the percentage of cells (pct) expressing the genes in each condition 

were generated. For the mouse snRNA-seq analyses, to facilitate data interpretation, changes 

in frequency of cells were taken into account. The bulk fold change was calculated by 

adding log2(pct1+0.005)/(pct2+0.005) to the log2(FC) generated from the Seurat Package. 

Adjusted p-value was calculated based on Bonferroni correction.

Lists of mouse DEGs were generated by filtering all genes for fold change>1.5, adjusted p-

value<0.05. The lists were ordered by adjusted p-value (Supplementary Table 1). For the 
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human snRNA-seq analysis, lists of DEGs in non-neuronal clusters were generated by 

filtering genes for log2(fold change)>0.5, p-value<0.05. These gene lists were used as inputs 

for downstream sub-clustering analyses. Lists of human DEGs in neuronal clusters were 

generated by filtering all genes for p-value<0.05. The lists were ordered by fold changes 

(Supplementary Table 4).

Comparing marker genes with the public datasets

Public datasets GSE53890 and GSE39420 were processed and analyzed in the Phantasus 

tool (https://artyomovlab.wustl.edu/phantasus/). The top 12,000 genes ranked by average 

gene expression were selected for differential expression analysis using the LIMMA 

package. Differential Expression was performed between samples with age less than 40 and 

greater than 80, and between controls and early onset Alzheimer’s patients, respectively. 

Gene set enrichment analysis was then performed using the marker genes from 

oligodendrocyte and microglia sub-clusters as inputs.

NanoString nCounter analysis

RNA from post-mortem frozen samples was extracted with Qiagen RNeasy Kit and sent for 

NanoString nCounter analysis49. Briefly, RNA is directly tagged with a capture probe and a 

reporter probe specific to the genes of interest. After hybridization, the probe-target 

complexes are immobilized on an imaging surface, which are then scanned by fluorescence 

microscope and labeled barcodes are counted. Gene expression analysis was performed on 

the nCounter system (NanoString Technologies) according to manufacturer’s instructions 

and analyzed using nSolver analysis software (NanoString Technologies) and built in 

statistical analyses.

Immunofluorescence

Mice were anesthetized with ketamine/xylazine and perfused with ice-cold PBS containing 1 

U/ml of heparin. Right brain hemispheres were fixed in 4% PFA overnight at 4°C, rinsed in 

PBS, and incubated overnight at 4°C in 30% sucrose before freezing in a 2:1 mixture of 30% 

sucrose and optimal cutting temperature compound. Serial 40 μm coronal floating sections 

were cut on a Cryostat (Leica CM1860) and kept in cryoprotectant (30% sucrose, 30% 

ethylene glycol, PBS). Floating sections were blocked with 3% BSA and 0.25% Triton 

X-100 in PBS, and stained with anti-Iba-1 (rabbit polyclonal, 1:5,000; Wako; or goat 

polyclonal, 1:1,000; Abcam), anti-Olig2 (rabbit polyclonal, 1:500; Millipore; or goat 

polyclonal, 1:500; R&D Systems), anti-mSerpin A3N (goat polyclonal, 1:100; R&D 

Systems), anti-C4 (rat IgG2a, 1:25; Invitrogen), and/or anti-CA2 (rat IgG2a, 1:200; R&D 

Systems) overnight at 4°C followed by staining with Alexa Fluor 488 labeled anti-GFAP 

(1:1,000; eBioscience), anti-goat IgG Alexa Fluor 488 (1:2,000; Abcam), anti-rabbit IgG 

Alexa Fluor 647 (goat polyclonal, 1:2,000; Invitrogen), anti-rat IgG Alexa Fluor 647 (goat 

polyclonal, 1:2,000; Invitrogen), methoxy-X04 (3 μg/ml; Tocris), and/or TO-PRO-3 iodide 

(300 nM; Thermo Fisher Scientific) for 1 h at room temperature. Serpina3n and CA2 

staining was performed with antigen retrieval, preceding blocking, in 10mM sodium citrate 

buffer with 0.05% Tween-20, at 85°C for 30 minutes. All antibodies were used in blocking 

buffer, and between all incubations, sections were washed for 10 min in PBS three times. 

Images were collected using a Nikon A1Rsi+ confocal microscope. Three-dimensional 
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image segmentation of microglia, oligodendrocytes, astrocytes, plaques, and neurons, and 

extraction of parameters were performed in Imaris 8.1 (Bitplane), and further processing was 

performed using automated scripts in Matlab (Mathworks).

For human IRF8 staining, PPFE sections from Rush AD center were de-paraffinized, 

rehydrated and boiled in 1mM citrate buffer (pH=6) for 10min for antigen retrieval. Sections 

were then blocked with 1% BSA and 0.03% Triton-X in TBST. anti-IRF8 (rabbit polyclonal, 

1:50, Atlas) and anti-Iba1 (goat polyclonal, 1:200; Abcam) were incubated with sections 

overnight at 4°C in 0.3% BSA, followed by anti-goat IgG Alexa Fluor 555 (1:1,000; Abcam) 

and anti-rabbit IgG Alexa Fluor 647 (goat polyclonal, 1:1,000; Invitrogen) for 50min at 

room temperature. Between all incubations, sections were washed for 5min in TBST three 

times. Sections were mounted with DAPI.

Immunohistochemistry

Histological diagnosis was revised and formalin-fixed paraffin-embedded representative 

sections for each patient were selected based on adequate tissue preservation as assayed by 

hematoxylin and eosin (H&E) staining and subjected to IHC. Briefly, 20μm thick paraffin 

embedded representative tissue sections were de-waxed, rehydrated and endogenous 

peroxidase activity blocked with 0,3% H2O2 in methanol for 20min. Antigen retrieval was 

performed by using a microwave-oven in 1mM Citrate buffer (pH 6.0). Sections were then 

washed in TBS (pH 7.4) and incubated for one hour or overnight in anti-Iba1 (rabbit 

polyclonal, 1:300; Wako), anti-CD68 (mouse IgG3, 1:100; Dako) or, anti-HLA-DR (1:250, 

Biomeda) in TBS 1% BSA. Signal was revealed using the DAKO Envision+System-HRP 

Labelled Polymer Anti-Rabbit or Anti-Mouse or the NovoLinkTM Polymer Detection 

System (NovocastraTM), followed by Diaminobenzydine (DAB) as chromogen and 

Hematoxylin as counterstain. For detection of microglia around the plaques, we combined 

silver staining with Iba1 IHC by using the MACH4 Universal HRP-Polymer kit (Biocare) 

and signal was revealed by Ferangi Blue Chromogen Kit (Biocare). Images were acquired 

with an Olympus Bx60 microscope and Cell Sens Standard Ink imaging software (Olympus 

Corporation) mounted on a DP73 Olympus camera.

Quantification of staining

For measurement of perinuclear Serpina3n and C4b intensity, oligodendrocyte nuclei were 

determined using the Surfaces function of Imaris on Olig2 data. After Olig2+ surfaces were 

defined, the perinuclear region was defined as within 2 μm of the Olig2+ surface. This was 

accomplished by using the “Distance from Surfaces” function on the Olig2+ surfaces to 

assign a value to each voxel representing the distance to the nearest Olig2+ surface. Next, a 

threshold of 2 μm or smaller was used to generate another set of surfaces including the 

nucleus and perinuclear region. The intensity of staining within these surfaces was 

determined by taking the mean of voxel intensity values within the surfaces. Two images 

were acquired per brain for quantification.

For measurement of Serpina3n intensity in CA2+ cells, oligodendrocytes were determined 

using the Surfaces Function of Imaris on CA2 channel. Intensity of Serpina3n was then 
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quantified by calculating the weighted average of Serpina3n mean fluorescence intensity 

over the volume of CA2 surfaces. Three images were acquired per brain for quantification.

Number of Olig2+ or CA2+ oligodendrocytes was quantified by counting the total number of 

Olig2+ or CA2+ Surfaces per image generated as described above.

For measurement of oligodendrocyte density around plaques, plaque volume and center of 

mass were determined using the Surfaces function of Imaris on methoxy-X04 image data. 

Oligodendrocyte nuclei were identified using the Spots function of Imaris for Olig2 nuclear 

staining. To calculate the number of oligodendrocyte nuclei within a given distance from 

plaque surfaces, each plaque was modeled as an idealized sphere with the same volume and 

center of mass. Pairwise Euclidean distances were calculated between each oligodendrocyte 

nucleus and each plaque, taking into account the idealized plaque radius. For each plaque, 

the number of oligodendrocytes within the specified distance was enumerated. 

Oligodendrocytes were allowed to be counted for multiple plaques. Next, the occupiable 

volume for oligodendrocytes was calculated by finding the volume of the sphere (or 

spherical segment) that falls within the specified distance. As an example, for a plaque of 

radius 10 μm and a cutoff of 30 μm, the volume of a 40-μm sphere is determined. If either 

the top or bottom of this sphere (or both) extends beyond the top or bottom of the z-stack, 

respectively, the volume is calculated using the formula for spherical segments instead of the 

formula for a sphere. Finally, the number of oligodendrocytes is divided by the occupiable 

volume to obtain the density, and these values are averaged for all the plaques for a given 

animal.

Proteomics and phospho-proteomics

Lysis, digestion, and preparation for mass spectrometry analysis—Frozen half 

brain sections were lysed in 5 mL of lysis buffer containing 8 M urea, 20 mM HEPES pH 

8.5, phosphatase inhibitors (1mM β-glycerophosphate, 1mM sodium orthovanadate), 

homogenized with a Polytron, and probe tip sonicated. Samples were subsequently reduced 

with 5 mM DTT for 50 min at 55°C, alkylated for 30 min with 10 mM iodoacetamide, and 

quenched with 5 mM DTT. Samples were diluted to 2M urea with digestion dilution buffer 

(20 mM pH 8.5 HEPES containing 1mM CaCl2) and digested at 37 °C with 100μg of Lysyl 

Endopeptidase (Wako-Chem). Samples were then diluted to 1 M urea and digested for 5 

hours with 100 μg of trypsin (Pierce). Following digestion, peptides were acidified with 

TFA, centrifuged at 500 x g for 20 min and purified over SepPak C18 columns. Following 

elution, peptides were quantified with a MicroBCA assay (Thermo Fisher Scientific, San 

Jose, CA).

Total protein sample preparation—20 μg of peptides from each sample were labeled 

with isobaric tandem-mass-tag (TMT) 11 plex reagents (Thermo Fisher Scientific, San Jose, 

CA) in 20 mM pH 8.5 HEPES with 30% acetonitrile (v/v) with 50 μg of TMT reagent. The 

reaction was quenched for 15 min by adding hydroxylamine to a final concentration of 0.3% 

(v/v). The plex design is shown in Table 1. Samples were combined, dried, purified over 

SepPak C18 columns, and dried again. Samples were then resuspended in 50 μL of bRP 

buffer A (10 mM NH4HCO2, pH10, 5% ACN) and separated on a Zorbax Extended C18 
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column (2.1 × 150 mm, 3.5 μm, no. 763750-902, Agilent) using a gradient of 10–40% bRP 

buffer B (10 mM NH4HCO2, pH10, 90% ACN). 96 fractions were collected before 

concatenation 24 fractions. Each fraction was dried and desalted over a C18 STAGE-Tip 

prior to analysis by mass spectrometry.

IMAC phosphopeptide sample preparation—High-Select™ Fe-NTA Phosphopeptide 

Enrichment Kits from Thermo were used to enrich phosphopeptides from 5mg of peptides 

for each sample. Following the elution from the IMAC column, enriched samples were dried 

then cleaned over a SepPak, and quantified via MicroBCA. 20 μg of enriched peptides were 

labeled with TMT and bRP fractionated as described above, instead with a gradient of 5–

40% buffer B. The 24 concatenated fractions were desalted over a C18 STAGE-Tip.

Immunoaffinity Purification with Motif Antibodies—10 μg of IMAC-enriched 

peptides from each sample were TMT-labelled, combined, cleaned over a SepPak, dried, and 

subjected to immunoaffinity purification (IAP) with phosphorylation-specific motif antibody 

reagents available from Cell Signaling Technology (CST). Peptides were resuspended in 200 

μL of 1X IAP buffer (CST cat. #9993) and sequentially immunoaffinity purified as described 

in the available protocols with pY1000 (cat. #8803), Basophilic Kinase Substrate Motif 

(#32948), ATM/ATR (cat. #12267), AKT/AMPK (cat. #5561, #5563, #5564), and S/TP (cat 

#28303) reagents. Prior to MS-analysis, each IAP elution was further cleaned with a High-

SelectTM Fe-NTA Phosphopeptide Enrichment Kit from Thermo and desalted over a C18 

STAGE-Tip.

LC–MS/MS analysis of total protein fractions—Samples were analyzed on an 

Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA) 

coupled with a Proxeon EASY-nLC 1200 liquid chromatography (LC) pump (Thermo Fisher 

Scientific, San Jose, CA). Peptides were separated on a 100 μm inner diameter 

microcapillary column packed with ~40 cm of Accucore150 resin (2.6 μm, 150 Å, 

ThermoFisher Scientific, San Jose, CA). For each analysis, we loaded approximately 1 μg 

onto the column. Peptides were separated using either a 2.5 h gradient of 6–30% acetonitrile 

in 0.125% formic acid with a flow rate of 550 nL/min. Each analysis used an SPS-MS3-

based TMT method50. The scan sequence began with an MS1 spectrum (Orbitrap analysis, 

resolution 120,000; 350–1400 m/z, automatic gain control (AGC) target 4.0 × 105, 

maximum injection time 50 ms). Precursors for MS2/MS3 analysis were selected using a 

Top10 method. MS2 analysis consisted of collision-induced dissociation (quadrupole ion 

trap; AGC 2.0 × 104; normalized collision energy (NCE) 35; maximum injection time 120 

ms). Following acquisition of each MS2 spectrum, we collected an MS3 spectrum a method 

in which multiple MS2 fragment ions are captured in the MS3 precursor population using 

isolation waveforms with multiple frequency notches50. MS3 precursors were fragmented by 

HCD and analyzed using the Orbitrap (NCE 65, AGC 3.5 × 105, maximum injection time 

150 ms, isolation window 1.2 Th, resolution was 50,000 at 200 Th).

LC–MS/MS analysis of phosphopeptide enriched fractions—MS-analysis of 

phosphopeptides was performed as described above with the following exceptions. The MS1 

spectrum method scan had a scan range of 350–1400 m/z, maximum injection time of 100 
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ms, and AGC of 2.0 × 105. The MS3 spectrum method had a maximum injection time of 250 

ms, AGC target of 6.0 × 105, and an isolation window of 0.7 Th.

Total protein data processing and analysis—Mass Spectra were processed using a 

Sequest-base software pipeline51. Samples were searched with a tryptic mouse database with 

hTREM2, allowing for a static modification of lysine and N-termini with TMT (229.1629 

Da) and carbamidomethylation (57.0215 Da) of cysteine, along for variable oxidation 

(15.9949 Da) of methionine. Searches were performed using a 50 ppm precursor ion 

tolerance, the product ion tolerance was set to 1.0 Da. Peptide-spectrum matches (PSMs) 

were adjusted to a 1% false discovery rate (FDR)52, when considering the following 

parameters: XCorr, ΔCn, missed cleavages, peptide length, charge state, and precursor mass 

accuracy. Filtered PSMs were collapsed to a final protein-level FDR of < 2%. Protein 

assembly was guided by principles of parsimony to produce the smallest set of proteins 

necessary to account for all observed peptides51. For TMT-based reporter ion quantitation, 

we extracted the summed signal-to-noise (S/N) ratio for each TMT channel and found the 

closest matching centroid to the expected mass of the TMT reporter ion. PSMs with poor 

quality, MS3 spectra with TMT reporter ion summed signal-to-noise ratios less than 110 

were excluded from quantitation53.

Phosphorylation data processing and analysis—When searching phosphorylation 

data, a variable modification for phosphorylation (79.9663 Da) was allowed on serine, 

threonine, and tyrosine. A regular expression for phosphorylation was used to perform using 

linear discriminant analysis (LDA) and set a false discovery rate (FDR) of < 2.5% while 

considering XCorr, ΔCn, tryptic state, missed cleavages, adjusted ppm, peptide length, 

peptides/protein, PSMs/protein, corrected protein counts, and charge state. Filtered PSMs 

were collapsed to a final protein-level FDR of < 2%. Unique identified phosphorylation sites 

from each method were evaluated using AScore, and confidently localized sites with a 

AScore > 13 were selected for analysis (p-value < 0.05)54. PSMs with TMT reporter ion 

summed signal-to-noise ratios less than 55 were excluded from quantitation.

Cell culture and biochemical assays—Human oligodendroglioma cell line HOG 

(SCC163, Millipore Sigma) was cultured in complete RPMI, supplemented with 10% FBS, 

Penicillin/Streptomycin, GlutaMax and pyruvate. Aβ oligomers or fibrils were prepared as 

described previously55. Briefly, human Aβ42 peptide (Anaspec) was dissolved in HFIP, 

dried overnight at room temperature, then resuspended in DMSO. For oligomer formation, 

Aβ was diluted to 100 μM in Ham’s F12 and incubated at 4°C for 36h. To form fibrils, Aβ 
was diluted to 100 μM in 10mM HCl and incubated at 37°C for 72h. Aβ oligomers or fibrils 

were then added to cells at the indicated concentrations for 18h and cells were collected for 

subsequent experiments. For HOG stimulation assays, alpha-2-macroglobulin (R&D) was 

added to HOG cells at 500ng/ml for 24 hs and a mixture of cytokines, including IL-1β, IL-6, 

TNF〈, IFN〈, IFNγ were added to the cells for 8 hours. RNA from treated cells was then 

extracted and used for subsequent experiments.

Bone marrow derived macrophages (BMDMs) were collected from fibia of WT or Irf8−/− 

mice. Isolated bone marrow cells were cultured in RPMI, supplement with 10% heat-

inactivated FBS, Penicillin/Streptomycin, GlutaMax and pyruvate in 10mm petri dish. On 
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day 5, BMDMs were replated into 96-well plates and 1ug/ml human TGFβ was added to the 

culture to mimic microglia. After 48 hours, BMDMs were collected for flow cytometry 

assays. For Irf8 overexpression in WT BMDMs, Day 1 BMDMs were transduced with virus 

containing pESV-ires-eGFP or pESV-Irf8-ires-eGFP. 7 days after transduction, cells were 

replated into 96-well plates with 1ug/ml human TGFβ and collected for flow cytometry after 

48h.

Flow cytometry

Single cell suspensions were stained with biotin anti-P2RY12 antibody (1:100, BioLegend) 

in Fc block for 20 min at 4°C, followed by streptavidin eFluor450 conjugated antibody 

(1:200, eBioscience) in FACS wash buffer. Intracellular IRF8 (IRF8-FITC/IRF8-APC, 

V3GYWCH, 1:100, eBioscience) was stained with eBioscience Transcription Factor 

staining kit. Cells were run on a FACSCanto II. Transduced cells were identified by GFP+. 

Data was analyzed using FlowJo.

Aβ aggregation in microplate shaking assay

Solutions of size exclusion chromatography-purified56 Aβ42 monomer (10 or 20 μM) and 

thioflavin T (ThT) (20 μM) were prepared in the absence or presence of recombinant mouse 

Serpina3n (R&D Systems) or recombinant human C4b (Abnova) with molar ratio of 

Aβ42:Serpina3n/C4b at 1:200 or 1:100 as indicated in the figure. BSA was included as a 

negative control. Aliquots (n=5) were transferred to a Corning 3661 half-volume 96-well 

fluorescence plate and incubated with rotary shaking at 180 rpm in a 37°C incubator. About 

every 15 min, ThT fluorescence was determined in a Cytation5 plate reader for all samples 

including ThT alone. Fluorescence intensity was acquired with excitation filter of 440nm 

and emission filter at 490nm, bandpass 15nm.

RT-qPCR

Total RNA was extracted using the RNeasy Mini Kit (Qiagen) for cortical brain tissues or by 

TRIzol reagent (Invitrogen) for cell cultures. Single-strand cDNA was synthesized with 

qScript cDNA Supermix (Quantabio). Real-time qPCR was performed using iTaq SYBR 

Green Supermix (Bio-Rad) and StepOnePlus (Applied Biosystems). mRNA levels were 

determined using the 2-delta cycle threshold method normalized to Actb mRNA. Primers 

were chosen from PrimerBank.

Pathway analysis

Proteomics and phosphor-proteomics data were analyzed through the use of IPA (QIAGEN 

Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). Gene set 

enrichment analysis (GSEA) was performed using the Broad Institute website computing 

gene set overlaps between canonical pathways (CP) and GO biological process (BP). Gene 

Ontology analysis was performed using Metascape57.

Statistics and reproducibility

snRNA-seq data were analyzed using MAST48 algorithm of Seurat package in R, which 

implements a two-part hurdle model. P values were adjusted based on Bonferroni correction. 
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NanoString nCounter analysis was based on multivariate linear regression with Bejamani-

Yekutieli adjustment. All statistical analyses for validation assays were performed using 

GraphPad Prism (v.8) with unpaired Student’s t test or one- or two-way ANOVA with 

Tukey’s multiple comparisons test. P values lower than 0.05 were considered statistically 

significant. Probability value was noted in each figure. Details on specific tests used are 

stated in the figure legends. Experiments were repeated two or more times. For confocal 

images in Fig. 3 and Extended Data Fig. 4, at least three images per mouse brain were 

acquired and averaged for quantification.

Life sciences reporting summary

Further information on research design and reagents is available in the Nature Research 

Reporting Summary linked to this paper.

Data availability

snRNA-seq gene lists with statistics and NanoString nCounter gene lists are available as 

Supplementary Tables 1,4,5 accompanying this article. Mouse snRNA-seq data that support 

the findings of this study have been deposited in the Gene Expression Omnibus (GEO) 

database with accession number XXX. Human snRNA-seq data that support the findings of 

this study have been deposited to Synapse (https://www.synapse.org/#!

Synapse:syn21125841/wiki/). All requests for human snRNA-seq data are promptly 

reviewed by Rush Alzheimer’s Disease Center at Rush University, ADRC at Washington 

University and the BRI at Niigata University to verify if the request is subject to any 

intellectual property or confidentiality obligations. Any data and materials that can be shared 

will be released via a Material Transfer Agreement upon reasonable requests. Please contact 

the corresponding authors for additional information.

Extended Data
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Extended Data Fig. 1. Cluster characterization of 7-month-old mouse cohort.
a, Alignment of Trem2 reads from all mice sequenced to the Trem2 reference genome shows 

knockout of Trem2 gene in Trem2−/− and Trem2−/− 5XFAD mice. No reads from Trem2−/− 

and Trem2−/− 5XFAD mice align to Trem2 exon2. Alignment of reads from Trem2-deficient 

mice to Trem2 exon1 reflects early transcriptional termination due to deletion of exons 3 and 

4 in the design of Trem2 knockout constructs. The presence of exon1 reads correspond to 

the use of 5’ sequencing in this cohort. Numbers on the left represent the total number of 

Trem2 reads from each sample. b, tSNE plots of snRNA-seq of 7-month-old mouse brain 

showing cell type specific markers identifying each cluster. n=73,419 total cells. c, Bar 

graphs showing median of the number of genes, median of the number of UMIs and the total 

number of nuclei of each sample sequenced.
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Extended Data Fig. 2. Cluster characterization of 15-month-old mouse cohort.
a, t-SNE plot showing 13 distinguished clusters, 0–12, with cell type identities determined 

by expression of specific markers. Cluster 12 had very low frequency and did not have a 

clear marker profile and was thus omitted from analysis. b, Heat map showing specific 

markers identifying each cluster in a. Color scheme shows row max and row min. c, Pie 

chart showing the frequency of each cluster across all genotypes. Neuronal clusters are 

shown in blue hues and non-neuronal clusters are shown in red hues. d, Relative frequency 

of clusters in different samples, normalized to overall frequency in c, shown for cortex and 
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hippocampus. Clusters 2 and 11 (neuronal) were exclusive to hippocampus, while clusters 0 

and 6 (neuronal) were exclusive to cortex. Cluster 4 (neuronal) was enriched in 

Trem2−/− 5XFAD cortex. e, Number of unique molecular identifiers (UMIs), indicative of 

captured reads, superimposed on the t-SNE plot from a. Cluster 4 has a lower average 

number of UMIs compared to other neurons. f, t-SNE plot showing expression of Pam, a 

representative gene enriched in cluster 4. n=38,230 total cells pooled from 3 mouse brains 

per genotype (a,e,f).
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Extended Data Fig. 3. Characterization of the microglia cluster in the 15-month-old mouse 
cohort.
a, t-SNE plot showing the microglia cluster (cluster 10 from Extended Data Fig. 2), 

expressing microglia genes, such as C1qa, Fcrls, and Tyrobp. b, Volcano plots showing 

DEGs (Fold change>1.5, two-part hurdle model, adjusted p-value<0.05, Bonferroni 

correction) of 5XFAD vs. WT (effect of Aβ) and 5XFAD vs. Trem2−/− 5XFAD (dependence 

of Trem2) in microglia. c, t-SNE plot of re-clustered microglia (from cluster 10) identifying 

4 sub-clusters. d, Bar graphs showing the relative frequency of sub-cluster 3 in each sample. 

Sub-cluster 3 is only present in the 5XFAD sample. e, Violin plots showing the expression of 

DAM genes, Cst7, Gpnmb and Spp1, enriched in sub-cluster 3. Violin plots are presented 

with floating box showing median (middle line) and quartiles (top and bottom). Minima and 

maxima are shown as the bottom and top of the violin plots. n=266 WT, 92 Trem2−/−, 171 

WT 5XFAD, and 88 Trem2−/− 5XFAD microglial cells, pooled from 3 mouse brains per 

genotype (a,b,c,e).
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Extended Data Fig. 4. Oligodendrocytes acquire an Aβ-dependent signature and do not cluster 
around plaques in the 5XFAD model.
a, Box plots showing average gene expression across oligodendrocyte nuclei isolated from 

each mouse in the 7-month-old cohort. Floating bars show the min and max and black line 

shows the mean. Each dot represents one mouse. n=3 biologically independent mice per 

genotype. b, Violin plots showing expression of C4b, Serpina3n and H2-D1 in all 

oligodendrocytes from the 15-month-old cohort. Violin plots are presented with floating 
boxes showing median (middle line) and quartiles (top and bottom). Minima and maxima 
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are shown as the bottom and top of the violin plots. n=617 WT, 298 Trem2−/−, 160 WT 

5XFAD, and 308 Trem2−/− 5XFAD oligodendrocytes, pooled from 3 mouse brains per 

genotype. c, RT-qPCR from human oligodendrocyte cell line (HOG) treated with Aβ 
oligomers or fibrils at the indicated concentrations for 18 hours showing Aβ directly induces 

C4. n=3 biologically independent cell cultures. d, RT-qPCR from HOG treated with soluble 

factors (GPNMB or alpha-2-macroglobulin) for 24 hours or a cocktail of cytokines (IL-1β, 

IL-6, TNFα, IFNα, IFNγ) for 8 hours showing induced C4. n=3 biologically independent 

cell cultures. e, Representative immunofluorescence images of Olig2 and plaque staining in 

5-month-old WT 5XFAD and Trem2−/− 5XFAD cortex. n=6 mice per genotype. Scale bar, 

50 μm. f, Quantification of density of Olig2+ nuclei within 15 μm or 30 μm shell around 

plaque surfaces in the cortex in e, n=6 mice per genotype. g, Quantification of total number 

of CA2+ oligodendrocytes in all 4 genotypes at 7 months of age. n=3 mice per genotype. h, 
Representative immunofluorescence images of Serpina3n staining in 7-month-old mice of 

all genotypes showing colocalization of Serpina3n with oligodendrocyte marker CA2. White 

arrow heads indicate colocalization. n=3 mice per genotype. Scale bar, 15 μm. i, Automated 

quantification of Serpina3n intensity in CA2+ oligodendrocytes in h. n=3 mice per genotype. 

j, Representative confocal images showing colocalization of Serpina3n with GFAP+ 

astrocytes in 15-month-old 5XFAD mice. n=3 mice per genotype. Scale bar, 50 μm. k, 

Representative confocal images showing colocalization of Serpina3n with X04+ plaques in 

15-month-old 5XFAD mice. IV, V and VI indicate corresponding cortical layers. n=3 mice 

per genotype. Scale bar, 60 μm. l, Thioflavin T fluorescence of Aβ42 aggregation with the 

addition of combinations of proteins at indicated concentrations in microplate shaking assay. 

n=5 independent wells for the aggregation reactions; data represent two independent 

experiments. P-value by one-way ANOVA, Tukey’s multiple comparisons test (a,g,i) or 

unpaired t test, two-tailed (c). All data are presented as mean ± SEM.
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Extended Data Fig. 5. Heat maps of fold changes of DEGs in OPC, astrocyte, and neuron clusters 
in the 7-month-old mouse cohort.
Cluster-by-cluster analysis of differential gene expression. Heat maps showing the top 30 (or 

less) DEGs (fold change>1.5, two-part hurdle model, adjusted p-value<0.05, Bonferroni 

correction), ordered by adjusted p-value, and results are presented for comparisons of 

5XFAD vs. WT. Numbers indicate log2(Fold change). Analyses are presented for the 

following clusters: a, cluster 8 (OPC), n=485 5XFAD and 705 WT cells; b, cluster 6 

(astrocytes), n=490 5XFAD and 1,088 WT cells; c, cluster 0 (excitatory neurons), n=3,302 
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5XFAD and 4,396 WT cells; d, cluster 3 (excitatory neurons), n=1,941 5XFAD and 3,038 

WT cells; e, cluster 5 (excitatory neurons), n=1,530 5XFAD and 1,912 WT cells; f, cluster 1 

(inhibitory neurons), n=2,606 5XFAD and 3,315 WT cells; and g, cluster 4 (inhibitory 

neurons), n=1,672 5XFAD and 2,660 WT cells. n=3 biologically independent mouse brain 

samples per genotype. The lists of genes are in Supplementary Table 1.
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Extended Data Fig. 6. Proteomic analysis recapitulates major findings from snRNA-seq analysis.
a, Left panel: Heat map of relative abundance of the most significantly upregulated proteins 

from proteomics in CV 5XFAD compared to CV mice, ranked by fold change. Total protein 

analysis was conducted on brain tissues from 10-month-old CV, R47H, Trem2−/− (KO), CV 

5XFAD, R47H 5XFAD and KO 5XFAD mice. Right panel: Heat map showing average 

expression of corresponding gene in each cluster in snRNA-seq of every mouse from 7-

month-old cohort. Each column represents one individual mouse. Within a cluster, mice 

from left to right: WT1-3, Trem2−/−1–3, WT 5XFAD1-3, Trem2−/− 5XFAD1-3. b, Relative 
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abundance of selected proteins upregulated in different cell types. c, IPA analysis showing 

pathways upregulated in CV-5XFAD compared to CV mice in proteomics. n=312 genes, 

Fisher’s exact test. d, Left panel: Heat map of relative abundance of proteins with the most 

significantly upregulated phosphopeptides from phosphoproteomics in CV 5XFAD 

compared to CV mice, ranked by fold change. Right panel: Heat map showing average 

expression of corresponding gene in each cluster in snRNA-seq of every mouse from 7-

month-old cohort. Each column represents one individual mouse. Within a cluster, mice 

from left to right: WT1-3, Trem2−/−1–3, WT 5XFAD1-3, Trem2−/− 5XFAD1-3. e, IPA 

analysis showing pathways upregulated in CV-5XFAD compared to CV mice in phospho-

proteomics. n=270 genes, Fisher’s exact test.
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Extended Data Fig. 7. Characterization of human snRNA-seq.
a, Total number of nuclei, median of number of UMIs and median of number of genes of 

each human sample sequenced. b, t-SNE plots of human snRNA-seq showing cell type 

specific markers identifying each cluster. n=66,311 total cells. c, Violin plots showing 

expression of known cell type markers that define each cluster. Total number of cells in each 

cluster: 16,156 in Oli0, 13,322 in Oli1, 12,806 in Ex0, 1,869 in Ex1, 4,256 in In, 9,019 in 

Astro, 3,986 in Micro, 3,243 in OPC, 841 in Endo. Violin plots are centered around the 

median and shape represents cell distribution. d, Bar graph presenting frequency of nuclei in 
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each neuronal sub-cluster across all neuronal nuclei, comparing AD (CV), AD (R62H) 

versus control samples. e, t-SNE plot showing expression of NEFL in neuronal clusters, 

especially in cluster Ex1. n=66,311 total cells.
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Extended Data Fig. 8. AD-associated human signatures are distinct from that in Aβ mouse 
models.
a, Heat maps showing fold change of top DEGs (log2(FC)>0.5, two-part hurdle model, 

adjusted p-value<0.05, Bonferroni correction) between AD (CV) and control in all clusters. 

Left, genes up-regulated in AD. Right, genes down-regulated in AD. Numbers indicate 

log2(FC). n=11 AD (CV) patients and 11 controls. b, Violin plots showing expression of 

mouse DAM genes in 7- and 15-month-old mouse snRNA-seq and their homologs in human 

snRNA-seq within the microglia cluster. Violin plots are presented with floating boxes 
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showing median (middle line) and quartiles (top and bottom). Minima and maxima are 
shown as the bottom and top of the violin plots. 7-month-old mouse, n=3 biologically 

independent mouse brains per genotype, 524 WT, 582 Trem2−/−, 1,123 WT 5XFAD, and 

604 Trem2−/− 5XFAD microglial cells; 15-month-old mouse, n=266 WT, 92 Trem2−/−, 171 

WT 5XFAD, and 88 Trem2−/− 5XFAD microglial cells, pooled from 3 mouse brains per 

genotype; human, n=11 controls, 1,547 cells; 11 AD patients, 919 cells. c, t-SNE plots 

showing the cell type of origin of selected DAM genes in the human brain. Color scheme 

shows expression. n=66,311 total cells. d, Gating strategy for viral transduced BMDMs. WT 

BMDMs were transduced with virus containing empty pESV-ires-eGFP vector or Irf8-

overexpressing (OE) pESV-Irf8-ires-eGFP vector. Successfully transduced cells were 

identified by GFP+ gate. e, Gating strategy for WT and Irf8−/− BMDMs. f, Heatmap 

representing the average gene expression of top microglia DEGs in microglia sub-clusters in 

AD versus control samples. Color scheme shows row max and row min. g, t-SNE projection 

of all nuclei in AD versus control samples showing the lack of a sub-population of astrocytes 

in AD. Red circle indicates the population. Colors correspond to individual clusters. 

n=66,311 total cells. h, t-SNE plots showing the average z-scores of down-regulated genes 

in astrocytes. Red circle indicates the disappearing population enriched for down-regulated 

genes. n=65 down-regulated genes in astrocytes listed in Supplementary Table 4 were used 

as inputs. i, t-SNE plots of oligodendrocyte sub-clusters showing average z-scores of DEGs 

in oligodendrocytes. Top, up-regulated genes are enriched in Oligo0 and Oligo3 (indicated 

in Fig.5). Bottom, down-regulated genes are enriched in Oligo1 and Oligo2. n=20 up- and 

23 down-regulated genes in oligodendrocytes listed in Supplementary Table 4 were used as 

inputs.
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Extended Data Fig. 9. Human AD-associated oligodendrocyte and microglia signatures identified 
by snRNA-seq match public datasets from aging and early onset AD populations.
Cluster markers of Micro0, Micro1, Olig0 and Oligo1 (listed in Supplementary Table 4) 

were used as inputs for GSEA analysis against public datasets on aging (a, GSE53890) and 

early onset AD patients (b, GSE39420). Genes enriched in Micro0 and Oligo0 correspond to 

genes previously identified as upregulated in human aging and early onset AD patients. 

Genes enriched in Micro1 and Oligo1 correlate with downregulation in aging and early 
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onset AD. n=146 genes for Micro0, 178 genes for Micro1, 59 genes for Oligo0 and 233 

genes for Oligo1 were used as inputs. P-value by permutation test.
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Extended Data Fig. 10. NanoString nCounter analysis of two cohorts of AD patients 
corroborates findings in snRNA-seq.
a, Diagram of NanoString pipeline. b, t-SNE plots of human brain showing the cell type of 

origin of top DEGs identified in NanoString analysis with Rush cohort. Color scheme shows 

expression. n=66,311 total cells shown. c, Volcano plot showing DEGs of AD vs. control 

from the BRI cohort. n=10 controls and 10 AD patients. P-value by multivariate linear 

regression with Bejamani-Yekutieli adjustment. d, Pathway analysis showing the same 

pathways are differentially regulated in AD brains from Rush (left) and BRI (right). e, t-SNE 
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plots showing expression of IL10RA and HPGDS in human microglia. n=66,311 total cells 

shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. snRNA-seq distinguishes major brain cell types and shows microgliosis in the 5XFAD 
brains.
a, Diagram of snRNA-seq pipeline. b, t-SNE plot showing 11 distinguished clusters, 0–10, 

with cell type identities as determined by expression of specific markers (Extended Data Fig. 

1b). Cluster 10 had very low frequency and did not have a clear marker profile and was thus 

omitted from analysis. n=3 biologically independent mouse brain samples per genotype; 

73,419 total cells. c, Heat map showing expression of specific markers in every sample 

identifying each cluster in b. Each column represents one individual mouse. Within a cluster, 
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mice from left to right: WT1-3, Trem2−/−1–3, WT 5XFAD1-3, Trem2−/− 5XFAD1-3. 

Clusters are identified with the same markers in every mouse. d, Pie chart showing the 

frequency of each cluster across all genotypes. Neuronal clusters are shown in blue hues and 

non-neuronal clusters are shown in red hues. e, Bar graph showing the frequency of each 

cluster in every sample. All clusters are similarly represented among the 3 mice analyzed for 

each genotype. f, Relative frequency of clusters in each genotype, normalized to overall 

frequency in d. Cluster 7 (microglia) was highly enriched in 5XFAD. n=3 biologically 

independent mouse brain samples per genotype. Data are presented as mean ± SEM.
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Fig. 2. Characterization of the microglia cluster.
a, t-SNE plot showing the microglia cluster (cluster 7) from Fig. 1, expressing microglia 

genes, such as C1qa, Fcrls, and Tyrobp. n=3 biologically independent mouse brain samples 

per genotype; 73,419 total cells. b, Volcano plots showing significantly differentially 

expressed genes (DEGs) (Fold change>1.5, two-part hurdle model, adjusted p-value<0.05, 

Bonferroni correction) in microglia of 5XFAD vs. WT (effect of Aβ) and 5XFAD vs. 

Trem2−/− 5XFAD (dependence of Trem2). Microglia nuclei show a Trem2-dependent DAM 

signature. n=3 biologically independent mouse brain samples per genotype; 524 WT, 1,123 

WT 5XFAD, and 604 Trem2−/− 5XFAD microglial cells. c, Heat map showing the average 

gene expression of top DEGs in the microglia cluster for each sample. DAM signature is 
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present in all 5XFAD mice in a Trem2-dependent manner. Color scheme shows row max and 

row min, which represents relative expression of each gene among all samples. d, log2(Fold 

change) of top DEGs in 7-month-old mice and 15-month-old mice are plotted against each 

other. DAM signature is consistently present in both 7- and 15-month-old mice. e, t-SNE 

plot of re-clustered microglia (from cluster 7) identifying 4 sub-clusters. n=3 biologically 

independent mouse brain samples per genotype; 2,840 total microglial cells. f, Bar graph 

showing the frequency of each microglia sub-cluster in all genotypes. Sub-cluster 1 is only 

present in 5XFAD samples, mostly in the WT 5XFAD mice and to a lesser extent in the 

Trem2−/− 5XFAD. g, Violin plots showing the expression of DAM genes, Cst7, Lpl and 

Csf1, in microglia sub-clusters. DAM genes are enriched in sub-cluster 1. Violin plots are 

presented with floating boxes showing median (middle line) and quartiles (top and bottom). 

Minima and maxima are shown as the bottom and top of the violin plots. n=3 biologically 

independent mouse brain samples per genotype; 524 WT, 582 Trem2−/−, 1,123 WT 5XFAD, 

and 604 Trem2−/− 5XFAD microglial cells.
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Fig. 3. Identification of a novel oligodendrocyte Aβ-reactive state defined by C4b and Serpina3n 
expression.
a,b, Volcano plots showing DEGs (Fold change>1.5, two-part hurdle model, adjusted p-

value<0.05, Bonferroni correction) of 5XFAD vs. WT in 7-month-old (a) and 15-month-old 

(b) mice in the oligodendrocyte cluster. Each panel is accompanied by a t-SNE plot, 

showing the oligodendrocyte cluster in the two cohorts of mice. C4b, Serpina3n, and H2-D1 
were significantly upregulated in 5XFAD at both 7 and 15 months of age. n=3 biologically 

independent mouse brain samples per genotype; 2,672 WT and 2,180 WT 5XFAD 
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oligodendrocytes (a). n=617 WT and 160 WT 5XFAD oligodendrocytes pooled from 3 

mouse brains per genotype (b). c, Quantification of total number of Olig2+ nuclei in the 4 

genotypes. n=3 biologically independent mice per genotype. P-value by one-way ANOVA 

with Tukey’s multiple comparisons test. d,f, Representative IF images of C4b (d) and 

Serpina3n (f) staining in 15-month-old cortices of all genotypes showing perinuclear 

localization of C4b and Serpina3n around Olig2+ nuclei in 5XFAD brains. n=3 biologically 

independent mice per genotype. Scale bar, 40 μm. e,g, Automated quantification of staining 

intensity was performed by averaging the voxel intensities of C4b (e) and Serpina3n (g) 

staining within 2 μm of (oligodendrocyte) or more than 5 μm away (other) from Olig2+ 

objects in d and f. n=3 biologically independent mice per genotype. P-value by two-way 

ANOVA with Tukey’s multiple comparisons test. h, Representative IF images of 5-month-

old WT 5XFAD and Trem2−/− 5XFAD cortices showing Serpina3n+ oligodendrocytes are 

present solely in plaque-bearing regions. IV, V and VI indicate corresponding cortical layers. 

cg, cingulum. n=6 biologically independent mice per genotype. Scale bar, 60 μm. i, 
Quantification of the density of Serpina3n+ and Serpina3n− oligodendrocytes in shells away 

from plaques. Serpina3n+ but not Serpina3n− oligodendrocytes are mostly found in regions 

bearing plaques. n=6 biologically independent mice per genotype. All data are presented as 

mean ± SEM (c,e,g,i).
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Fig. 4. Human AD brain exhibits a distinct microglia signature from mouse.
a, t-SNE plot showing 10 clusters from 11 AD patients with TREM2 CV, 10 AD patients 

with TREM2 R62H and 11 non-AD controls. n=66,311 total cells. b, Bar-graph presenting 

frequency of each cluster in every group. c, Heat maps showing fold change of top DEGs 

(log2(FC)>0.5, two-part hurdle model, adjusted p-value<0.05, Bonferroni correction) in 

microglia, comparing AD (CV) versus control. Left, genes up-regulated in AD. Right, genes 

down-regulated in AD. n=11 AD (CV) patients, 919 cells; 11 controls, 1,547 cells. d, Gene 

Ontology terms associated with genes up-regulated (left) and down-regulated (right) in AD. 
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n=45 up-regulated, 47 down-regulated genes, hypergeometric test. e, Representative IF 

images of AD and control cortical samples showing nuclear IRF8 staining within Iba1+ 

microglia in AD. Scale bar, 5 μm. The experiment was performed twice. f, Representative 

IHC from AD cortical autoptic samples and age-matched controls showing microglia 

upregulate Iba1, CD68 and HLA-DR in AD. Insets show higher magnification of the 

corresponding panels. Lower inset in Iba1 AD panel shows double staining of Iba1+ 

microglia in blue surrounding silver+ plaques. Scale bars: 100 μm (panels); 30 μm (insets). 

The experiment was performed six times. g,h, P2RY12 level in mouse microglia-like 

cultures is increased upon Irf8 overexpression (OE) (g) and decreased in Irf8−/− cultures (h), 

compared to WT cultures. Data represent two (g) or three (h) independent experiments. 

Numbers indicate cell frequency in each quadrant. i, t-SNE plots of re-clustered microglia 

showing 7 sub-clusters. Micro0 is increased in AD; Micro1 is reduced. n=919 AD and 1,547 

control microglial cells. j, t-SNE plots showing average z-scores of DEGs in microglia. Top, 

up-regulated genes are enriched in Micro0. Bottom, down-regulated genes are enriched in 

Micro1. n=46 up- and 47 down-regulated genes in microglia listed in Supplementary Table 4 

were used as inputs.
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Fig. 5. snRNA-seq identifies human AD-associated astrocyte and oligodendrocyte signatures 
corroborated by NanoString gene expression analysis.
a, t-SNE plots of re-clustered astrocytes showing 6 sub-clusters in AD and controls. Astro3 

is depleted in AD. Astro4 is present in only one sample and is omitted for downstream 

analysis. n=2,641 AD and 2,955 control astrocytes. b, t-SNE plots showing average z-scores 

of DEGs in astrocytes. Top, up-regulated genes are enriched in Astro0 and Astro1. Bottom, 

down-regulated genes are enriched in Astro3. n=13 up- and 65 down-regulated astrocyte 

genes listed in Supplementary Table 4 were used as inputs. c, Heatmap representing average 
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gene expression of top DEGs in astrocyte sub-clusters in AD versus controls. Color scheme 

shows row max and row min. d, Heatmap showing average gene expression of top DEGs in 

oligodendrocyte clusters (Oli0 and Oli1) in each sample. Color scheme shows row max and 

row min. e, t-SNE plots of re-clustered oligodendrocytes showing 5 sub-clusters in AD and 

controls. Oligo3 is enriched, whereas Oligo1 and Oligo2 are significantly reduced in AD. 

n=6,980 AD and 16,499 control oligodendrocytes. f, Heatmap representing the average gene 

expression of top oligodendrocyte DEGs in oligodendrocyte sub-clusters in AD versus 

control. Color scheme shows row max and row min. g, t-SNE plots showing expression of 

SERPINA3 and C4B in human astrocytes. n=66,311 total cells. h, Volcano plot showing 

DEGs of AD versus control from Rush samples analyzed by NanoString. n=13 AD patients 

and 12 controls. P-value by multivariate linear regression with Bejamani-Yekutieli 

adjustment. i, Heatmaps depicting fold changes in each cluster in snRNA-seq of selected 

DEGs from NanoString. Direction of change of these genes is consistent between snRNA-

seq and NanoString. Numbers represent log2(FC). Red, up-regulation. Blue, down-

regulation.
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Fig. 6. TREM2 R62H and R47H carriers exhibit reduced microglia reactive signature.
a, t-SNE plot showing the distribution of nuclei from 11 AD (CV), 10 AD (R62H) and 11 

control samples. AD (CV) and AD (R62H) cluster more closely, compared to control, in the 

non-neuronal clusters. n=32,625 control, 16,279 AD (CV) and 16,594 AD (R62H) cells. 

b,c,d, Violin plots showing average gene expression across microglia (b), oligodendrocyte 

(c), and astrocyte (d) nuclei isolated from each individual. Expression of microglial genes is 

significantly reduced in AD (R62H) compared to AD (CV); oligodendrocyte genes show 

intermediate expression in AD (R62H) compared to AD (CV) and control; astrocyte genes 
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show similar expression in AD (CV) and AD (R62H). Violin plots are centered around the 

median (black line) with quartiles (dashed lines). Minima and maxima are shown as the 

bottom and top of the plots. Each dot represents one individual. n=11 controls, 11 AD (CV) 

patients, and 10 AD (R62H) patients. e, Volcano plot showing DEGs of AD brains of 

TREM2 CV and R62H carriers from Rush cohorts. n=13 AD (CV) patients and 11 AD 

(R62H) patients. P-value by multivariate linear regression with Bejamani-Yekutieli 

adjustment. f, Pathway analysis shows defective microglia activation in R62H carriers. g, 

Volcano plot showing DEGs of AD brains of TREM2 CV and R47H carriers from ADRC 

cohorts. R47H carriers have reduced expression of microglial genes. n=5 AD (CV) patients 

and 5 AD (R47H) patients. h, Pathway analysis shows defective neuronal functions in R47H 

carriers. P-value by multivariate linear regression with Bejamani-Yekutieli adjustment.
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Table 1.

TMT-Labeling scheme for total protein and phospho-peptide analysis.

TMT-Channel Sample

126 KO Male + Female Mix

127N R47H Male

127C R47H Female

128N CV Male

128C CV Female

129N 5x FAD KO Male

129C 5x FAD KO Female

130N 5x FAD R47H Male

130C 5x FAD R47H Female

131N 5x FAD CV Male

131C 5x FAD CV Female
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