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Abstract

Magnetic resonance fingerprinting (MRF) is a general framework to quantify multiple MR-

sensitive tissue properties with a single acquisition. There have been numerous advances in MRF 

in the years since its inception. In this work we highlight some of the recent technical 

developments in MRF, focusing on sequence optimization, modifications for reconstruction and 

pattern matching, new methods for partial volume analysis, and applications of machine and deep 

learning.

MAGNETIC RESONANCE FINGERPRINTING (MRF)1 was introduced as a novel 

quantitative magnetic resonance imaging (MRI) technique, which is used to generate maps 

of MR-related tissue properties using a single acquisition. The inception of MRF has 

sparked numerous research projects in the MR community, ranging from repeatability and 

clinical applications to sequence design and reconstruction. Indeed, it was only a few years 

since the publication1 that review articles were written2,3 to summarize the many 

improvements and extensions that had been made to MRF. In this work we focus on the 

technical developments made to the MRF framework, specifically in terms of optimization, 

reconstruction, partial volume, and machine learning. Both optimization and machine 

learning are active research areas in their own right, and the techniques themselves are 

constantly evolving.

To appreciate many of the recent developments in MRF, it is imperative to understand the 

proposed framework for MRF from the initial works,1,4–6 and how this approach is different 

from conventional methods. Quantitative mapping in MRI generally involves a long 
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acquisition in which one tissue property is mapped at a time. The signal models to quantify 

T1 or T2 are typically described using 1) exponential models of signal recovery or decay (eg, 

inversion recovery for T1,7 and Carr-Purcell-Meiboom-Gill (CPMG) for T2
8,9; 2) steady 

state signal models (eg, variable flip angle FLASH,10 and DESPOT1
11 for Tl DESPOT2,11 

partial spoiling steady-state free precession (SSFP),12 and double echo at steady state 

(DESS),13 for T2; or 3) from driven equilibrium or transient state of the steady state 

sequences (eg, Look-Locker).14 There have been many approaches that propose to quantify 

multiple tissue properties simultaneously using a more complex signal model. Such 

approaches, which use one acquisition to quantify multiple properties, include inversion 

recovery True-FISP15,16 for T1, T2, and proton density and QRAPMASTER17 to quantify 

T1, T2, proton density, and B1 field amplitude. Other quantitative methods for multiple 

properties include MRF spin tomography in the time domain18 to quantify T1, T2, and B1, 

and the multipathway multiecho imaging method19 for 3D quantification of T1, T2, T2*, B0, 

and B1. Quantification of additional properties, including T1, T2*, and magnetic 

susceptibility was demonT1strated,20 and magnetization transfer was quantified along with 

R1 and R2.21

MRF recognizes that modern computation allows for much more complex signal models, 

which can provide higher-quality mapping than previous methods.1 As such, it typically 

relies on a variable acquisition scheme to generate pixelwise signal evolutions that are 

unique and distinct from the exponential recovery curves typically used in T1 or T2 

mapping. In MRF, multiple tissue properties are quantified using a single scan, eliminating 

the need for registration between multiple, long acquisitions. Coupled with the variable 

sequence parameters, the data are typically highly undersampled in the Fourier domain, 

resulting in an accelerated acquisition; however, this acceleration also leads to signal 

evolutions which are heavily corrupted by aliasing artifacts. Instead of fitting these acquired 

pixel signal evolutions to an exponential model, pattern matching with a predefined 

dictionary of simulated signal evolutions is typically used and has been shown to be an 

efficient and accurate method to determine properties such as T1 and T2 relaxation times.1,5

The variable excitation and sampling patterns that are so important in MRF are also not 

unique to it. Variable repetition times were previously used in balanced SSFP (bSSFP) 

imaging to improve the frequency response and reduce banding artifacts,22,23 and simulated 

annealing was used to optimize the repetition time for this case.24 Randomized sampling 

was previously used,25,26 and is in the spirit of the idea of compressed sensing for MRI.27 

Earlier works,28,29 and later,30 utilized randomized excitation for nuclear magnetic 

resonance (NMR) spectroscopy. MRF is unique in that the sequence parameters and 

sampling trajectories are varied together to create spatial and temporal incoherence in the 

signal evolutions.

Although initially implemented as a 2D acquisition, MRF was quickly modified for both for 

simultaneous multislice acquisitions31–33 and 3D excitations,6,34,35 to obtain volumetric 

coverage in the brain. Example T1 and T2 maps from simultaneous multislice and 3D MRF 

acquisitions are shown in Fig. 1. Additionally, sequences have been modified for areas 

beyond neuro, including applications in the abdomen,36 breast,37,38 prostate,39 cardiac,40–42 
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knee and hip,43,44 among others. Examples from several of these works are presented in Fig. 

2.

This work is the second part of a two-part review on MRF. Part I45 focuses in detail on the 

clinical applications to which MRF has been applied, along with repeatability studies for 

MRF and the potential challenges faced for the clinical implementation of the technique. In 

this part of the review, we focus on technical developments made in the field of MRF, 

specifically on developments related to sequence optimization, reconstruction, and partial 

volume quantification, as well as applications of machine learning and deep learning to 

MRF. Each of these new techniques look to improve some facet of the MRF framework, 

resulting in faster acquisition times, reduction in aliasing artifacts, dictionary compression, 

faster pattern matching, and better accuracy and precision.

Sequence Optimization

Besides clinical applications, much of the recent work on MRF focuses on improving the 

framework in some way, from optimizing the sequence structure, to improving the 

reconstruction performance, or simply finding ways to collect data more quickly. All of 

these types of improvements fall under the broad umbrella of optimization. To design an 

optimization problem, first it must be determined which aspect of MRF we want to improve, 

such as T1, T2 accuracy or precision, minimizing acquisition time, or sensitizing the 

sequence to additional properties. To understand which directions to take in this process, 

however, it is necessary to establish the goal of optimization and analyze the sources of error 

in the method, and which are most significant. To this end, appropriate metrics that will best 

predict and quantify the overall performance of a new MRF sequence should be used. These 

metrics should be highly correlated with the cost function used to find these optimal 

sequences, if not used directly as part of the cost function themselves. Since the MRF 

framework extends beyond sequence design, metrics and methods of analysis for each step 

in the process must be implemented, including those that account for sampling trajectories 

and undersampling factors, range and step size of dictionary tissue properties, and aspects of 

the reconstruction.

Direct Sequence Optimization and Metrics

There are many degrees of freedom available when optimizing MRF sequences, and thus 

many variables that can be optimized, including flip angle (FA) and repetition time (TR), 

echo time (TE), RF phase, sampling patterns, and so on. While flexibility in sequence design 

is a main tenant of the MRF framework, it can lead to a prohibitively large optimization 

problem. Designing a cost function for such a problem may not be simple, and can include 

factors such as variance of quantitative results, signal magnitude, or value of the inner 

product. However, the complexity of the cost function will affect both the optimization 

landscape of the problem and the computational techniques that are able to provide a 

solution.

Quantification of tissue properties was initially achieved in MRF using the inner product 

between the acquired signal evolutions and the precomputed dictionary.1 For this type of 

pattern matching in particular, the ideal set of dictionary entries would be orthogonal in the 
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tissue dimension, although the idea of dictionary entries being different from each other is 

important in other reconstruction techniques. For easier separation between signals with 

different relaxation properties, the inner product between different signals should be very 

small or zero, even in the presence of noise or artifacts from undersampling. However, signal 

evolutions generated from similar relaxation properties are highly correlated, resulting in a 

difficult partial volume problem for tissues such as white matter and gray matter.46,47 

Orthogonality would aid in separating a mixed signal in the case of a voxel containing 

multiple and different tissues, as we will discuss more in Section Partial Volume.

Three different metrics were tested as predictors of MRF performance in Sommer et al.48 

Two metrics were related to the inner product between dictionary entries. The first of these 

was a local inner product measure, comparing the inner product value between adjacent 

dictionary entries. The other was a global metric, using a wide range of dictionary entries for 

inner product comparison. A third metric used Monte Carlo simulations to add simulated 

complex Gaussian noise to dictionary signal evolutions. The inner product was then 

calculated to obtain the error between the ground truth T1 and T2 values and the computed 

ones. All three metrics were tested against a set of randomly generated MRF sequences. The 

error metric using Monte Carlo noise simulation was most successful in predicting which 

sequences had the best performance, as opposed to the local and global dot product metrics, 

and this was shown in both phantom and in vivo studies.

The inner product metric was also used in Cohen and Rosen,49 where the cost function was 

designed to maximize the orthogonality of the dictionary, by comparing the matrix DHD to 

the identity matrix, where D is the matrix representation of the dictionary. Four different 

optimization techniques were examined; including 1) simulated annealing, 2) branch-and-

bound, 3) interior-point, and 4) brute force, in their performance to produce an optimal 

sequence using this particular cost function. The interior-point algorithm produced the best 

sequences, in terms of scan time and T2 accuracy. The optimal flip angle and TR patterns 

produced from the interior-point optimization are shown in Fig. 3, with the initialization for 

the interior-point algorithm shown in blue and the optimized patterns shown in red. For both 

the FA and TR, piecewise linear patterns were calculated from the optimization, unlike the 

randomized patterns used for initialization.

The Cramér–Rao bound is a statistical tool that places a lower bound on the variance of an 

unbiased estimator, and has recently been applied to derive optimal sequence parameters for 

T1 mapping,50 and separately to increase the precision for the relaxation values estimated 

with DESPOT.11,51 A rigorous derivation of a cost function to characterize the signal to 

noise ratio (SNR) efficiency of the MRF sequence is presented in Zhao et al,52 using the 

Cramér–Rao lower bound. SNR efficiency is defined in terms of the variance in the 

estimated tissue properties from the MRF sequence. White Gaussian noise is assumed in the 

derivation and the Cramér–Rao bound is used to define a lower bound for the variance of the 

calculated T1 and T2 values using MRF. The cost function, which is the trace of the Cramér–

Rao matrix, is optimized to determine FA and TR patterns that will produce optimal SNR 

efficiency. Two patterns are calculated, using different numbers of timepoints to vary the 

sequence length. In the first pattern, the constraints for the optimization include only upper 

and lower bounds for the FA and TR values. In the second, however, a constraint is placed 
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on the maximum change allowed in consecutive flip angles, to force the FA pattern to be 

piecewise smooth. Without this additional constraint, the FA pattern produced from the 

optimization has rapid changes over the first hundred or so TRs, but with a constraint on the 

maximum flip angle change, both FA and TR patterns are structured, smoothly varying, and 

flat (ie, staying at either the maximum or minimum constraints) for large portions of the 

sequence. The FA and TR patterns from this optimization are shown in Fig. 3. The 

calculated FA patterns are considerably different from the sinusoidal FA pattern.5

In Kara et al,53 a cost function and optimization metric are derived in terms of a quality 

factor for each tissue property in MRF-FISP. The quality factors relate the variance from 

noise and aliasing artifacts to the variance of the computed tissue properties. By optimizing 

the quality factors for T1 and T2 simultaneously, the effects of noise and undersampling on 

the resulting quantitative maps can be minimized. A genetic algorithm54 is applied to 

produce optimal FA patterns with fixed TR, TE, and RF phase for fewer TRs than are 

typically used in MRF-FISP, with the resulting FA pattern shown in Fig. 3. In contrast to the 

FA patterns found in,52 there are no constraints placed on consecutive flip angle changes, 

resulting in an FA pattern with large variations and rapid changes. However, in both cases,
52,53 the point is made that by rigorously optimizing the sequence structure for MRF-FISP, 

shorter sequences with improved efficiency may be possible than have been previously 

demonstrated.

Each of these approaches to MRF sequence optimization attempt to modify the current MRF 

framework for a measurable gain, whether it be in accuracy, precision, or efficiency, 

although each also focus specifically on the problem of sequence design. More recendy,55 

the spiral sampling patterns and spatial biases which result from the undersampling patterns 

commonly used in MRF were examined. Both variable and constant-density spirals were 

studied, each with 48 sequentially rotated spiral interleaves, and the order of the single-shot 

sampling was varied to determine an optimal spacing and ordering of the spirals. As 

opposed to a sequential ordering, {1, 2,… 48, 1, 2,…}, the authors found that by using an 

increment of 11 for spiral ordering, that is, {1, 12, 23,…}, shading artifacts were reduced in 

both T1 and T2 maps.

Other sampling trajectories for MRF have also been implemented and studied, including 

echo planar imaging,49 Cartesian,56 and radial k-space acquisitions,43,57 although 

optimization of the trajectory is still an open problem. Another recent work58 proposed an 

analytical model that includes both effects from sequence design and k-space sampling as an 

error analysis tool for MRF. This tool may be useful in assessing and predicting the 

performance of MRF sequences going forward. Other recent assessment and error analysis 

methods include error propagation analysis from nuisance parameters in quantitative MR59 

and an automatic image-quality assessment.60 While neither were originally designed for 

MRF, they may prove to be beneficial for the MRF community.

Other Improvements/Modification to the MRF sequence

Beyond implementation of optimization algorithms to determine optimal sequence patterns, 

there have been numerous methods that modify existing MRF sequence structures to 

increase sensitivity to additional tissue properties, many of which were outlined in Part I of 
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this review.45 However, adding tissue or system properties can complicate the quantification 

process; for example, this may result in extra dimensions in the dictionary. Some examples 

include sequences that are sensitive to T2*,61–64 perfusion,65,66 and water-fat quantification.
43,67 A more complicated model is needed in the case of MRF for chemical exchange, or 

MRF-X,68 in which six properties are quantified, including two relaxation properties to 

characterize two exchanging components within a voxel, volume fraction, and exchange 

rate.

There are still many other sequence modifications that have been made in MRF. Cardiac 

MRF involves modifying the sequence to an individual patient’s cardiac cycle with ECG 

triggering,40 which necessitates a patient-specific MRF dictionary. The MRF framework was 

additionally modified57 to achieve a pseudo-steady-state precession of the spins, reducing 

the impact from intravoxel dephasing on tissue property quantification. More recent work 

combines the MRF framework of chemical exchange saturation transfer (CEST) for 

quantification of volume fraction and exchange rate.69,70 Beyond sensitizing the sequence to 

in vivo tissue properties, it is possible to also quantify system properties,71 where a 

combination of sequence types are used to quantify Tl,T2, B0, and the external B1+ field. B1 

field estimation is also included in the MRF sequence.56 Adding tissue or system properties 

as in any of these cases can complicate the quantification process simply due to the 

exponential increase in dictionary size required for matching. Solutions to the problem of 

dictionary size are addressed in the next section.

Reconstruction and Quantification

Dictionary Size and Matching Time

Besides sequence optimization, another challenge in MRF is the size of the dictionary. When 

the dictionary is large, this can cause problems with storage and memory. Another issue is 

the exhaustive matching process, and when coupled with a large dictionary, can take too 

much time to compute. The MRF dictionary can be represented as a 2D matrix. The columns 

of this matrix represent simulated signal evolutions generated by the Bloch equations using 

different combinations of tissue properties, such as T1 and T2. The rows of the dictionary 

matrix are the number of timepoints, or TRs, used in the MRF sequence. Depending on the 

sequence type used and the granularity of the tissue property values desired, the tissue 

property dimension of the dictionary can easily grow from tens of thousands to millions. For 

example, in the case of MRF-FISP5 the sequence is used to quantify two properties: T1 and 

T2 relaxation times. However, in the case of MRF-bSSFP, off-resonance is another property 

that is quantified, increasing the size of the required dictionary. In a breast MRF study using 

MRF-FISP,37 a dictionary with 20,059 columns representing possible T1 T2 combinations 

was used, whereas in a brain tumor study using MRF-bSSFP,72 the additional dimension of 

off-resonance increases the dictionary size to 287,709 columns. In the case where the 

sequence is also sensitized to quantify T1, T2, off-resonance, and T2*, the number of 

columns in the dictionary was reported to be over 30 million in Wang et al,61 and 64 million 

in Hong et al.63

Inner product pattern matching has been shown to be accurate and robust to the high degree 

of aliasing artifacts due to undersampling in several of the initial MRF studies, including Ma 
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et al1 and Jiang et al.5 Also shown in both,1,5 the number of timepoints used in the sequence 

will have a direct impact on the quality and accuracy of the T1 and T2 maps. Therefore, for 

the sequences in these initial studies, the number of timepoints was generally between 1000 

to 3000. Strategies to handle the time and tissue property dimensions in the dictionary can 

lead to both reduced storage requirements and faster matching times.

To mitigate the size of the dictionary, the singular value decomposition (SVD) was used as a 

compression tool to reduce the time dimension in the dictionary,73 enabling a compression 

in the time dimension of 80–99% by projecting the dictionary onto a subspace spanned by 

the first few singular vectors. In this way, after projecting the dictionary onto a low-rank 

subspace, the size of the dictionary is reduced in the time dimension, resulting in fewer 

points to compare, and the inner product matching is between 3–5 times faster.73

This idea of projecting the dictionary onto a low-rank subspace has spread into many 

reconstruction algorithms that use the low-rank property of the dictionary to speed up 

reconstruction or mitigate effects from undersampling in the reconstruction.74–76 

Additionally, the SVD can be applied prior to image reconstruction, significantly reducing 

the size of the reconstruction problem, and has been used, for example, in the 3D MRF 

reconstruction6 in which the raw k-space data are projected onto the SVD space. By 

projecting the data in this way, the reconstruction problem is reduced from 1440 3D volumes 

to only 25. Computing the SVD of a large matrix can be memory-intensive, and in the case 

where the dictionary may be too large to efficiently store and retrieve, a randomized SVD77 

approach can be applied to approximate the singular vectors of the dictionary, without 

needing to store the full dictionary in memory.78 Multichannel transmit MRF, also called 

“Plug-and-Play MRF,”43 requires a different compression scheme for the dictionary due to 

the multiple transmit channels used. Phase unwinding is proposed to aid in dictionary 

compression in this particular case,79 by reconstructing the multichannel data separately, and 

combining after phase correction. SVD compression can then be applied to the data.

Dictionary size is the most problematic in the tissue property domain, and this dimension 

will grow exponentially as the number of tissue properties that the sequence is sensitized to 

increases, as previously described. Since the pattern matching that is used to find the best 

dictionary match is exhaustive, a group matching strategy was proposed80 and was able to 

significantly reduce the time it takes to match acquired signal evolutions to the dictionary 

with minimal impact on accuracy. Reported matching times were up to 70 times faster 

compared with exhaustive direct matching, reducing the time from 178 seconds to 2.5 

seconds for MRF-bSSFP. This work on fast group matching accelerated the procedure by 

using correlations between entries with similar relaxation properties to create subgroups 

within the dictionary, reducing the search space used in the matching. Acquired pixel signal 

evolutions were first matched to the mean signal of each group, and subgroups were 

eliminated when this initial inner product value was below a fixed threshold. Grouping the 

dictionary does not reduce the overall number of tissue property combinations, but by 

performing an initial match with representative signals, the matching time was reduced. 

Other works have incorporated the idea of a fast search for the dictionary pattern matching,
81 in which the dictionary is structured as a k-dimensional tree on which an approximate 

nearest neighbor search can be performed. In MRF-ZOOM,82 the separability of tissue 
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properties based on the inner product model is used to develop a fast dictionary searching 

algorithm to reduce the matching time.

Beyond fast matching strategies, other works have focused on reducing the number of 

dictionary entries required for accurate quantification of tissue properties. In Yang et al,78 a 

coarse version of the dictionary in the tissue property dimension was used, meaning that the 

step size in properties such as T1 and T2 is relatively large. Pattern matching is first done 

using the coarse dictionary. The dictionary is projected to a low-rank subspace where 

polynomial interpolation is applied to determine more accurate T1 and T2 values. By 

applying interpolation to the coarse dictionary, the discretized nature of the tissue properties 

can be circumvented. A similar idea was proposed,76 using linear interpolation between 

dictionary to overcome the dictionary step size in the quantification problem. When 

combining this method with compression in the time domain, the storage requirements for 

the dictionary are greatly reduced.

Reconstruction Techniques

A great deal of work on MRF in recent years has focused on improving the reconstruction 

process, specifically on how to best transform the highly undersampled k-space data into the 

image domain or directly into quantitative tissue property maps. A direct method that is 

commonly used for reconstruction is the nonuniform fast Fourier transform,83 in which the 

non-Cartesian data are first resampled to a Cartesian grid and then the fast Fourier transform 

is applied. Once the data are reconstructed, pattern matching is applied, although artifacts 

from undersampling will still impact the matching. Most iterative algorithms for MRF 

attempt to reduce the effect of aliasing artifacts in the image domain, and can also have the 

effect of reducing the number of TRs needed for the sequence, shortening the overall time 

for the scan, for example.84,85

Iterative approaches for MRF solve the problem by iterating between k-space to enforce data 

consistency, and the image domain, where the reconstructed signals are projected onto the 

MRF dictionary. Due to the application of multiple gridding and nonuniform Fourier 

transform iterations, the reconstruction time for such iterative algorithms can be much 

greater as compared with a direct gridding and reconstruction. The iterative methods aim to 

solve a problem of the general form:

min
x

y − Fx + λT x

where x is the reconstructed image series corresponding to the acquired k-space data y. The 

operator F represents the encoding function used to transform the image series to k-space, 

the operator T can represent any number of penalty functionals that act on the image series, 

to emphasize a desired feature in the solution, for example, a wavelet transform, or total 

variation, and λ is a regularization parameter. Additionally, constraints are sometimes placed 

on the above problem by which the signal evolutions are projected onto the dictionary 

subspace for matching. This matching step can be included in the iterative process, for 

example to ensure data consistency,84 or completed upon convergence of the algorithm.
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Low-Rank Reconstructions

Many reconstruction algorithms41,74–76,86 leverage the fact that the MRF dictionary can be 

compressed without significant loss of information.73 While iterative reconstruction 

algorithms may have advantages, they may require more sophisticated computational 

techniques. In Assländer et al,75 the reconstruction alternates between data consistency in k-

space, and then dictionary matching in the image domain. The SVD of the dictionary is 

applied in the Fourier domain to solve the problem in a low-rank subspace and improve the 

conditioning of the problem. Variable splitting and the alternating direction method of 

multipliers87,88 are applied to solve the linear problem for data consistency. These 

computational techniques (variable splitting and alternating direction method of multipliers) 

are also applied in the maximum likelihood approach.85

The low-rank subspace of the dictionary was also used by Zhao et al,74 but an additional 

low-rank constraint is also placed on the reconstructed time series. The reconstruction 

problem is approximated using linear least squares, which is then solved using the conjugate 

gradient algorithm. Pattern matching with the dictionary is used after convergence of the 

algorithm to generate the quantitative tissue property maps, with examples of in vivo results 

from this work shown in Fig. 4. Aliasing artifacts are significantly reduced in this 

reconstruction, which in turn shortened the number of timepoints required for the acquisition 

to as few as 700.

Similar to the previously described approaches, a low-rank approach is proposed in 

Hamilton et al.41 In that work, the reconstruction is performed in the SVD space to 

significantly reduce the time dimension of the problem. A wavelet transform is also applied, 

which can have the effect of smoothing the tissue property maps. Although designed for the 

application of simultaneous multislice cardiac MRF, this method could be applied to a 

single-slice acquisition as well. Example T1 and T2 maps from the multislice cardiac 

acquisition and low-rank reconstruction are in Fig. 2.

In Mazor et al,76 a low-rank constraint is placed on the reconstructed time series. A data 

consistency step is applied, similar to the iterative approach89; however, instead of forcing 

each pixel signal evolution to match to one dictionary entry, this constraint is relaxed, 

allowing a linear combination of multiple entries to fit each signal evolution.

In Lima da Cruz et al, a slightly different approach was taken.86 Similar to previous 

methods, SVD compression for the time domain using the dictionary is applied; however, 

there is a spatial low-rank assumption additionally made in the image domain. Small patches 

of 7 × 7 pixels in the reconstructed singular images are assumed to have low rank. Sparse 

regularization is also used by applying a wavelet transform to the singular images. Example 

T1 and T2 maps from this reconstruction technique are shown in Fig. 4.

Finally, in a unique approach to the iterative reconstruction problem, Doneva et al90 used the 

low-rank property of the acquired data in the k-t domain, unlike the previous methods, 

which all use the low-rank property of the dictionary or reconstructed image series. The 

SVD is applied to a small, fully sampled calibration dataset in k-space, and this is used as a 

projection matrix to recover missing k-space data. An advantage of this method is that the 
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iterations are performed only in k-space, eliminating the repeated gridding and Fourier 

transform operations, which make the algorithm computationally more efficient, with 

reconstruction times as low as 10 seconds.

Other Reconstruction Techniques and Improvements

Apart from the aforementioned low-rank iterative approaches, other aspects of the 

reconstruction have been varied to improve upon the MRF framework in various ways. One 

correction directly deals with blurring artifacts from B0 inhomogeneity that are a result of 

the accelerated spiral undersampling used in MRF. By applying a multifrequency 

interpolation approach to correct the MRF reconstruction, blurring is significantly reduced in 

MRF-FISP.91 As undersampling artifacts from a highly accelerated MRF scan can be severe, 

it is advantageous to develop methods that can mitigate these artifacts without sacrificing 

speed in the acquisition. View sharing is a technique that is used to further accelerate the 

acquisition by requiring fewer timepoints in the MRF sequence.56 Using a high 

undersampling factor, data points that are not acquired in the edges of k-space are filled in 

with those from adjacent time frames, as in key-hole acquisition.92 A similar concept is used 

in soft-weighted key-hole MRF, or MRF SOHO,93 in which parallel imaging, soft-gating, 

and the key-hole technique are combined to accelerate the scan. The sliding window 

reconstruction for MRF94 combines the highly undersampled frames in k-space to instead 

reconstruct fully sampled images free from aliasing artifacts. As fewer timepoints are used 

in the reconstruction, the MRF dictionary is modified prior to matching. Data acquisition 

time is reduced by up to one-third, by reducing the number of acquired timepoints from 

1000 to as few as 300.

Parameters from the reconstruction methods discussed in this section are outlined in Table 1, 

including reconstruction time, number of timepoints used in the acquisition, image 

resolution, and MRF sequence used. It is interesting to note the variation in many of these 

parameters; for example, reconstruction methods were performed on sequences using as few 

as 400 timepoints to as many as 3000. Many works report testing on only one variant of the 

MRF sequence as well. Reproducibility and assessment of reconstruction techniques will be 

an important consideration going forward, and is discussed more in Part 1.45

Partial Volume

Partial volume can be problematic in any MR technique where the voxel size is larger than 

the tissue structures being imaged, which can cause blurring and degraded boundaries in the 

image. Many techniques have been proposed to solve the partial volume problem in MRI95; 

we will focus on the proposed solutions to partial volume with MRF in this section. For 

MRF, the unique signal evolution structure may be an advantage for partial volume; 

however, the problem is still ill-posed and difficult to solve in this context. Although partial 

volume is, in some sense, similar to the problem of fat/water separation, it does not 

necessitate a new sequence design or reconstruction processes to obtain an accurate solution. 

While a benefit from a direct sequence optimization may be that voxels with multiple 

components are more easily identified and separated, the few works on partial volume in 

MRF have focused finding an optimal solution to a linear inverse problem, using the MRF 

sequence structures that are already in place.
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In Ma et al,1 a linear model was proposed to decompose the MRF pixel signal into weights 

corresponding to a few, predefined dictionary signal evolutions. For example, in the brain 

these predefined signal evolutions could correspond to white matter, gray matter, and 

cerebrospinal fluid (CSF). Using three representative dictionary signal evolutions, each pixel 

signal could be decomposed into a sum of the three, with corresponding weights, using 

linear least squares. An improvement on this method was made in a recent work,46 which 

deals specifically with how to solve this predefined linear model. As MRF signal evolutions 

are complex-valued, and the weights from a linear least squares model will be complex, a 

more realistic tissue model was proposed in the form of a partial volume dictionary, which is 

formed with linear combinations using only positive, real-valued weights for each 

predefined tissue type. Quantification of weights is done by pattern matching with this 

partial volume dictionary using the inner product. Another modification included in this 

work is a subject-specific partial volume dictionary, which reflects the fact that there is some 

natural variation in the relaxation properties in the brain between subjects.96 To this end, k-

means is applied to single-component MRF relaxometry maps for each subject, to determine 

the appropriate tissue properties to include in the partial volume dictionary. Shown in Fig. 

5a,b is a comparison of the two aforementioned methods, applied to a normal volunteer, 

showing relative fractions of white matter, gray matter, and CSF. The method has also been 

applied to brain tumor patients, in which case more tissue components are used in the model 

to create tissue fraction maps, for example, white matter, gray matter, CSF, tumor, and 

peritumoral white matter.

A limitation of using a fixed tissue model, for example, assuming that brain tissue is only 

composed of white matter, gray matter, and CSF, may be evident in the case of pathology, 

where a diseased or unhealthy tissue may not be composed of these three tissues. If the 

diseased tissue has relaxation properties different from those represented in the model, then 

forcing a fixed model on the voxel signals will result in erroneous tissue fraction 

calculations and diseased tissue will not be properly characterized. There have been works 

on partial volume for MRF that remove the fixed tissue model and apply the full dictionary 

to mixed voxel signals. In McGivney et al,47 the Bayesian paradigm for inverse problems 

was used to solve the problem in terms of the maximum a posterior estimator, assuming a 

probabilistic model for the tissue weights, and with additional postprocessing the resulting 

values can be combined into relative tissue fraction maps, shown in Fig. 5c for a 

glioblastoma brain tumor patient. The work by Tang et al97 also does not require a fixed 

tissue model, but instead encourages sparsity of the weight vector by using reweighted ℓ1 

regularization. Although these methods are computationally more complex than the 

dictionary-based approach,46 they allow a more flexible tissue model when relaxation values 

are not known a priori, which may be the case in diseased or abnormal tissues.

Applications of Machine and Deep Learning to MRF

In recent years, machine learning and deep learning have become increasingly popular 

topics for research, and applications in MRI are frequent.98 Machine and deep learning may 

be a natural fit to solve some of the challenges in MRF, such as image reconstruction and 

pattern matching. Indeed, several of the deep-learning applications to MRF aim to either 

speed up the Bloch simulation calculation of a large dictionary or remove the need for a 
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dictionary altogether by directly learning the tissue property mappings from the signal 

evolutions. In Yang et al,99 unsupervised learning methods were used to rapidly generate the 

MRF dictionary within several seconds, which could be valuable when performing sequence 

optimization or modification. Rapid dictionary generation was also the goal,100 where neural 

networks were used to generate a dictionary that is based on a patient-specific cardiac 

rhythm, 100 times faster than using Bloch simulation. In Boux et al,101 the relationship 

between the tissue property values and the dictionary is learned through regression, 

eliminating the exhaustive search from pattern matching. Neural networks are applied to 

learn tissue properties and also to directly generate synthetic qualitative images,102 

bypassing the dictionary matching step. It is likely that the number of works published in 

this area applied to MRF will continue to grow dramatically, rapidly increasing over the 

coming months and years.

In the work entitled MRF-DRONE by Cohen et al,103 deep learning was applied to MRF 

signal evolutions, after image reconstruction, to learn the T1 and T2 values without direct 

dictionary matching. The TensorFlow framework104 was used to construct a fully connected 

neural network with four layers and two hidden layers, and the method was tested on both 

MRF-EPI49 and MRF-FISP5 sequences. Compared with direct dictionary matching, the 

application of the neural network to the MRF data was between 300 to 5000 times faster. 

Although network training can take a considerable amount of time in these types of methods 

(10–74 minutes in this work), this is considered a preprocessing step that only needs to be 

computed once. A similar method105 trains a convolutional neural network with three layers 

to learn the tissue properties from a dictionary, resulting in faster quantification of T1 and T2 

and eliminating the need to store the dictionary after training.

Another deep-learning method, named spatially-constrained quantification, was applied106 

to learn the T1 and T2 values directly from the MRF signal evolutions. A two-step process 

was used. First, the time dimension of the signal evolutions was reduced using two fully 

connected neural networks to learn a nonlinear mapping for feature extraction, as opposed to 

using SVD compression. The next step used a convolutional neural network to quantify T1 

and T2 values at each pixel, using the spatial features of neighboring pixels calculated in the 

first step. T1 and T2 maps generated using this framework are shown in Fig. 6, using both 

576 and 288 timepoints for the quantification. This framework allows a significant reduction 

in the MRF acquisition time, by requiring as few as one-fourth the number of acquired 

timepoints compared with MRF-FISP.5

One aspect to point out in the above works is the problem of the inherent complex-valued 

property of the MRF data. In Cohen et al,103 the absolute value of signal evolutions is taken 

for the input into the neural network, where as in Fang et al106 the signal evolution is split 

into its real and imaginary parts, resulting in a vector that is twice as long as the original. A 

neural network is designed, using the full complex-valued data in Virtue et al,107 specifically 

with the application to MRF in mind.

Although not MRF, recent works108,109 demonstrate the power of machine learning to 

directly quantify tissue properties from MRI data. In the case of one,108 tissue properties are 

learned using the MR signal model with nonlinear regression and application of a nonlinear 
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kernel function. Application of the method allows for quantification of T1 and T2 relaxation 

times using both spoiled gradient-recalled echo and dual-echo steady-state sequences. The 

AUTOMAP method109 is a comprehensive deep-learning technique to replace the image 

reconstruction step and can be applied to various imaging methodologies to directly learn 

the encoding method. These works highlight the impact that machine learning can have on 

MRI, in particular, applying these ideas to MRF may open the door for more comprehensive 

optimization of the framework.

Discussion

MRF is a flexible framework that allows fast and simultaneous quantification of multiple 

tissue and system properties. Because the reconstruction and pattern matching do not require 

a particular signal shape, the framework is able to reduce the constraints on MR acquisition 

design and signal modeling. This flexibility can provide more rapid, robust, repeatable, and 

specific tissue properties for tissue characterization and clinical use. A thorough discussion 

of the repeatability and reproducibility of MRF, clinical applications, and potential barriers 

for clinical adaptation was presented in Part 1 of this review,45 which highlights the 

advantages and potential problems with using the MRF framework in a clinical setting. We 

focus our discussion here on the topics highlighted in this portion of the review, namely, the 

technical developments that have been made to MRF and the challenges that still remain.

The increased flexibility and degrees of freedom of MRF can pose challenges for 

optimization. Current studies typically optimize MRF acquisition and reconstruction 

separately, as evidenced in our sections on sequence optimization and reconstruction. 

Sequence optimization mainly focuses on improving signal separability and precision of the 

results, assuming perfect sampling with Gaussian white noise. Although some initial 

optimization methods have been studied, the global optimum for an MRF sequence design 

has yet to be proven. The number of degrees of freedom available in designing an MRF 

sequence are numerous, including sequence parameters such as FA, TR, TE, and RF phase. 

While sequences have been designed that optimize several of these, a comprehensive design 

that optimizes all of these variables simultaneously does not yet exist. MRF reconstruction 

methods are typically developed based on existing sequences and sampling strategies and 

the main goal has been to reduce image artifacts and noise. The MRF sequence design, k-

space sampling, and reconstruction may be incorporated in a comprehensive framework for 

optimization in the future, and this would be a significant step in optimizing the full MRF 

method. However, the optimization landscape for MRF is not well understood and has not 

been well studied, and it is likely that the landscape is not convex and is high dimensional, 

and this will add additional modeling and computational complexity, as finding a global 

optimum is difficult with even state-of-the-art optimization techniques. Having an accurate 

model that can be solved using current computational methods in real time is a clear barrier 

for MRF to being optimized thoroughly and rapidly, for application in the clinic.

By decreasing the correlations of the signal evolutions from different tissue types, MRF may 

provide a unique opportunity to effectively separate multiple tissue properties from a single 

voxel, leading to better multiparametric mapping, partial volume separation, and 

microstructure characterization. For example, reducing the similarity between white matter 
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and gray matter signal evolutions in the dictionary could result in more accurate volume 

fraction estimations for this common partial volume occurrence in the brain. The challenges 

associated with such a partial volume separation problem include multidimensional data 

modeling and solving inverse problems, and both of these fields are being studied and 

constantly evolving. An additional challenge with partial volume is that validation and 

establishment of a ground truth is difficult; however, the resulting multidimensional and 

multiscale tissue properties has the potential to make the tissue/disease characterization 

more specific.

There may be different metrics to assess the overall performance of the various MRF 

designs, including accuracy and precision of tissue property maps or total scan time, and it is 

likely a combination of factors such as these will need to be used. While metrics such as 

SNR and image quality of each individual timepoint may be applicable, their relationship to 

the final image quality, accuracy, and precision of the tissue property maps are nonlinear due 

to the pattern matching. Therefore, metrics regarding the tissue property maps are better 

choices for both optimization and results validation. Both phantom and in vivo validation are 

required for these types of metrics, and these studies have been outlined in detail in Part 1 of 

this review.45 Scan time is another applicable metric for clinical translation of MRF. For 

example, reducing the total scan time is a desirable goal for MRF, as it will reduce scanner 

time for patients. Current 3D MRF scan times for whole-brain coverage with 1 mm isotropic 

resolution are reported to be 7.5 minutes,35 and 5 minutes.34 Metrics that have been used in 

sequence optimization, such as accuracy or image quality, can also be used to evaluate the 

applications of machine and deep learning to MRF.

In addition to explicitly solving optimization problems of the MRF framework, deep 

learning has been implemented in reconstruction, dictionary generation, and matching steps, 

and has shown promising results for solving nonlinear, non-convex, and high-dimensional 

problems. With the significant interest in deep learning from both engineering and clinical 

fields, the techniques will likely be further developed for MRF quantification, image 

analysis, and clinical validations.

Conclusion

MRF is a unique framework for quantitative MRI and provides multiple registered tissue 

property maps from a single acquisition. Recent technical developments for MRF, including 

sequence optimization, improved reconstruction algorithms, partial volume separation, and 

deep learning have been summarized in this review as important techniques to move the field 

of MRF forward. By developing a comprehensive optimization framework for MRF, 

including optimization across sequence design, reconstruction, and pattern matching, MRF 

will be even more widely applicable and impactful for clinical practice.
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FIGURE 1: 
Neuro applications of MRF. Shown in (a) are 2D multislice T1 T2 maps from a normal 

volunteer, scanned with MRF-FISP.5,32 In (b) are T1 T2, and proton density maps shown in 

axial, coronal, and sagittal views from three slices in a 3D MRF-FISP acquisition.6 All units 

for T1 and T2 maps are in msec. The multislice figure is reprinted with permission.32
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FIGURE 2: 
Examples of applications of MRF to different parts of the body, including (a) abdomen maps 

from a patient with lung adenocarcinoma metastatic to the liver using a 2D MRF scan,36 (b) 
cardiac multislice maps from a normal volunteer using a simultaneous multislice scan,41 and 

(c) breast maps from a patient with invasive ductal carcinoma in left breast using a 3D MRF 

scan.37 Units for all T1 T2 maps are shown in msec. Figures of abdomen and breast T1 T2 

maps are reprinted with permission, with new color maps applied, from Chen et al.36,37
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FIGURE 3: 
Flip angle (FA) and repetition times (TR) produced from the optimization techniques 

discussed in Section Sequence Optimization. The FA and TR patterns in (a) are from Cohen 

et al49 using the interior-point optimization, applied to a cost function that emphasizes the 

orthogonality of the dictionary matrix. In (b) are FA and TR patterns,52 which are based on 

the Cramér–Rao lower bound for unbiased estimators. “Optimized I” and “Optimized II” 

refer to the constraints put on the FA pattern. In Optimized I, upper and lower bounds are 

placed on FA and TR, whereas in in Optimized II, changes in neighboring FA values are 

additionally constrained. In (c) is the FA pattern from Kara et al,53 which is calculated using 

the genetic algorithm to optimize T1 and T2 quality factors. The FA and TR patterns used in 

MRF-FISP5 are shown in (d). Figures reprinted with permission.49,52,53
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FIGURE 4: 
T1 and T2 maps obtained from reconstruction techniques outlined in Section Reconstruction 

and Quantification. Units for all maps are in msec. In (a) the maps are reconstructions using 

700 TRs from the low-rank method from Zhao et al,74 compared also with direct 

reconstruction and matching, as well as the maximum likelihood approach.85 Error maps are 

computed by comparing to a full-sampled reconstruction as the gold standard. In (b) are 

maps using the sparsity and locally low rank method from Lima da Cruz et al,86 shown from 

two different volunteers. Figures reprinted with permission, and new color maps applied.
74,86

McGivney et al. Page 23

J Magn Reson Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 5: 
Partial volume fraction calculation from three of the discussed methods. In (a,b) are fraction 

maps representing white matter, gray matter, and CSF in a normal volunteer, using a 3D 

MRF-FISP6 acquisition. The method used in part (a) is from the pseudoinverse calculation 

with a fixed three component dictionary, whereas in (b), linear combinations of this three 

component dictionary are used to generate a larger partial volume dictionary, to which 

pattern matching is applied.46 In (c) the method from McGivney et al47 is applied to a 

glioblastoma brain tumor patient. Tissues shown in this decomposition include white matter, 

two gray matter components, CSF, tumor, and regions surrounding the tumor. Shown on the 

right are the T1 and T2 maps obtained from 3D MRF-FISP6 in this patient.
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FIGURE 6: 
T1 and T2 maps generated from the deep-learning method of Fang et al.106 DM represents 

the results from applying direct reconstruction and pattern matching, SCQ represents the 

deep learning method, spatially-constrained quantification. A different number of timepoints 

were used, as noted in the figure. Maps are compared with an MRF with 2304 timepoints 

used for the ground truth, with relative error maps shown and total percent error shown in 

each figure. Figure reprinted with permission, and new color maps applied.106
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