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Multiple sclerosis (MS) is the most common nontrau-
matic demyelinating neurologic disorder in young 

adults, affecting at least 2.5 million people worldwide (1). 
MRI is routinely used for both diagnosis and management 
of MS (2). A hallmark of MS is the presence of hyper-
intense lesions on images obtained with T2-weighted, 
proton density–weighted, and fluid-attenuated inversion 
recovery (FLAIR) MRI. Not all lesions seen on these im-
ages are active. Identification of active lesions is crucial for 
effective patient treatment (3). It is generally thought that 
active lesions show enhancement on T1-weighted MRI 
scans after the administration of gadolinium-based con-
trast agents (GBCAs). However, there are concerns about 
GBCA administration, including nephrogenic systemic 
fibrosis in patients with renal compromise (4) and long-
term gadolinium deposition in various tissues (5–8). This 
is particularly a concern in patients with MS, who undergo 
frequent imaging with GBCA administration for regular 
clinical follow-up, which may result in higher cumulative 
gadolinium deposition in tissues. While acknowledging 
lack of documented evidence about long-term physiologic 

effects of deposited gadolinium in tissues, the U.S. Food 
and Drug Administration states that “clinicians should 
limit use of GBCAs to situations where additional infor-
mation provided by the contrast agent is needed and to 
assess the necessity of repeat MRIs with GBCAs” (https://
www.fda.gov/drugs/drug-safety-and-availability/fda-drug-
safety-communication-fda-warns-gadolinium-based-contrast-
agents-gbcas-are-retained-body). Similar cautionary rec-
ommendations were also issued by a number of scientific 
organizations, such as the Consortium of Multiple Sclero-
sis Centers (www.mscare.org/mri) (9) and the International 
Society for Magnetic Resonance in Medicine (10). Alterna-
tive methods based on texture analysis, logistic regression, 
and chemical exchange saturation transfer techniques have 
been proposed to identify enhancing lesions without the 
administration of GBCA in patients with MS (11–13). 
These published studies are from a single center and/or 
based on a small sample size and require manual identifica-
tion of the image features.

Deep learning (DL) is a subfield of machine learn-
ing that uses multiple nonlinear processing layers for a 

Deep Learning for Predicting Enhancing Lesions in Multiple 
Sclerosis from Noncontrast MRI
Ponnada A. Narayana, PhD • Ivan Coronado, MS • Sheeba J. Sujit, PhD • Jerry S. Wolinsky, MD •  
Fred D. Lublin, MD • Refaat E. Gabr, PhD

From the Departments of Diagnostic and Interventional Imaging (P.A.N., I.C., S.J.S., R.E.G.) and Neurology (J.S.W.), McGovern Medical School, University 
of Texas Health Science Center, 6431 Fannin St, Houston, TX 77030; and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 
10029-6574 (F.D.L.). Received May 9, 2019; revision requested July 2; revision received October 10; accepted October 25. Address correspondence to P.A.N. (e-mail: 
ponnada.a.narayana@uth.tmc.edu).

Funded by the National Institute of Neurological Disorders and Stroke/National Institute of Health (grant 1R56NS105857-01), a Chair in Biomedical Engineering 
endowment, and the John S. Dunn Foundation.

Conflicts of interest are listed at the end of this article.

Radiology 2020; 294:398–404 • https://doi.org/10.1148/radiol.2019191061 • Content codes:  

Background: Enhancing lesions on MRI scans obtained after contrast material administration are commonly thought to represent 
disease activity in multiple sclerosis (MS); it is desirable to develop methods that can predict enhancing lesions without the use of 
contrast material.

Purpose: To evaluate whether deep learning can predict enhancing lesions on MRI scans obtained without the use of contrast 
material.

Materials and Methods: This study involved prospective analysis of existing MRI data. A convolutional neural network was used for 
classification of enhancing lesions on unenhanced MRI scans. This classification was performed for each slice, and the slice scores 
were combined by using a fully connected network to produce participant-wise predictions. The network input consisted of 1970 
multiparametric MRI scans from 1008 patients recruited from 2005 to 2009. Enhanced lesions on postcontrast T1-weighted im-
ages served as the ground truth. The network performance was assessed by using fivefold cross-validation. Statistical analysis of 
the network performance included calculation of lesion detection rates and areas under the receiver operating characteristic curve 
(AUCs).

Results: MRI scans from 1008 participants (mean age, 37.7 years 6 9.7; 730 women) were analyzed. At least one enhancing lesion 
was observed in 519 participants. The sensitivity and specificity averaged across the five test sets were 78% 6 4.3 and 73% 6 2.7, 
respectively, for slice-wise prediction. The corresponding participant-wise values were 72% 6 9.0 and 70% 6 6.3. The diagnostic 
performances (AUCs) were 0.82 6 0.02 and 0.75 6 0.03 for slice-wise and participant-wise enhancement prediction, respectively.

Conclusion: Deep learning used with conventional MRI identified enhanced lesions in multiple sclerosis from images from unen-
hanced multiparametric MRI with moderate to high accuracy.
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hierarchical representation of the data (14). A unique feature 
that differentiates DL from classic machine learning methods 
is that DL can learn image features from the input data with-
out manual identification (15). DL has the potential to identify 
enhancing lesions without GBCA administration. In fact, DL 
has been recently used to detect enhancing lesions in MS at a 
reduced GBCA dose (16). DL, based on a convolutional neural 
network, is particularly well suited for medical image processing, 
segmentation, classification, and prediction (17). DL has also 
been shown to be robust against data heterogeneity and image 
artifacts (18–20) that are typically encountered in multicenter 
studies.

The main objective of our study was to investigate the po-
tential of DL in predicting enhancing lesions without GBCA 
administration. This is a classification, and not a segmentation, 
issue because our interest was mainly in identifying potentially 
enhancing lesions—not their volumes.

Materials and Methods
This study was a prospective analysis of MRI data acquired 
in patients with relapsing-remitting MS who participated in 
a phase III clinical trial. All data were anonymized. All par-
ticipating sites received institutional review board approval for 
imaging of patients. Written informed consent was obtained 
from all patients. Our institutional review board approved the 
analysis of the MRI data. This study was fully compliant with 
the Health Insurance Portability and Accountability Act.

MRI scans were acquired with multiple platforms at 1.5-T 
(85%) and 3-T (15%) field strengths (GE Medical Systems,  
Milwaukee, Wis; Philips Healthcare, Best, the Netherlands; 
Siemens, Erlangen, Germany). The MRI protocol included 
acquisition of two-dimensional FLAIR (repetition time msec/
echo time msec/inversion time msec, 10 000/90–100/2400–
2600) and two-dimensional dual-echo turbo spin-echo (rep-
etition time msec/first echo time msec/second echo time msec, 

6800/12–20/80–100) images. In addition, T1-weighted images 
(700–800/12–20) were obtained before and after contrast mate-
rial administration with geometry identical to that with FLAIR 
and dual-echo turbo spin-echo images. The voxel dimensions for 
all images were 0.94 mm 3 0.94 mm 3 3 mm.

Study Participants
MRI scans were acquired in patients with relapsing-remitting 
MS who participated in a randomized, double-blind, multi-
center phase III clinical trial (Combination Therapy in Patients 
with Relapsing-Remitting Multiple Sclerosis [CombiRx]; 
clinical trial NCT00211887). Patients were recruited consecu-
tively between 2005 and 2009. Patients aged 18–60 years with 
an Expanded Disability Status Scale score of 0–5.5 were in-
cluded. Sixty-eight centers participated in this study (21,22). 
In this feasibility study, we included images from the baseline 
examination and the follow-up examination at 6 months. MRI 
scans in this cohort were also analyzed to determine the re-
gional atrophy (23), effect of inpainting (24), effect of intrin-
sic and extrinsic factors on cortical thickness (25), and tissue 
segmentation (26). The current study was based on the same 
cohort but investigated the prediction of lesional enhancement 
in MRI without use of contrast material.

The quality of the MRI scans was evaluated by using a pro-
cedure described elsewhere (27). Of the original 1008 patients 
recruited at baseline, 40 were lost to follow-up. Of the 1976 
MRI data sets at both time points, six were excluded because 
of poor signal-to-noise ratio or motion artifacts. Thus, a total 
of 1970 MRI data sets were included in this study. Among the 
1970 postcontrast T1-weighted MRI data sets, experts identi-
fied 519 patients with one or more area of enhancement with 
an enhancing volume of at least 7 voxels, with a total of 1390 
enhancing lesions.

Image Preprocessing
All images were preprocessed with an MRI automatic process-
ing pipeline (28–30). The preprocessing steps included skull 
stripping, bias correction, intensity normalization, and aniso-
tropic diffusion filtering, as described elsewhere (28–30).

Input Data
The input images to the network included precontrast T1-
weighted, T2-weighted, and FLAIR images. The input images 
were masked by the T2-hyperintense lesion mask obtained 
by using the MRI automatic processing pipeline, dilated by 3 
voxels in each direction. The data were augmented by includ-
ing 90° rotations and reflections about XY and YZ planes to 
avoid overfitting during network training. Sampling was done 
such that the MRI data sets from the two sessions (baseline and 
6-month follow-up) in the same participant were assigned to 
the same group (either training or testing).

Areas of enhancement on postcontrast T1-weighted im-
ages were identified by two experts (P.A.N., with .30 years 
of experience in MRI of MS and other neurologic disorders, 
and J.S.W., with .30 years of experience in MRI of MS), 
whose findings served as the ground truth. Any disagree-
ment between the two experts was resolved by consensus. For 

Abbreviations
AUC = area under the receiver operating characteristic curve, CombiRx 
= Combination Therapy in Patients with Relapsing-Remitting Mul-
tiple Sclerosis, DL = deep learning, FLAIR = fluid-attenuated inversion 
recovery, GBCA = gadolinium-based contrast agent, MS = multiple 
sclerosis

Summary
Deep learning may be a viable alternative to gadolinium-based con-
trast agents for identifying enhancing lesions in multiple sclerosis on 
MRI scans.

Key Results
 n A convolutional neural network was trained to identify enhancing 

lesions in multiple sclerosis based on images from unenhanced 
MRI.

 n The convolutional neural network identified enhancing lesions 
in slices with sensitivity and specificity of 78% and 73%, respec-
tively; the corresponding values for participant-wise prediction 
were 72% and 70%.

 n The average areas under the receiver operating characteristic curve 
for slice-wise and participant-wise predictions of the deep learning 
model were 0.82 and 0.75, respectively.
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The DL model used in this 
study consisted of a combina-
tion of two networks (Fig 1, A): 
VGG16 for predicting slice-wise 
enhancements and a fully con-
nected network for participant-
wise prediction. The VGG16 
network is shown in Figure 1, B. 
It consists of five convolutional 
blocks and one block of fully 
connected layers followed by a 
softmax activation function at 
the output. Each convolutional 
block is composed of multiple 
convolutional layers, each with 
rectified linear unit activation, 
followed by a max pooling layer. 
Convolutional layers on each 
block are assigned a specific 
number of filters, beginning 
with 64 for convolutional layers 
in the first convolutional block. 
Subsequent blocks have double 
the number of filters from the 
previous block. The number of 
filters of the last convolutional 
block is not doubled but kept 
at 512. In our implementation, 
the receptive field was set at 3 3 
3 with a stride size of 1 for all 
convolutional layers. The sec-
ond fully connected network, 

which combines the slice scores for participant-wise prediction, 
consists of an input layer (corresponding to the slice scores), a 
hidden layer of four nodes, and an output layer with a sigmoid 
activation function. The scripts and other information about this 
model can be found at https://github.com/uthmri.

Network Training
The training procedure consisted of two stages. First, the dense 
layers of the VGG16 network were removed; only the convo-
lutional and max pooling layers were kept. The training set was 
then fed through the resulting architecture to generate bottle-
neck features (Fig 1, B). These features were used to train a 
new dense layer for identifying possible enhancing lesions. In 
this training stage, Adam, an algorithm for first-order gradient-
based optimization of stochastic objective functions, was used 
as an optimizer (33) owing to its fast convergence and weight-
dependent learning rate. Binary cross-entropy was used as the 
model loss function along with rectified linear unit activation 
for all but the last layer, which had sigmoid activation. In the 
second stage, the last convolutional block and the dense layers 
were trained on the image features. During this training stage, 
all other convolutional blocks in the network were frozen so 
that the weights of layers in those blocks were not updated. 
In this training stage, the stochastic gradient descent (33) op-
timizer was used, along with a small learning rate and high 

training the DL classification model, image labels were gener-
ated for each slice and for the participant based on the pres-
ence or absence of contrast-enhancing lesions in each slice or 
volume, respectively.

Network Description
The DL model consisted of a cascade of two networks. The 
first network was a convolutional neural network that evalu-
ated all two-dimensional slices from the MRI data for possible 
contrast enhancement in each slice (slice-wise enhancement). 
Another important evaluation from a clinical perspective was 
whether there were any enhancing lesions (ie, zero vs at least 
one) in a particular participant (participant-wise enhance-
ment). Thus, a second fully connected network was used to 
combine the slice scores and produce a participant-wise predic-
tion of enhancement.

The convolutional neural network model we used was based 
on transfer learning, a technique that uses knowledge from 
another model that has been trained on a different task (31). 
Transfer learning is shown to be effective in image analysis 
(32). It reduces computational time and memory requirements. 
VGG16, a two-dimensional network, was fine-tuned for iden-
tifying enhancing lesions. VGG16 achieved state-of-the-art 
performance on the ImageNet Large Scale Visual Recognition 
Challenge (http://image-net.org/challenges/LSVRC/).

Figure 1: A, Illustration shows architecture of cascaded network for predicting enhancement. B, Illustration shows 
VGG16 network prediction of enhancement in each section. Scores from slices were combined by using a fully connected 
network to produce volume (participant-level) prediction. Numbers above VGG16 layers indicate image resolution; num-
bers underneath layers indicate number of filters (kernel size, 3 3 3). Conv. = convolution, 2D = two-dimensional.
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settings. The sensitivity and specificity in Table 2 were computed 
at the optimal thresholds that maximize the Youden index (sen-
sitivity + specificity 2 1). The average AUCs (6standard devia-
tions) were 0.82 6 0.02 and 0.75 6 0.03 for predicting slice-
wise and participant-wise enhancements, respectively.

Discussion
Administration of gadolinium-based contrast agents (GBCAs) 
is crucial for the management of multiple sclerosis (MS). Re-
peated administration of GBCAs raised concerns about patient 
safety. In this study, we investigated the feasibility of applying 
deep learning (DL) to identify enhancing lesions on unenhanced 
images. The ability to identify enhancing lesions without GBCA 
administration by using DL can potentially minimize the need 
for GBCA administration, improve patient safety, and reduce 
costs associated with clinical care. The annotated Combination 
Therapy in Patients with Relapsing-Remitting Multiple Scle-
rosis (CombiRx) MRI data that we used provided an excellent 
platform to investigate the potential of DL in the prediction 
of enhancing lesions on unenhanced images. Expert-identified 

momentum. This configuration restricted major changes to 
weights to retain previously learned features. Loss and activa-
tion functions remained the same as in the first stage. In our 
implementation, the network was trained for approximately 
200 epochs (one epoch = one full iteration of training set); at 
each epoch, network weights were updated by means of back 
propagating the error between network output and ground 
truth. An initial learning rate of 1024 was used. The fully con-
nected network was trained for 100 epochs by using Adam as 
the optimizer, with an intial learning rate of 1023. Dropout 
was used to avoid overfitting. The data splitting for the fully 
connected network was the same as that used for the VGG16 
network.

For equal representation of both classes (enhancing and non-
enhancing lesions) during training, minibatches were sampled 
with a 1:1 ratio, drawn randomly from participants with en-
hancing lesions (n = 519) and without enhancing lesions (n = 
1451). This choice, effectively oversampling the minority class, 
minimizes problems related to class imbalance, which can be 
detrimental for classifier performance (34).

Statistical Analysis
The area under the receiver operating characteristic curve (AUC), 
sensitivity, specificity, accuracy, positive predictive value, and 
negative predictive value were calculated to evaluate the network 
performance. This analysis was performed for both slice-wise 
and participant-wise predictions. A fivefold cross-validation pro-
cedure was implemented to assess the stability of the DL model.

In each iteration, the data were split into two major sets for 
model development: 80% of the data set was used for training 
(65%) and validation (15%) and 20% was used for testing. This 
process was repeated five times by changing the assignments for 
the partitioned data.

All processing was performed on the Maverick2 cluster at the 
Texas Advanced Computing Center with graphics processing 
unit cards (Tesla V100; Nvidia, Santa Clara, Calif ). Implemen-
tation was carried out by using the Keras Python library (version 
2.2.4) (35) and TensorFlow (version 1.12.0) (36).

Results
A summary of demographic characteristics and clinical data for 
the entire CombiRx cohort is given in Table 1. Figure 2 summa-
rizes the total number of scans included and reasons for exclu-
sion. The total number of enhancing lesions in all 519 partici-
pants was 1390.

Results of cross-validation for the test data for each run are 
summarized in Table 2. An average accuracy of 75% was ob-
tained in the slice-wise enhancement prediction, and the average 
accuracy in predicting enhancements in participants with at least 
one enhancing lesion (participant-wise enhancement) was 70%. 
Figure 3 shows examples of selected slices demonstrating true-
positive, false-positive, and false-negative classifications by the 
network. For comparison, the postcontrast T1-weighted images 
showing the enhancing lesions are also included. Figure 4 shows 
the receiver operating characteristic curves in which the true-
positive rate (or sensitivity) is plotted against the false-positive 
rate (false positive rate = 1 2 specificity) at various threshold 

Figure 2: Study flowchart.

Table 1: Summary of Demographic and Clinical Data for the 
CombiRx Cohort

Parameter Value
Age (y)* 37.7 6 9.7
F/M 730/278
Race
 White 883
 African American 73
 Other 52
Ethnicity
 Hispanic 63
 Non-Hispanic 902
 Other 43
Symptom duration (y)* 4.8 6 5.6
Median EDSS at screening† 2 (0–6.5)

Note.—Unless otherwise specified, data are numbers of partici-
pants. Adapted from reference 22. CombiRx = Combination 
Therapy in Patients with Relapsing-Remitting Multiple Sclerosis, 
EDSS = Expanded Disability Status Scale.
* Means 6 standard deviations.
† Numbers in parentheses are the range.
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it allows implementation of transfer learning. We found this ar-
chitecture to be adequate for our task. The VGG16 network 
with 16 layers may be considered rather shallow when compared 
with deeper architectures such as Inception (37) and ResNet 
(38). Whereas deeper architectures have features specialized for 
large tasks (eg, ImageNet for classification of natural scenes), a 
shallower architecture has more generalizable features that can be 
extended more easily to different domains, such as medical im-
aging. Transfer learning could have been more effective if we had 
used a network trained on medical images rather than ImageNet; 
however, we are currently unaware of such a resource.

The CombiRx trial recruited only patients with relapsing-
remitting MS, the most common MS phenotype. Lesional en-
hancement is less common in other MS phenotypes (eg, primary 
progressive MS). It is also possible that differences in the preva-
lence and morphologic features exist between different MS phe-
notypes, which might affect the generalizability of our results.

Patients with MS who are being treated with natalizumab and 
who are human polyomavirus 2 seropositive, depending on time 
of exposure to natalizumab, are at risk for developing progres-
sive multifocal leukoencephalopathy (39). However, progressive 
multifocal leukoencephalopathy lesions are unlikely to show en-
hancement with GBCA. The exception is with those patients 
with a high suspicion of progressive multifocal leukoencepha-
lopathy whose disease-modifying therapy has been stopped and 
who develop immune reconstitution inflammatory syndrome 
reactions that often include extensive GBCA enhancement as 
human polyomavirus 2 cytotoxic T cells massively infiltrate the 
central nervous system. None of the participants in this study 
showed clinical or radiologic evidence of progressive multifocal 
leukoencephalopathy.

Our study had some limitations that must be considered 
when interpreting the data. Although our study was based on 
a relatively large cohort, the number of patients with enhancing 
lesions is much smaller than the total number of patients with 
T2-hyperintense lesions. Our plan to overcome the sample size 
limitation was to pool data from all centers, regardless of imager 
type or field strength. In addition, we analyzed two-dimensional 
images obtained with a slice thickness of 3 mm in the CombiRx 
trial. This could introduce partial averaging that could compro-
mise the quality of classification. Higher-spatial-resolution im-
ages that are typically acquired in the three-dimensional mode 
would have been preferable (40). However, we were limited by 
the CombiRx MRI protocol.

Even though we used data acquired at different centers 
with different MRI system platforms, the MRI parameters 
were well controlled in this clinical trial. For generalizability 
of the model, it is essential that further testing be conducted 
on a heterogeneous data set. Currently, we are not aware of the 
availability of data sets that use the same protocol as CombiRx 
but different sequence parameters. We are currently working 
on generalizing our model so that it can be applied to more 
heterogeneous data sets.

Another limitation of this study was that it was based 
on conventional MRI sequences. Advanced MRI sequences 
such as diffusion-weighted imaging, magnetization trans-
fer ratio imaging, and myelin fraction mapping were not 

enhancement on postcontrast T1-weighted images was consid-
ered as the ground truth. The underlying hypothesis was that 
multiple MRI sequences (T1-weighted, T2-weighted, and fluid-
attenuated inversion recovery) provide complementary texture 
information that could be used to identify enhancement without 
the administration of contrast material. Our results indicate that 
enhancement can be predicted with an accuracy of 75% and 
70% for slice-wise and participant-wise evaluation, respectively. 
These results are promising for a protocol that avoids contrast 
material administration. Reasonable consistency of the results 
was noted among the five cross-validation runs, suggesting that 
the network performance was stable.

The MRI data from the CombiRX cohort are quite hetero-
geneous in the sense that imaging was performed at different 
centers by using different MRI systems and field strengths. The 
results obtained with such heterogeneous data are perhaps more 
robust and generalizable than those from a single-center study. 
Owing to the high computational demands, the analysis was re-
stricted to the first two time points in the CombiRx data.

The reduced accuracy for participant-wise prediction (70% 
compared with slice-wise accuracy of 75%) is not surprising; er-
rors in slice-wise predictions are amplified and may completely 
alter the prediction of patients without enhancing lesions (result-
ing in a false-positive result) or patients with a single enhancing 
lesion (resulting in a false-negative result).

The prediction accuracy could be further improved by opti-
mizing the network model and its hyperparameters (eg, learning 
rate, dropout rate). Another way to improve the performance 
would be to use an ensemble of networks, with each network 
trained with a different randomly chosen input. Such studies are 
in progress. We chose the VGG16 network for our study because 

Table 2: Results for Each Iteration (Run) of Fivefold  
Cross-Validation of the Test Data for the Prediction of En-
hancing MS Lesions

Prediction Type Sensitivity (%) Specificity (%)
Slice-wise prediction
 Run 1 76 (299/393) 74 (291/393)
 Run 2 71 (278/391) 75 (293/391)
 Run 3 77 (279/362) 76 (275/362)
 Run 4 83 (350/422) 71 (300/422)
 Run 5 83 (334/407) 69 (281/407)
 Average* 78 ± 4.3 (74, 82) 73 ± 2.7 (71, 75)
Participant-wise prediction
 Run 1 81 (88/109) 62 (177/286)
 Run 2 67 (68/102) 69 (206/298)
 Run 3 71 (71/100) 72 (211/293)
 Run 4 83 (86/104) 66 (189/287)
 Run 5 58 (60/103) 80 (230/287)
 Average* 72 ± 9.0 (64, 80) 70 ± 6.3 (64, 75)

Note.—Unless otherwise specified, numbers in parentheses are 
raw data. Sensitivity is reported as the number of enhancing  
lesions predicted/total number of cases with enhancing lesion.  
Specificity is reported as the number of cases predicted as non-
enhancing/number of cases without enhancing lesions. MS = 
multiple sclerosis.
* Numbers in parentheses are the 95% confidence interval.
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We used cross-validation to assess the generalization of pre-
diction when applied to new data. Cross-validation showed good 
generalization, with a mean accuracy of 75% 6 1.3 and 70% 6 
2.6 for slice-wise and participant-wise predictions, respectively. 

included because the CombiRx protocol did not use these. 
It is possible that inclusion of these additional sequences 
would increase the accuracy of identification of enhancing 
lesions.

Figure 3: Examples of images input to the network (T2-weighted [T2], fluid-attenuated inversion recovery [FLAIR], and precon-
trast T1-weighted [T1pre] images). Postcontrast T1-weighted images (T1post) demonstrating areas of true-positive (white arrow) and 
false-negative (black arrow) enhancement are shown for comparison. FN = false-negative classification of enhancement, FP = false-
positive classification of enhancement, TP = true-positive classification of enhancement.

Figure 4: Graphs show receiver operating characteristic curves with true-positive rate plotted against false-positive rate for, A, slice-wise and, B, participant-wise predic-
tion of enhancement. Dashed red line is the chance line. Thin lines show receiver operating characteristic curves for five runs, and solid blue line is average receiver operat-
ing characteristic curve. Mean areas under the receiver operating characteristic curve are 0.82 6 0.02 and 0.75 6 0.03 for slice-wise and participant-wise prediction, 
respectively.
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In conclusion, we investigated the feasibility of using deep 
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necessary before DL is accepted as a viable alternative to GBCAs 
for identifying enhancing lesions in MS.
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