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Abstract

Objective: Characterize metabolomics profiles of four overweight/obese (OWOB) and metabolic 

risk (MetRisk) phenotypes among 524 adolescents age ~13 years.

Methods: We created a four-level phenotype variable (non-OWOB & low MetRisk, non-OWOB 

& high MetRisk, OWOB & low MetRisk, OWOB & high MetRisk) using BMI percentile to define 

OWOB, and derived high vs. low MetRisk as the 4th vs. 1st–3rd quartiles of a z-score calculated as 

the average of 5 externally-standardized z-scores for waist circumference, HOMA-IR, HDL, 

triglycerides, and SBP. We then examined associations of nine metabolite patterns derived from 

principal components analysis with phenotype after accounting for age, sex, race, and pubertal 

status.

Results: Five metabolite patterns differed with respect to phenotype: Factor 1 comprised long-

chain fatty acids and was lower among non-OWOB & high MetRisk (−0.90 [95% CI: −1.39, 

−0.42]) vs. non-OWOB & low MetRisk (referent). Factors 5 (branched chain amino acids; 

BCAAs), 8 (diacylglycerols) and 9 (steroid hormones) were highest among OWOB & high 

MetRisk. Factor 7 (long-chain acylcarnitines) was higher among non-OWOB & high MetRisk 

(0.47 [0.04, 0.91]) and lower among OWOB & low MetRisk (−0.36 [−0.68, −0.04]).

Conclusions: Long-chain fatty acids, BCAAs, acylcarnitines, diacylglycerols, and steroid 

hormones differed by weight status and metabolic phenotype.
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INTRODUCTION

Child and adolescent obesity is one of the greatest current public health concerns as it is a 

major risk factor for type 2 diabetes and cardiovascular disease. There are several distinct 

and overlapping pathways linking obesity to these chronic conditions, including but not 

limited to insulin resistance, dyslipidemia, and hypertension (1).

Higher body mass index (BMI, kg/m2) is an indicator of overall body size that correlates 

with excess fat mass and a worse metabolic profile (2). This makes sense given that adipose 

tissue is an endocrine organ that secretes biologically active molecules that could interfere 

with normal physiological processes (3). However, researchers have recently uncovered 

subgroups of adults with normal metabolic profiles despite being overweight or obese (BMI 

≥25 kg/m2), as well as persons who are not overweight/obese (BMI <25 kg/m2) but exhibit 

metabolic abnormalities. Existence of these discordant phenotypes would have important 

implications for the use of BMI to identify high-risk persons for further metabolic 

assessment. From a research perspective, characterizing physiological differences between 

the various obesity phenotypes may provide insight into etiological pathways of metabolic 

disease.

Metabolomics, or the systematic and comprehensive study of low-molecular-weight 

compounds in biological tissues and fluids, has emerged as a powerful tool to refine our 

knowledge of more nuanced differences in metabolic phenotypes. To date, a handful of 

small studies in adults have used metabolomics to characterize differences in circulating 

metabolites that differ between metabolically healthy vs. metabolically unhealthy obesity in 

adult populations (4–8). These studies identified differences in compounds on branched 

chain amino acid and lipid metabolism pathways between metabolically healthy vs. 

unhealthy obesity. A major limitation to current literature is the lack of knowledge regarding 

the existence of these phenotypes earlier in life, when there is greater potential to re-route 

adverse health trajectories.

In this analysis, we sought to: (1) characterize prevalence of four obesity/metabolic risk 

phenotypes among multi-ethnic adolescents in the Project Viva cohort: non-overweight/

obese with low metabolic risk, non-overweight/obese with high metabolic risk, overweight/

obese with low metabolic risk, and overweight/obese with high metabolic risk; and (2) use 

untargeted metabolomics profiling to identify metabolite profiles that differ between these 

phenotypes to gain insight into underlying pathways.

METHODS

Study population

This study includes adolescent participants of Project Viva, an ongoing pre-birth cohort 

study recruited from a multi-specialty group practice in eastern Massachusetts (Atrius 

Harvard Vanguard Medical Associates) (9). Of the 2128 children enrolled at birth, 1038 

attended the “early teen” research visit at age 11–16 years, 636 of whom provided fasting 

blood. Of them, we excluded 76 with inadequate serum volume for untargeted metabolomics 

profiling. For the present study, we further excluded those missing information on key 
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variables for the analysis including: race/ethnicity (n=1), pubertal status (n=2), body mass 

index (n=1), and the metabolic syndrome risk z-score (n=32), leaving an analytical sample 

of 524 participants. The Institutional Review Board of Harvard Pilgrim Health Care 

approved all study protocols. All mothers provided written informed consent and children 

provided verbal assent.

Blood collection

At the early teen visit, trained phlebotomists collected an 8-hour fasting blood sample from 

the antecubital vein. All samples were refrigerated immediately, processed within 24 hours, 

and stored at −80°C until time of analysis.

Overweight/obesity and metabolic risk phenotype

We created a four-level categorical variable comprising the different combinations of 

overweight/obesity (yes vs. no) and metabolic risk (“MetRisk,” high vs. low). We classified 

individuals as overweight/obese (OWOB) vs. non-OWOB based on weight (kg) measured 

via an electronic scale (Tanita Corporation of America, Inc., Arlington Heights, IL) and 

height (cm) measured using a calibrated stadiometer (Shorr Productions, Olney, MD). We 

used these values to calculate BMI (kg/m2), and age and sex standardized percentiles using 

the Centers for Disease Control and Prevention (CDC) growth reference (10). We defined 

OWOB as BMI≥85th percentile for age and sex, and as non-overweight/obese (non-OWOB) 

otherwise. We noted that there were 17 underweight participants with BMI<5th percentile, 

and excluded them in sensitivity analysis.

Following Viitasalo et al. (11), we derived a metabolic syndrome risk z-score as the average 

of externally age- and sex-standardized values for the following components: waist 

circumference (cm), the homeostatic model of insulin resistance (HOMA-IR), serum high 

density lipoprotein cholesterol (HDL) levels, serum triglycerides, and systolic blood 

pressure (SBP). We measured waist circumference at the level of the umbilicus via a non-

stretchable measuring tape, and standardized these values using data from the CDC 

reference data for children and adults 2011–2014 (12). We calculated HOMA-IR (glucose 

mg/dL x insulin μIU/mL)/405) using fasting glucose values assessed enzymatically, and 

fasting insulin measured via an electrochemiluminescence immunoassay (Roche 

Diagnostics, Indianapolis, IN). We standardized HOMA-IR values using data from 12-to-19-

year old participants of the National Health and Nutrition Examination Survey (NHANES) 

1999–2002 (13). Lipid profile was measured enzymatically and standardized according to 

age- and sex-specific data for participants aged 12–19 years in NHANES III. We measured 

systolic (SBP) and diastolic blood pressure (DBP) in quintuplicate using biannually-

calibrated automated oscillometric monitors (Dinamap Pro100, Tampa, Florida). We used 

the average of the five measurements for the statistical analysis and standardized the values 

using the American Academy of Pediatrics’ age-, sex-, and height-specific data (14). After 

deriving the external z-scores for each of the components, we took the average across the 

five variables (with HDL z-score multiplied by −1) and defined “high MetRisk” as being in 

the fourth quartile of the MetRisk z-score.
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Untargeted metabolomics profiling

We carried out untargeted metabolomic profiling in fasting plasma collected at the early teen 

research visit via Metabolon’s multi-platform technique comprising ultra-performance liquid 

chromatography/mass spectrometry (UPLC-MS/MS) with a heated electrospray ionization 

source and mass analyzer (15–17). Subsequently, metabolites were identified by automated 

comparison of the ion features in the experimental samples to a reference library of chemical 

standards that included retention time, molecular weight (m/z), adducts, in-source 

fragments, and associated mass spectrometry spectra using software developed at 

Metabolon. Details are in the Online Supplemental Material (OSM).

The laboratory analysis yielded 1135 metabolites. In the present study, we considered only 

endogenous metabolites, of which there were 1005 in this data set. Prior to formal statistical 

analysis, we imputed missing values for metabolites as ½ the minimum detected value, and 

log10-transformed each compound. We assessed for batch effects via principal components 

analysis plots but observed no notable clustering race/ethnicity or sex.

Covariates

While numerous lifestyle (e.g., diet, physical activity, sleep) and environmental (e.g., 

exposure to toxicants, air pollution) characteristics have potential to impact the relationship 

between overweight/obesity phenotype and circulating metabolites, this initial descriptive 

analysis seeks to identify metabolite profiles that may differentiate between the different 

phenotypes after accounting for a parsimonious set of biological covariates that impact 

metabolism in youth – namely, child’s sex, age, race/ethnicity, and pubertal status. At the 

early-teen research visit, participants’ parents reported on their pubarchal/pubertal 

phenotype based on appearance of body hair, breast development for girls, and body hair, 

facial hair, and deepening of voice for boys on a scale of 1 (no development) to 4 (full 

development). We combined the characteristics as an ordinal summary score of breast 

development and body hair for girls, and the mean of deepening of voice, facial hair, and 

body hair for boys for use as a covariate in multivariable models, as well as dichotomized 

pubertal status as pre-pubertal (puberty score=1) vs. pubertal (puberty score>1) for use as a 

covariate.

Data analysis

First, we created our explanatory variable of interest: a categorical variable comprising the 

four combinations of overweight/obesity (“OWOB,” yes vs. no) and metabolic risk 

(“MetRisk,” high vs. low) such that “not OWOB & low MetRisk” was the reference 

category, and the other categories included “not OWOB & high MetRisk,” “OWOB & low 

MetRisk,” and “OWOB & high MetRisk.”

Prior to examining associations of the four-level phenotype variable with serum metabolites, 

we used principal components analysis (PCA) for dimension reduction. We consolidated the 

1005 endogenous metabolites into metabolite patterns using PCA with an orthogonal 

rotation as we have previously done (18). The procedure generates as many factors 

(principal components) as there are original metabolites, so we used standard criteria of the 

Scree plot “break” and Eigenvalues >1 to determine the number of factors to retain. We then 
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examined associations of the four-level variable with the retained factor scores as continuous 

outcomes using a multivariable linear regression model that accounted for sex, age, race/

ethnicity, and pubertal status. Given the relatively small number of factors retained, we 

considered any factor associated with the four-level phenotype at alpha=0.05 in our 

discussion of results, also indicating which factors were statistically significant after 

Bonferroni correction based on the Type 3 P-value. We also conducted stratified analysis by 

OWOB status where we compared factor scores for participants with high vs. low MetRisk, 

as well as associations of each metabolic biomarker component with the factor scores of 

interest.

We also carried out some sensitivity analyses. First, we excluded 17 underweight 

participants (BMI<5th percentile) and re-ran all models. Exclusion of these persons resulted 

in no differences in the direction, magnitude, or precision of estimates (data not shown), so 

we included them in the final models. Second, in addition to defining high MetRisk as the 

fourth quartile of the MetRisk z-score, we also considered the following categorizations: (1) 

clinical metabolic syndrome based on the International Diabetes Federation (IDF) definition 

for adolescents (n=0) (19); (2) fourth quartile of all five components of the risk score (n=5); 

(3) fourth quartile of at least three components of the risk score (n=97) similar to adult 

definitions of metabolic syndrome; (4) upper 10th percentile of the MetRisk z-score (n=52). 

Given the non-existent/small sample size for definitions #1 and #2, and that use of 

definitions #3 (Table S1) and #4 (Tables S2) yielded similar associations to our original 

definition, so we focus our discussion of results using the fourth quartile of the MetRisk z-

score as the threshold for high metabolic risk.

All analyses were performed using the Statistical Analyses System 9.4 software (SAS 

Institute Inc., Cary, NC) unless otherwise indicated.

RESULTS

Descriptive statistics

Mean±SD age of the 524 study participants was 13.0±0.7 years. Approximately half 

(48.3%) were female and the majority were white (63.0%). Most (63.9%) participants were 

non-OWOB & low MetRisk, and 19.5% were classified as OWOB & high MetRisk. 

Approximately 11.1% were OWOB & low MetRisk, and 5.5% were non-OWOB & high 

MetRisk. Table 1 shows sociodemographic characteristics for all participants, and within 

strata of the four-level variable. As expected, waist circumference was higher for the two 

OWOB categories vs. the two non-OWOB categories, and all metabolic biomarkers were 

higher in the categories with high MetRisk than those with low MetRisk, except for HDL, 

which showed the opposite trend.

Associations between phenotype and metabolite patterns

Based on the Scree plot and Eigenvalues, we retained nine factors from the PCA that 

accounted for 47% of variance in the original 1005 endogenous metabolites. Table 2 shows 

associations of the four-level phenotype (reference group=not OWOB & low MetRisk) with 

the factor scores. We detected differences in Factors 1, 5, 7, 8, and 9 with respect to the four-
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level phenotype, with statistically significant Type 3 tests for a difference after Bonferroni 

correction (alpha=0.05/9=0.006) for Factors 1 (P=0.002) and 8 (P=0.001).

Table 3 shows the composition (metabolite annotations and sub-pathways) of Factors 1 

(long-chain fatty acids; LCFA), 5 (branched chain amino acids; BCAAs), 7 (long-chain 

acylcarnitines), 8 (diacylglycerols) and 9 (steroid hormones) based on the top ten highest 

factor loadings into each factor. Adolescents who were non-OWOB & high MetRisk had 

0.90 (95% CI: 0.42, 1.39) units lower score for Factor 1 (LCFAs) than the reference category 

(non-OWOB & low MetRisk). The OWOB & high MetRisk group also had a lower score for 

this pattern, though not as strongly compared to the non-OWOB & high MetRisk category, 

and with the upper CI crossing the null (−0.27 [95% CI: −0.56, 0.02]).

For Factor 5 (BCAAs), we observed the highest factor score for the OWOB & high MetRisk 

group (0.58 [95% CI: 0.17, 0.98] units for OWOB & high MetRisk vs. non-OWOB & low 

MetRisk).

For Factor 7 (long-chain acylcarnitines), participants categorized as non-OWOB & high 

MetRisk had a higher factor score than the referent (0.47 [95% CI: 0.04, 0.91] units), 

whereas those denoted as OWOB & low MetRisk had a lower score for this pattern (−0.36 

[95% CI: −0.68, −0.04] units).

Factor 8 (diacylglycerols) was highest among youth with the worst metabolic health (0.88 

[95% CI: 0.42, 1.35] for OWOB & high MetRisk vs. non-OWOB & low MetRisk), with a 

similar but non-significant effect among non-OWOB & high MetRisk participants (0.75 

[95% CI: −0.04, 1.54] units).

Finally, Factor 9 (steroid hormones) was highest among youth classified as OWOB & high 

MetRisk (0.44 [95% CI: 0.16, 0.72] for OWOB & high MetRisk vs. non-OWOB & low 

MetRisk).

Association of phenotype with metabolite factors after stratification by weight status

Table S3 displays similar associations to Table 2, but stratified by non-OWOB (n=362) vs. 

OWOB (n=160) status. Associations for the non-OWOB group are similar to those in Table 

2 given that in both analyses, non-OWOB & low MetRisk was the referent. Among OWOB 

participants, those with high MetRisk had a lower score for Factor 1 (LCFAs; −0.60 [95% 

CI: −0.99, −0.20]), and higher scores for Factor 5 (BCAAs; 0.69 [95% CI: 0.12, 1.25]) and 8 

(diacylglycerols; 0.84 [95% CI: 0.17, 1.51]) than the low MetRisk group.

Associations between individual components of the MetRisk z-score and metabolite 
patterns

When we examined associations of the individual biomarkers (as externally-standardize age- 

and sex-specific z-scores) with factors of interest within strata of OWOB status (Table 4), we 

noted concordance in the direction of associations across the metabolic biomarkers.

Among participants classified as non-OWOB, HOMA-IR was inversely related to Factor 1 

(−0.55 [95% CI: −0.74, −0.36]). Waist circumference was inversely associated with Factor 7 
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(long-chain acylcarnitines; −0.52 [95% CI: −0.95, −0.10]), whereas triglycerides (0.35 [95% 

CI: 0.17, 0.54]) and SBP (0.17 [95% CI: 0.02, 0.32] were positively associated with this 

metabolite pattern. Serum triglycerides were positively related to Factor 8 (diacylglycerols; 

0.99 [95% CI: 0.63, 1.30]), and waist circumference was positively associated with Factor 9 

(steroid hormones; 0.58 [95% CI: 0.11, 1.05]).

Among participants classified as OWOB, higher waist circumference, HOMA-IR, and 

inverted HDL each corresponded with a lower score for Factor 1 (LCFAs). Conversely, 

higher waist circumference and HOMA-IR corresponded with higher Factor 5 (BCAAs). 

Serum triglycerides were positively related to both Factor 8 (diacylglycerols) and Factor 9 

(steroid hormones).

DISCUSSION

In this cross-sectional analysis of 524 multi-ethnic adolescents in the U.S., we assessed 

prevalence of four phenotypes based on weight status and an externally-standardized 

metabolic syndrome risk z-score. The majority of participants in the sample were non-

overweight/obese with low metabolic risk, and the second most common group was 

overweight/obese with high metabolic risk. We also identified subsets of youth who were 

overweight/obese with low metabolic risk, and those who were not overweight/obese with 

high metabolic risk. We identified five metabolite patterns that differed across these groups, 

discussed below.

Factor 1: Long-chain fatty acids

In comparison to the healthiest participants (i.e., those who are not overweight/obese with 

low metabolic risk), those who were not overweight/obese but had high metabolic risk had a 

lower score for Factor 1. Youth classified as overweight/obese with high metabolic risk also 

had a lower score for this pattern (albeit at approximately 1/3 the magnitude), suggesting 

that this metabolite pattern is more strongly correlated with metabolic risk than weight 

status. Indeed, within strata of weight status, we detected a lower Factor 1 score with high 

vs. low metabolic risk in youth who were overweight/obese as well as non-overweight/

obese.

This metabolite pattern was characterized by several long-chain fatty acids, including anti-

inflammatory and anti-obesogenic polyunsaturated fatty acids (PUFAs). Given the benefits 

of long-chain fatty acids and PUFAs to metabolic health, our finding of an inverse 

relationship between this pattern and metabolic risk is not surprising. For example, linoleic 

acid and its derivative dihomo-linoleic acid are N-6 PUFAs involved in the biosynthesis of 

prostaglandins and cell membranes. While the literature on linoleic acid, obesity, and 

metabolic health in humans is mixed (20–22), rodent studies found beneficial effects of 

dietary linoleic acid administration on insulin resistance and glucose tolerance (23, 24), 

which aligns with our findings of an inverse relationship between HOMA-IR and Factor 1 

irrespective of weight status. Other metabolites in this pattern that have been correlated with 

metabolic health is palmitoleate, which has recently received attention as a protective factor 

against heart disease risk (25).
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The relatively large decrement in the factor score for this metabolite pattern among youth 

who are non-overweight/obese with high metabolic risk vs. the referent (non-overweight/

obese and low metabolic risk) is worth noting. One explanation is that these participants 

consume fewer foods that contain the fatty acids captured by this pattern (e.g., plant oils and 

nuts as a source of eicosenoate (26); blackcurrant seed, borage, and hemp seed oils as 

sources of gamma-linolenic acid, from which dihomo-linoleic acid (27) is derived) which 

would lead to lower circulating levels of these compounds, as well as acylcarnitine 

intermediates of their metabolism. Another explanation is that participants with high 

metabolic risk exhibit disturbances to the desaturation and elongation pathways involved in 

metabolism of dietary precursors of fatty acids of interest, thereby leading to lower levels of 

compounds in this metabolite pattern and contributing to greater metabolic risk. 

Unfortunately, the cross-sectional and observational nature of our data does not enable us to 

untangle these nuances.

Factor 5: Branched chain amino acids

Factor 5 included compounds that are part of a branched chain amino acid (BCAA) 

metabolite pattern previously identified as a correlate of obesity and insulin resistance in this 

(18) and other populations (28). Metabolites within this factor include: valine, one of three 

BCAAs that have been implicated in incident insulin resistance and development of type 2 

diabetes in adults (29–32); C3 and C5 acylcarnitines (2-methylbutyrylcarnitine, 

isovalerylcarnitine, propionylcarnitine) that are intermediates of BCAA catabolism; and 

kynurenate, a metabolite of the large neutral amino acid tryptophan, which is often elevated 

in concomitance with BCAAs since it competes for a shared protein transporter (33).

The score for this metabolite pattern was highest among youth classified as overweight/

obese with high metabolic risk, and we noted no differences in the score with respect to high 

vs. low metabolic risk among non-overweight/obese participants. The metabolic biomarkers 

most strongly associated with Factor 5 were waist circumference and HOMA-IR, which 

align with findings from a joint human/rodent study that identified elevated BCAAs as a 

correlate of excess adiposity that promotes insulin resistance (28). The fact that this 

metabolite pattern was associated with metabolic risk only in the context of overweight/

obesity suggests a unique contribution of excess adiposity above and beyond that of the 

metabolic biomarkers.

Factor 7: Acylcarnitines

In comparison to the reference group, Factor 7 was higher among youth who were not 

overweight/obese with high metabolic risk, but lower among participants classified as 

overweight/obese with high metabolic risk. Uon stratifying by weight status, the only 

association that persisted was a higher factor score among youth who were non-overweight/

obese with high metabolic risk. When we examined associations of this pattern with 

individual biomarkers, Factor 7 exhibited associations only among non-overweight/obese 

participants. Specifically, we noted inverse associations with waist circumference and direct 

relations with serum triglycerides and SBP.
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Top annotated metabolites in Factor 7 were long-chain acylcarnitines (e.g., oleoylcarnitine, 

linoleoylcarnitine (C18:2), dihomo-linolenoylcarnitine (C20:3n3 or 6), 

arachidonoylcarnitine (C20:4), and dihomo-linoleoylcarnitine (C20:2)) that accumulate 

during specific metabolic conditions, including fasting (34). In a small study of 7 normal 

weight and 7 women with obesity aged 20–53 years, Hoppel et al. (35) reported elevated 

acylcarnitines while fasting – including the long-chain species – among both normal weight 

and participants with obesity. In this study, we noted elevations in these metabolites only 

among non-overweight/obese participants. This could be indicative of lipodystrophy, a 

condition that does not necessarily co-occur with excess adiposity and is characterized by 

defective carnitine biosynthesis and carnitine accumulation in cells and organs (36). The 

discrepancy in findings in our study vs. those in adults could also be due to fundamental 

differences in metabolism in adolescents vs. adults, and the fact that Hoppel et al. study was 

a controlled feeding study whereas participants of Project Viva provided blood after an 8-

hour fast. Factor 7 also included compounds on energy production pathways – e.g., 5-

oxoproline, which is a marker of oxidative stress associated with hepatic glutathione 

production (37) that modulates DNA synthesis (38); and pyruvate, which is a product of 

glycolysis in the citric acid cycle.

Factor 8: Diacylglycerols

Factor 8 was composed of diacylglycerols (DAGs). The score for this pattern was highest 

among youth who were overweight/obese with high metabolic risk. With respect to the 

individual biomarkers, triglycerides were most strongly associated with this metabolite 

pattern, which makes sense given that DAGs are precursors to triglycerides.

Several metabolites within this pattern, including palmitoyl-linoleoyl-glycerol (16:0/18:2) 

and palmitoyl-linoleoyl-glycerol (16:1/18:2), are common emulsifiers used in bakery 

products, shortening, whipped toppings and other confections. Endogenously, alterations in 

DAG composition could be indicative of either lipolytic or lipogenic activity – a distinction 

that we are not able to make due to the cross-sectional nature of our data. In a prospective 

study of rhesus macaques, Polewski et al. (39) identified differences in plasma DAG 

composition (i.e., decreased products of palmitate desaturation; increased essential N-6 fatty 

acids) that served as markers of worsening insulin resistance and metabolic syndrome onset. 

Additional research in humans is warranted to further interrogate the extent to which 

differences in plasma DAG composition is involved in metabolic disease etiology.

Factor 9: Androgen steroid hormones

Factor 9 was composed of several androgen steroid hormones, including 

dehydroisoanderosterone sulfate (DHEA-S), androstenediol disulfate, and androstenediol 

disulfate. As with Factor 5, we previously identified this metabolite pattern in Project Viva 

during mid-childhood as a correlate of obesity and several metabolic biomarkers (18). Given 

the steroid hormone composition of this pattern, it likely represents increased androgen 

synthesis, which is expected given the age range of the study sample. Additionally, elevated 

DHEA-S is a marker of polycystic ovarian syndrome, a common endocrine disorder among 

women of reproductive-age that is associated with adverse metabolic health – most notably, 

insulin resistance (40).
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The score for this metabolite pattern was highest among children categorized as overweight/

obese with high metabolic risk, although stratification by weight status yielded no difference 

in the factor score for participants with high vs. low metabolic risk. When we examined 

associations of individual metabolic biomarkers with this factor, we noted a positive 

association with waist circumference among non-overweight/obese participants, and a 

positive association with serum triglycerides among participants with overweight/obesity. 

The former could be related to excess central adiposity among participants who are farther 

along in the pubertal transition (41), whereas the latter may reflect the increase in serum 

triglycerides that occurs throughout adolescence (42) – a phenomenon that may be more 

pronounced among youth with overweight/obesity.

Strengths & limitations

Strengths of this study include the comprehensive metabolomics profiling analysis; large 

sample size; multi-ethnic study population, which may enhance generalizability of findings; 

and ability adjust for key covariates like pubertal status that contribute to variability in 

metabolism.

Limitations include the fact that we assessed metabolomics from fasting serum samples 

collected at a single time, which precludes our ability to infer on upregulation vs. 

downregulation of pathways. We also had a relatively small sample size (n=29) for non-

overweight/obese with high metabolic risk group, which prevented us from conducting 

further sub-group analyses (e.g., assessing for race/ethnic or sex-specific associations) and 

may have reduced our ability to detect significant associations.

Conclusions

By age 11–16 years, we were able to identify not only the expected phenotypes of 

overweight/obese with high metabolic risk and normal weight with low metabolic risk, but 

also the rarer subtypes of overweight/obese with low metabolic risk and normal weight with 

high metabolic risk. Leveraging untargeted metabolomics data, we identified five metabolite 

patterns (long-chain fatty acids, BCAAs, acylcarnitines, diacylglycerols, and androgen 

steroid hormones) that differed across the phenotypes and provided insight into underlying 

biological pathways and mechanisms. Future research is required to validate our findings, 

evaluate the extent to which these metabolite patterns are associated with future health risks, 

and to identify dietary and lifestyle determinants of metabolites of interest.
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Refer to Web version on PubMed Central for supplementary material.
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What is already known on this topic?

• In adults, researchers have observed evidence of metabolically-healthy 

obesity and metabolically-unhealthy normal weight.

• Little is known regarding the existence of these phenotypes earlier in the life 

course, and the underlying biological pathways remain unclear.

What does this study add?

• In 524 adolescents, we found evidence of the existence of metabolically-

healthy overweight/obesity (OWOB) and metabolically-unhealthy normal 

weight (non-OWOB), in addition to the usual phenotypes of metabolically-

unhealthy OWOB and metabolically-healthy non-OWOB.

• Using untargeted metabolomics profiling of fasting plasma, we identified five 

metabolite patterns that differed with respect to OWOB status and high vs. 

low metabolic risk: long-chain fatty acids, branched chain amino acids, 

diacylglycerols, steroid hormones, and long-chain acylcarnitines.

Perng et al. Page 14

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Perng et al. Page 15

Ta
b

le
 1

B
ac

kg
ro

un
d 

ch
ar

ac
te

ri
st

ic
s 

of
 5

24
 P

ro
je

ct
 V

iv
a 

pa
rt

ic
ip

an
ts

.

O
ve

ra
ll

N
on

-O
W

O
B

 &
 L

ow
 M

et
R

is
k

N
on

-O
W

O
B

 &
 H

ig
h 

M
et

R
is

k
O

W
O

B
 &

 L
ow

 M
et

R
is

k
O

W
O

B
 &

 H
ig

h 
M

et
R

is
k

n=
52

4
n=

33
5

n=
29

n=
58

n=
10

2

B
ac

kg
ro

un
d 

ch
ar

ac
te

ri
st

ic
s

A
ge

 (
ye

ar
s)

13
.0

 ±
 0

.7
12

.9
 ±

 0
.7

13
.0

 ±
 0

.7
13

.0
 ±

 0
.8

13
.0

 ±
 0

.7

%
 F

em
al

e
48

.3
%

 (
25

3)
49

.6
%

 (
16

6)
37

.9
%

 (
11

)
55

.2
%

 (
32

)
43

.1
%

 (
44

)

R
ac

e/
et

hn
ic

ity

 
B

la
ck

15
.5

%
 (

81
)

11
.7

%
 (

39
)

6.
9%

 (
2)

22
.4

%
 (

13
)

26
.5

%
 (

27
)

 
H

is
pa

ni
c

4.
6%

 (
24

)
4.

5%
 (

15
)

6.
9%

 (
2)

3.
5%

 (
2)

4.
9%

 (
5)

 
W

hi
te

63
.0

%
 (

33
0)

66
.8

%
 (

22
3)

75
.9

%
 (

22
)

51
.7

%
 (

30
)

53
.9

%
 (

55
)

 
O

th
er

16
.8

%
 (

88
)

17
.1

%
 (

57
)

10
.3

%
 (

3)
22

.4
%

 (
13

)
14

.7
%

 (
15

)

%
 s

ta
rt

ed
 p

ub
er

ty
88

.2
%

 (
46

2)
87

.8
%

 (
29

4)
86

.2
%

 (
25

)
87

.9
%

 (
51

)
90

.2
%

 (
92

)

M
et

R
is

k 
z-

sc
or

e 
&

 it
s 

co
m

po
ne

nt
s

W
ai

st
 c

ir
cu

m
fe

re
nc

e 
(c

m
)

73
.5

 ±
 1

1.
7

67
.3

 ±
 5

.5
69

.3
 ±

 5
.4

82
.1

 ±
 7

.1
90

.3
 ±

 1
0.

7

SB
P 

(m
m

H
g)

10
7 

±
 9

10
5 

±
 8

11
7 

±
 9

10
7 

±
 8

11
2 

±
 9

H
D

L
 (

m
g/

dL
)

55
.9

 ±
 1

3.
2

59
.0

 ±
 1

3.
1

49
.8

 ±
 1

0.
4

58
.2

 ±
 1

1.
8

45
.9

 ±
 9

.3

H
O

M
A

-I
R

3.
22

 ±
 2

.3
4

2.
40

 ±
 1

.1
8

4.
97

 ±
 3

.0
2

3.
11

 ±
 1

.1
5

5.
49

 ±
 3

.4
7

T
ri

gl
yc

er
id

es
 (

m
g/

dL
)

68
.7

 ±
 3

0.
0

61
.5

 ±
 2

3.
4

10
0.

9 
±

 4
0.

1
63

.4
 ±

 2
7.

3
86

.1
 ±

 3
4.

2

M
et

R
is

k 
z-

sc
or

e
−

0.
14

 ±
 0

.4
6

−
0.

38
 ±

 0
.2

8
0.

37
 ±

 0
.2

7
−

0.
14

 ±
 0

.2
1

0.
48

 ±
 0

.3
9

O
ve

rw
ei

gh
t/o

be
se

 (
O

W
O

B
) 

de
fi

ne
d 

as
 ≥

85
%

ile
 o

f 
ag

e 
an

d 
se

x 
ac

co
rd

in
g 

to
 th

e 
C

D
C

 2
00

0 
gr

ow
th

 r
ef

er
en

ce
 f

or
 c

hi
ld

re
n 

2–
19

 y
ea

rs
. M

et
ab

ol
ic

 r
is

k 
(M

et
R

is
k)

 d
ef

in
ed

 a
s 

be
in

g 
in

 th
e 

4t
h 

qu
ar

til
e 

of
 a

n 
ex

te
rn

al
ly

 s
ta

nd
ar

di
ze

d 
m

et
ab

ol
ic

 s
yn

dr
om

e 
ri

sk
 z

-s
co

re
 c

om
pr

is
ed

 o
f 

w
ai

st
 c

ir
cu

m
fe

re
nc

e,
 s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e,
 r

ev
er

se
d 

H
D

L
, t

ri
gl

yc
er

id
es

, a
nd

 H
O

M
A

-I
R

.

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Perng et al. Page 16

Ta
b

le
 2

A
ss

oc
ia

tio
ns

 o
f 

ov
er

w
ei

gh
t/o

be
si

ty
 (

O
W

/O
B

) 
w

ith
 h

ig
h 

or
 lo

w
 m

et
ea

bo
lic

 r
is

k 
(M

et
R

is
k)

 w
ith

 m
et

ab
ol

ite
 f

ac
to

r 
sc

or
es

.

β 
(9

5%
 C

I)

P
-v

al
ue

N
on

-O
W

O
B

 &
 L

ow
 M

et
R

is
k

N
on

-O
W

O
B

 &
 H

ig
h 

M
et

R
is

k
O

W
O

B
 &

 L
ow

 M
et

R
is

k
O

W
O

B
 &

 H
ig

h 
M

et
R

is
k

n=
33

5
n=

29
n=

58
n=

10
2

Fa
ct

or
 1

0.
00

 (
R

ef
er

en
ce

)
−0

.9
0 

(−
1.

39
, −

0.
42

)
0.

27
 (

−
0.

09
, 0

.6
3)

−
0.

27
 (

−
0.

56
, 0

.0
2)

0.
00

02
*

Fa
ct

or
 2

0.
00

 (
R

ef
er

en
ce

)
0.

13
 (

−
0.

85
, 1

.1
1)

−
0.

37
 (

−
1.

10
, 0

.3
5)

0.
01

 (
−

0.
57

, 0
.5

9)
0.

75

Fa
ct

or
 3

0.
00

 (
R

ef
er

en
ce

)
0.

04
 (

−
0.

64
, 0

.7
1)

−
0.

12
 (

−
0.

61
, 0

.3
8)

−
0.

32
 (

−
0.

72
, 0

.0
8)

0.
47

Fa
ct

or
 4

0.
00

 (
R

ef
er

en
ce

)
−

0.
01

 (
−

0.
88

, 0
.8

5)
−

0.
38

 (
−

1.
02

, 0
.2

6)
−

0.
32

 (
−

0.
84

, 0
.1

9)
0.

48

Fa
ct

or
 5

0.
00

 (
R

ef
er

en
ce

)
0.

25
 (

−
0.

42
, 0

.9
1)

−
0.

06
 (

−
0.

55
, 0

.4
3)

0.
58

 (
0.

17
, 0

.9
8)

0.
03

Fa
ct

or
 6

0.
00

 (
R

ef
er

en
ce

)
0.

07
 (

−
0.

74
, 0

.8
8)

−
0.

32
 (

−
0.

92
, 0

.2
8)

−
0.

17
 (

−
0.

65
, 0

.3
1)

0.
70

Fa
ct

or
 7

0.
00

 (
R

ef
er

en
ce

)
0.

47
 (

0.
04

, 0
.9

1)
−0

.3
6 

(−
0.

68
, −

0.
04

)
−

0.
13

 (
−

0.
39

, 0
.1

2)
0.

01

Fa
ct

or
 8

0.
00

 (
R

ef
er

en
ce

)
0.

75
 (

−
0.

04
, 1

.5
4)

0.
11

 (
−

0.
47

, 0
.6

9)
0.

88
 (

0.
42

, 1
.3

5)
0.

00
1*

Fa
ct

or
 9

0.
00

 (
R

ef
er

en
ce

)
−

0.
03

 (
−

0.
50

, 0
.4

5)
0.

25
 (

−
0.

10
, 0

.6
0)

0.
44

 (
0.

16
, 0

.7
2)

0.
01

a E
st

im
at

es
 a

re
 a

dj
us

te
d 

fo
r 

ag
e,

 s
ex

, r
ac

e/
et

hn
ic

ity
, a

nd
 p

ub
er

ta
l s

ta
tu

s.
 O

W
O

B
 is

 d
ef

in
ed

 a
s 

≥8
5t

h 
pe

rc
en

til
e 

of
 a

ge
- 

an
d 

se
x-

sp
ec

if
ic

 B
M

I 
ac

co
rd

in
g 

to
 th

e 
C

D
C

 2
00

0 
gr

ow
th

 r
ef

er
en

ce
; h

ig
h 

M
et

R
is

k 
de

fi
ne

d 
as

 b
ei

ng
 in

 th
e 

4t
h 

qu
ar

til
e 

of
 a

n 
ex

te
rn

al
ly

 s
ta

nd
ar

di
ze

d 
m

et
ab

ol
ic

 s
yn

dr
om

e 
ri

sk
 z

-s
co

re
.

B
ol

d 
fo

nt
 in

di
ca

te
s 

st
at

is
tic

al
 s

ig
ni

fi
ca

nc
e 

at
 a

lp
ha

 =
 0

.0
5.

* D
en

ot
es

 s
ta

tis
tic

al
 s

ig
ni

fi
ca

nc
e 

af
te

r 
B

on
fe

rr
on

i c
or

re
ct

io
n 

(P
 <

 α
 <

 0
.0

5/
9=

0.
00

6)

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Perng et al. Page 17

Ta
b

le
 3

M
et

ab
ol

ite
 c

om
po

si
tio

n 
of

 f
ac

to
rs

 o
f 

in
te

re
st

.

F
ac

to
r 

1

M
et

ab
ol

it
e

Su
bp

at
hw

ay
F

ac
to

r 
lo

ad
in

g

O
le

at
e/

va
cc

en
at

e 
(1

8:
1)

L
on

g-
ch

ai
n 

fa
tty

 a
ci

d
0.

91

E
ic

os
en

oa
te

 (
20

:1
)

L
on

g-
ch

ai
n 

fa
tty

 a
ci

d
0.

88

M
yr

is
to

le
oy

lc
ar

ni
tin

e 
(C

14
:1

)*
Fa

tty
 a

ci
d 

m
et

ab
ol

is
m

 (
ac

yl
ca

rn
iti

ne
)

0.
87

10
-H

ep
ta

de
ce

no
at

e 
(1

7:
1n

7)
L

on
g-

ch
ai

n 
fa

tty
 a

ci
d

0.
87

D
ih

om
o-

lin
ol

ei
c 

ac
id

 (
20

:2
n6

)
Po

ly
un

sa
tu

ra
te

d 
Fa

tty
 A

ci
d 

(n
3 

an
d 

n6
)

0.
87

3-
H

yd
ro

xy
la

ur
at

e
Fa

tty
 A

ci
d,

 M
on

oh
yd

ro
xy

0.
87

Pa
lm

ita
te

 (
16

:0
)

L
on

g-
ch

ai
n 

fa
tty

 a
ci

d
0.

87

L
in

ol
ei

c 
ac

id
 (

18
:2

n6
)

Po
ly

un
sa

tu
ra

te
d 

Fa
tty

 A
ci

d 
(n

3 
an

d 
n6

)
0.

86

U
nk

no
w

n
--

0.
86

Pa
lm

ito
le

at
e 

(1
6:

1n
7)

L
on

g-
ch

ai
n 

fa
tty

 a
ci

d
0.

85

F
ac

to
r 

5

M
et

ab
ol

it
e

Su
bp

at
hw

ay
F

ac
to

r 
lo

ad
in

g

V
al

in
e

L
eu

ci
ne

, I
so

le
uc

in
e 

an
d 

V
al

in
e 

M
et

ab
ol

is
m

0.
68

U
re

a
U

re
a 

cy
cl

e;
 A

rg
in

in
e 

an
d 

Pr
ol

in
e 

M
et

ab
ol

is
m

0.
66

2-
M

et
hy

lb
ut

yr
yl

ca
rn

iti
ne

 (
C

5)
L

eu
ci

ne
, I

so
le

uc
in

e 
an

d 
V

al
in

e 
M

et
ab

ol
is

m
0.

65

Is
ov

al
er

yl
ca

rn
iti

ne
 (

C
5)

L
eu

ci
ne

, I
so

le
uc

in
e 

an
d 

V
al

in
e 

M
et

ab
ol

is
m

0.
64

U
nk

no
w

n
U

re
a 

ad
du

ct
0.

62

Pr
op

io
ny

lc
ar

ni
tin

e 
(C

3)
Fa

tty
 A

ci
d 

M
et

ab
ol

is
m

 (
al

so
 B

C
A

A
 M

et
ab

ol
is

m
)

0.
62

2-
O

xo
ar

gi
ni

ne
*

U
re

a 
cy

cl
e;

 A
rg

in
in

e 
an

d 
Pr

ol
in

e 
M

et
ab

ol
is

m
0.

61

A
rg

in
in

at
e*

U
re

a 
cy

cl
e;

 A
rg

in
in

e 
an

d 
Pr

ol
in

e 
M

et
ab

ol
is

m
0.

59

D
ih

yd
ro

or
ot

at
e

Py
ri

m
id

in
e 

M
et

ab
ol

is
m

, O
ro

ta
te

 c
on

ta
in

in
g

0.
59

K
yn

ur
en

at
e

T
ry

pt
op

ha
n 

m
et

ab
ol

is
m

0.
57

F
ac

to
r 

7

M
et

ab
ol

it
e

Su
bp

at
hw

ay
F

ac
to

r 
lo

ad
in

g

U
nk

no
w

n
--

0.
83

O
le

oy
lc

ar
ni

tin
e 

(C
18

:1
)

Fa
tty

 A
ci

d 
M

et
ab

ol
is

m
(A

cy
l C

ar
ni

tin
e)

0.
66

L
in

ol
eo

yl
ca

rn
iti

ne
 (

C
18

:2
)*

Fa
tty

 A
ci

d 
M

et
ab

ol
is

m
(A

cy
l C

ar
ni

tin
e)

0.
64

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Perng et al. Page 18

5-
O

xo
pr

ol
in

e
G

lu
ta

th
io

ne
 m

et
ab

ol
is

m
0.

64

D
ih

om
o-

lin
ol

en
oy

lc
ar

ni
tin

e 
(C

20
:3

n3
 o

r 
6)

*
Fa

tty
 A

ci
d 

M
et

ab
ol

is
m

(A
cy

l C
ar

ni
tin

e)
0.

64

H
em

e
H

em
og

lo
bi

n 
an

d 
Po

rp
hy

ri
n 

M
et

ab
ol

is
m

0.
64

A
ra

ch
id

on
oy

lc
ar

ni
tin

e 
(C

20
:4

)
Fa

tty
 A

ci
d 

M
et

ab
ol

is
m

(A
cy

l C
ar

ni
tin

e)
0.

61

Py
ru

va
te

G
ly

co
ly

si
s,

 G
lu

co
ne

og
en

es
is

, a
nd

 P
yr

uv
at

e 
M

et
ab

ol
is

m
0.

57

D
ih

om
o-

lin
ol

eo
yl

ca
rn

iti
ne

 (
C

20
:2

)*
Fa

tty
 A

ci
d 

M
et

ab
ol

is
m

(A
cy

l C
ar

ni
tin

e)
0.

57

A
dr

en
oy

lc
ar

ni
tin

e 
(C

22
:4

)*
Fa

tty
 A

ci
d 

M
et

ab
ol

is
m

(A
cy

l C
ar

ni
tin

e)
0.

56

F
ac

to
r 

8

M
et

ab
ol

it
e

Su
bp

at
hw

ay
F

ac
to

r 
lo

ad
in

g

D
ia

cy
lg

ly
ce

ro
l (

16
:1

/1
8:

2 
[2

],
 1

6:
0/

18
:3

 [
1]

)*
D

ia
cy

lg
ly

ce
ro

l
0.

64

Pa
lm

ito
yl

-l
in

ol
eo

yl
-g

ly
ce

ro
l (

16
:0

/1
8:

2)
 [

2]
*

D
ia

cy
lg

ly
ce

ro
l

0.
64

L
in

ol
eo

yl
-a

ra
ch

id
on

oy
l-

gl
yc

er
ol

 (
18

:2
/2

0:
4)

 [
2]

*
D

ia
cy

lg
ly

ce
ro

l
0.

63

Pa
lm

ito
le

oy
l-

lin
ol

eo
yl

-g
ly

ce
ro

l (
16

:1
/1

8:
2)

 [
1]

*
D

ia
cy

lg
ly

ce
ro

l
0.

63

O
le

oy
l-

lin
ol

eo
yl

-g
ly

ce
ro

l (
18

:1
/1

8:
2)

 [
2]

D
ia

cy
lg

ly
ce

ro
l

0.
60

O
le

oy
l-

ar
ac

hi
do

no
yl

-g
ly

ce
ro

l (
18

:1
/2

0:
4)

 [
2]

*
D

ia
cy

lg
ly

ce
ro

l
0.

59

L
in

ol
eo

yl
-a

ra
ch

id
on

oy
l-

gl
yc

er
ol

 (
18

:2
/2

0:
4)

 [
1]

*
D

ia
cy

lg
ly

ce
ro

l
0.

58

Pa
lm

ito
le

oy
l-

ar
ac

hi
do

no
yl

-g
ly

ce
ro

l (
16

:1
/2

0:
4)

 [
2]

*
D

ia
cy

lg
ly

ce
ro

l
0.

57

O
le

oy
l-

lin
ol

eo
yl

-g
ly

ce
ro

l (
18

:1
/1

8:
2)

 [
1]

D
ia

cy
lg

ly
ce

ro
l

0.
56

O
le

oy
l-

ar
ac

hi
do

no
yl

-g
ly

ce
ro

l (
18

:1
/2

0:
4)

 [
1]

*
D

ia
cy

lg
ly

ce
ro

l
0.

54

F
ac

to
r 

9

M
et

ab
ol

it
e

Su
bp

at
hw

ay
F

ac
to

r 
lo

ad
in

g

A
nd

ro
st

en
ed

io
l (

3b
et

a,
17

be
ta

) 
di

su
lf

at
e 

(2
)

A
nd

ro
ge

ni
c 

St
er

oi
ds

0.
82

21
-H

yd
ro

xy
pr

eg
ne

no
lo

ne
 d

is
ul

fa
te

Pr
eg

ne
no

lo
ne

 S
te

ro
id

s
0.

74

U
nk

no
w

n
--

0.
74

A
nd

ro
st

en
ed

io
l (

3b
et

a,
17

be
ta

) 
di

su
lf

at
e 

(1
)

A
nd

ro
ge

ni
c 

St
er

oi
ds

0.
70

U
nk

no
w

n
--

0.
69

U
nk

no
w

n
--

0.
69

A
nd

ro
st

en
ed

io
l (

3b
et

a,
17

be
ta

) 
m

on
os

ul
fa

te
 (

2)
A

nd
ro

ge
ni

c 
St

er
oi

ds
0.

69

U
nk

no
w

n
--

0.
68

D
eh

yd
ro

is
oa

nd
ro

st
er

on
e 

su
lf

at
e 

(D
H

E
A

-S
)

A
nd

ro
ge

ni
c 

St
er

oi
ds

0.
67

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Perng et al. Page 19

Pr
eg

ne
ne

di
ol

 d
is

ul
fa

te
 (

C
21

H
34

O
8S

2)
*

pr
eg

ne
ne

di
ol

 d
is

ul
fa

te
 (

C
21

H
34

O
8S

2)
*

0.
67

* In
di

ca
te

s 
tie

r 
2 

id
en

tif
ic

at
io

n 
in

 w
hi

ch
 n

o 
co

m
m

er
ci

al
ly

 a
va

ila
bl

e 
au

th
en

tic
 s

ta
nd

ar
ds

 c
ou

ld
 b

e 
fo

un
d,

 h
ow

ev
er

 a
nn

ot
at

ed
 b

as
ed

 o
n 

ac
cu

ra
te

 m
as

s,
 s

pe
ct

ra
l a

nd
 c

hr
om

at
og

ra
ph

ic
 s

im
ila

ri
ty

 to
 ti

er
 1

 id
en

tif
ie

d 
co

m
po

un
ds

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Perng et al. Page 20

Ta
b

le
 4

A
ss

oc
ia

tio
ns

 o
f 

m
et

ab
ol

ic
 s

yn
dr

om
e 

co
m

po
ne

nt
s 

w
ith

 f
ac

to
r 

sc
or

es
 a

m
on

g 
ad

ol
es

ce
nt

s 
cl

as
si

fi
ed

 a
s 

no
n-

ov
er

w
ei

gh
t/o

be
se

 (
no

n-
O

W
O

B
) 

an
d 

ov
er

w
ei

gh
t/

ob
es

e 
(O

W
O

B
).

β 
(9

5%
 C

I)
 p

er
 1

 u
ni

t 
of

 e
ac

h 
ag

e-
 a

nd
 s

ex
-s

pe
ci

fi
c 

z-
sc

or
ea

W
ai

st
 c

ir
c.

H
O

M
A

-I
R

In
ve

rt
ed

 H
D

L
T

ri
gl

yc
er

id
es

SB
P

N
on

-O
W

O
B

 (
n=

36
4)

b

 
Fa

ct
or

 1
0.

15
 (

−
0.

34
, 0

.6
3)

−0
.5

5 
(−

0.
74

, −
0.

36
)

−
0.

14
 (

−
0.

34
, 0

.0
5)

−
0.

20
 (

−
0.

41
, 0

.0
1)

−
0.

13
 (

−
0.

30
, 0

.0
4)

 
Fa

ct
or

 5
−

0.
29

 (
−

0.
93

, 0
.3

5)
0.

08
 (

−
0.

18
, 0

.3
4)

0.
01

 (
−

0.
24

, 0
.2

7)
−

0.
01

 (
−

0.
29

, 0
.2

7)
0.

08
 (

−
0.

14
, 0

.3
0)

 
Fa

ct
or

 7
−0

.5
2 

(−
0.

95
, −

0.
10

)
0.

09
 (

−
0.

08
, 0

.2
6)

0.
14

 (
−

0.
03

, 0
.3

1)
0.

35
 (

0.
17

, 0
.5

4)
0.

17
 (

0.
02

, 0
.3

2)

 
Fa

ct
or

 8
0.

25
 (

−
0.

51
, 1

.0
0)

0.
22

 (
−

0.
09

, 0
.5

3)
0.

22
 (

−
0.

07
, 0

.5
2)

0.
99

 (
0.

68
, 1

.3
0)

0.
06

 (
−

0.
20

, 0
.3

3)

 
Fa

ct
or

 9
0.

58
 (

0.
11

, 1
.0

5)
0.

04
 (

−
0.

15
, 0

.2
3)

0.
07

 (
−

0.
11

, 0
.2

6)
0.

06
 (

−
0.

14
, 0

.2
7)

−
0.

04
 (

−
0.

21
, 0

.1
3)

O
W

O
B

 (
n=

16
0)

b

 
Fa

ct
or

 1
−0

.3
9 

(−
0.

73
, −

0.
05

)
−0

.2
6 

(−
0.

40
, −

0.
12

)
−0

.3
2 

(−
0.

61
, −

0.
03

)
0.

07
 (

−
0.

19
, 0

.3
3)

−
0.

07
 (

−
0.

30
, 0

.1
6)

 
Fa

ct
or

 5
0.

75
 (

0.
27

, 1
.2

3)
0.

25
 (

0.
04

, 0
.4

5)
0.

17
 (

−
0.

26
, 0

.5
9)

−
0.

30
 (

−
0.

67
, 0

.0
7)

0.
06

 (
−

0.
27

, 0
.3

9)

 
Fa

ct
or

 7
0.

26
 (

−
0.

05
, 0

.5
5)

0.
00

 (
−

0.
12

, 0
.1

3)
0.

22
 (

−
0.

04
, 0

.0
5)

0.
02

 (
−

0.
20

, 0
.2

4)
0.

05
 (

−
0.

15
, 0

.2
4)

 
Fa

ct
or

 8
0.

28
 (

−
0.

29
, 0

.8
7)

0.
07

 (
−

0.
19

, 0
.3

3)
0.

40
 (

−
0.

11
, 0

.9
0)

0.
95

 (
0.

54
, 1

.3
7)

0.
05

 (
−

0.
35

, 0
.4

4)

 
Fa

ct
or

 9
0.

00
 (

−
0.

32
, 0

.3
2)

0.
06

 (
−

0.
08

, 0
.2

0)
0.

09
 (

−
0.

18
, 0

.3
7)

0.
23

 (
−0

.0
0,

 0
.4

7)
−

0.
01

 (
−

0.
22

, 0
.2

0)

a E
st

im
at

es
 a

re
 a

dj
us

te
d 

fo
r 

ag
e,

 s
ex

, r
ac

e/
et

hn
ic

ity
, a

nd
 p

ub
er

ta
l s

ta
tu

s

b O
W

O
B

 a
nd

 n
on

-O
W

O
B

 d
ef

in
ed

 a
s 

≥8
5t

h 
an

d 
<

85
th

 p
er

ce
nt

ile
, r

es
pe

ct
iv

el
y,

 o
f 

ag
e-

 a
nd

 s
ex

-s
pe

ci
fi

c 
B

M
I 

ac
co

rd
in

g 
to

 th
e 

C
D

C
 g

ro
w

th
 r

ef
er

en
ce

.

B
ol

d 
fo

nt
 in

di
ca

te
s 

st
at

is
tic

al
 s

ig
ni

fi
ca

nc
e 

at
 a

lp
ha

 =
 0

.0
5.

Obesity (Silver Spring). Author manuscript; available in PMC 2021 February 01.


	Abstract
	INTRODUCTION
	METHODS
	Study population
	Blood collection
	Overweight/obesity and metabolic risk phenotype
	Untargeted metabolomics profiling
	Covariates
	Data analysis

	RESULTS
	Descriptive statistics
	Associations between phenotype and metabolite patterns
	Association of phenotype with metabolite factors after stratification by weight status
	Associations between individual components of the MetRisk z-score and metabolite patterns

	DISCUSSION
	Factor 1: Long-chain fatty acids
	Factor 5: Branched chain amino acids
	Factor 7: Acylcarnitines
	Factor 8: Diacylglycerols
	Factor 9: Androgen steroid hormones
	Strengths & limitations
	Conclusions

	References
	Table 1
	Table 2
	Table 3
	Table 4

