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Abstract

White matter hyperintensities (WMH) are brain white matter lesions that are hyperintense on fluid 

attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans. Larger WMH 

volumes have been associated with Alzheimer’s Disease (AD) and with cognitive decline. 

However, the relationship between WMH volumes and cross-sectional cognitive measures has 

been inconsistent. We hypothesize that this inconsistency may arise from 1) the presence of AD-

specific neuropathology that may obscure any WMH effects on cognition, and 2) varying criteria 

for creating a WMH segmentation. Manual and automated programs are typically used to 

determine segmentation boundaries, but criteria for those boundaries can differ. It remains unclear 

whether WMH volumes are associated with cognitive deficits, and which segmentation criteria 

influence the relationships between WMH volumes and clinical outcomes.

In a sample of 260 non-demented participants (ages 55-90, 141 males, 119 females) from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), we compared the performance of five 

WMH segmentation methods, by relating the WMH volumes derived using each method to both 

clinical diagnosis and composite measures of executive function and memory. To separate WMH 

effects on cognition from effects related to AD-specific processes, we performed analyses 

separately in people with and without abnormal cerebrospinal fluid amyloid levels.
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WMH volume estimates that excluded more diffuse, lower-intensity lesions were more strongly 

correlated with clinical diagnosis and cognitive performance, and only in those without abnormal 

amyloid levels. These findings may inform best practices for WMH segmentation, and suggest that 

AD neuropathology may mask WMH effects on clinical diagnosis and cognition.
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1. Introduction

White matter hyperintensities (WMH) in the brain white matter are lesions having a signal 

intensity brighter than the surrounding white matter on a magnetic resonance imaging (MRI) 

fluid attenuation inversion recovery (FLAIR) sequence (Yoshita et al., 2006). WMHs are 

associated with vascular risk (Prins and Scheltens, 2015; Scott et al., 2015) and may 

represent increased blood brain barrier permeability, plasma leakage, and degeneration of 

axons and myelin (Haller et al., 2013). WMH volumes are associated with older age, 

Alzheimer’s disease (AD), small vessel disease, and cognitive decline, making them a 

measure of clinical interest (Brickman et al., 2009; Prins and Scheltens, 2015).

AD-specific processes may influence the observed effect of WMHs on clinical diagnosis and 

cognition. In cross-sectional data, amyloid plaque counts do not correlate as strongly with 

cognition as neurofibrillary tangle counts (Wilcock and Esiri, 1982). Still the presence of 

amyloid positivity in cognitively intact older adults is considered to be a sign of preclinical 

AD (Hane et al., 2017), and is associated with faster longitudinal decline in cognitive 

function compared to that seen in amyloid-negative older adults (Mortamais et al., 2017). 

WMH and amyloid deposition in AD may influence one another (Grimmer et al., 2012; 

Scott et al., 2015; Scott et al., 2016) and both may contribute to cognitive impairment 

(Provenzano et al., 2013; Gordon et al., 2015). We used amyloid positivity as a surrogate for 

AD-specific processes, which may influence cognition independently of, and together with 

WMH. We studied the effect of WMH on cognition by evaluating the relationship separately 

in those who were amyloid positive (Aβ+) or negative (Aβ−) (Shaw et al., 2009). We 

hypothesized that the relationship between WMH volume and cognition would be stronger 

in those who were Aβ− (and thus had less cognitive variability added by AD-related 

processes) compared to those who were Aβ+.

Larger WMH volumes have been associated with both decreased global cognitive function 

(Au et al., 2006; Frisoni et al., 2007; Kloppenborg et al., 2014) and domain specific-

cognitive impairment, including executive function (Gunning-Dixon and Raz, 2000; Smith 

et al., 2011; Lampe et al., 2017; Aljondi et al., 2018) and memory (de Groot et al., 2000; 

Gunning-Dixon and Raz, 2000; Smith et al., 2011; Lampe et al., 2017). However, results 

vary among studies that have evaluated the WMHs to cognition relationship. This variability 

may arise from differences in the classification of lesion boundaries in segmentation 

methods (Smart et al., 2011; Caligiuri et al., 2015; Wang et al., 2015; Dadar et al., 2017), 

which may capture physiologically different components (Haller et al., 2013).
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Manual segmentation - the gold standard when comparing automated methods - is time 

consuming, requiring multiple raters and training to establish intra-rater and inter-rater 

reliability. Further, expert reviewers in different laboratories may use different visual rating 

scales or disagree about what constitutes a clinically-relevant WMH boundary or location. 

Therefore, acceptable intra-study reliability may not translate into high reliability between 

methods or studies (Grimaud et al., 1996; Mantyla et al., 1997; Kapeller et al., 2003; Prins et 

al., 2004; Yoshita et al., 2005). Often, limited information is provided in publications to 

describe the criteria used for defining manual segmentations - such as whether to include 

minimally hyperintense lesions, or lighter ‘halos’ around larger higher-intensity lesions. This 

makes ground truth and replication across studies difficult (Firbank et al., 2004; Gibson et 

al., 2010; Smart et al., 2011; Iorio et al., 2013; Griffanti et al., 2018). It is unclear which 

WMH manual segmentation criteria result in the most clinically-relevant lesion assessments 

(van Straaten et al., 2006).

We calculated WMH volumes using the default options for five automated WMH 

segmentation algorithms. Our goal was not to evaluate the software packages themselves, all 

of which can be optimized, but rather to create a range of typical segmentations that allowed 

us to identify which features strengthened the sensitivity to detecting a relationship between 

WMH volumes and cognitive measures in Aβ+ and Aβ− non-demented older adults.

2. Materials and Methods

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

2.1 Participants

We evaluated 260 non-demented participants, aged 55 to 90 years old, from ADNI2 who had 

all of the following variables available: 1) 3T MRI T1-weighted and fluid attenuated 

inversion recovery (FLAIR) images, 2) cerebrospinal fluid (CSF) (described further in the 

ADNI methods page http://adni.loni.usc.edu/methods/), and 3) neuropsychological 

assessment. Both the CSF collection and neuropsychological testing occurred within 18.5 

months (average of 3.2 months and 27 days, respectively) of the MRI scan. Four 

supplemental participants were used for training of our in-house WMH intensity ratio 

method, and four additional participants were removed after failing FreeSurfer segmentation 

quality control procedures. Demographic information is tabulated in Table 1. Data analyzed 

in this study - including MRI scans, CSF amyloid-β1-42 (Aβ42) levels, and 

neuropsychological test scores - were downloaded from the publicly available ADNI Image 

Data Archive (IDA; https://ida.loni.usc.edu). WMH volumes assessed using one of the five 

algorithms we evaluated - the intensity histograms algorithm – were also downloaded 

directly from the ADNI IDA.
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2.2 Neuropsychological testing and diagnostic criteria

Participants underwent ADNI baseline neuropsychological testing - including tests of long-

term and working memory, language, and executive function - within 3 months of their brain 

scan. Clinical diagnoses were determined by ADNI as follows: probable AD is assessed 

according to NINDS/ADRDA criteria (McKhann et al. 1984). However, to minimize the 

contributions to cognition of neurodegeneration that is specific to AD, our study included 

only participants with MCI (N = 162) and those who were cognitively intact (N = 98). 

Participants diagnosed with MCI did not meet the diagnostic criteria for dementia, but did 

report a memory complaint. MCI participants had objective memory loss as measured by 

education-adjusted scores on the Wechsler Memory Scale-Revised - Logical Memory II 

(WMS-Logical Memory II; Score ≤ 8, 4, or 2 for having completed 16, 8-15, or 0-7 years of 

education, respectively). They also had a Clinical Dementia Rating (CDR) scores of 0.5 

(with a mandatory requirement that CDR memory box score was 0.5 or higher), an absence 

of significant impairments in other cognitive domains, and preserved daily life activities. 

Cognitively intact controls did not meet the diagnostic criteria for probable AD or MCI and 

had no memory complaints. They had a Mini-Mental State Exam (MMSE) score between 

24-30, a CDR of 0, and scored higher than the education-adjusted MCI thresholds listed 

above on the Wechsler Memory Scale-Revised - Logical Memory II scores. Participants 

were excluded if they had a serious neurological condition, neuropsychiatric condition (e.g., 

major depression, bipolar disorder, schizophrenia), or history of brain injury. We used 

previously-validated ADNI composite scores for executive function (Gibbons et al., 2012) 

and memory (Crane et al., 2012). The normalized composite measures of executive function 

and memory were derived from an iterative process that applied item response theory and 

confirmatory factory analysis to previously acquired ADNI neuropsychological battery 

(Crane et al., 2012, Gibbons et al., 2012). The executive function composite score was 

derived from five clock drawing items (circle, symbol, numbers, hands, and time), Trail 

Making Test parts A and B, and Category Fluency (animals). The memory composite score 

was derived from Rey Auditory Verbal Learning Test (RAVLT), AD Assessment Schedule - 

Cognition (ADAS-Cog), MMSE, and WMS-Logical Memory II.

2.3 MRI scanning

Participants underwent whole-brain MRI scanning on 3-Tesla scanners across 51 sites across 

North America. Each participant was scanned using an anatomical T1-weighted sequence 

(1.2 mm thick sagittal slices; 0.9375 × 0.9375 mm2 in-plane resolution, 256 × 256 matrix) 

and a T2-weighted fluid attenuated inversion recovery (FLAIR) sequence (5 mm thick axial 

slices; 0.86 × 0.86 mm2 in-plane resolution). All MRI acquisition sites passed rigorous 

scanner validation tests and the scan protocols were optimized across sites and 

manufacturers (GE, Philips, Siemens). A GE scanner was used to acquire MRI data on 61 

participants across 14 sites, a Philips scanner was used to acquire MRI data on 46 

participants across 10 sites, and a Siemens scanner was used to acquire MRI data on 153 

participants across 27 sites. Detailed procedures on scan acquisition and optimization are 

provided elsewhere (www.adni.loni.usc.edu). All T1-weighted and FLAIR images were 

visually checked for quality. We did not perform bias correction on the FLAIR, because 1) 

our visual quality control assessment did not find extensive FLAIR field inhomogeneities, 

and 2) a recent analysis (Hernandez et al. 2016) of bias correction performance on FLAIR 
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white matter hyperintensity progression found that applying a bias field correction was not 

recommended for FLAIR images. Although there are advantages of correcting the magnetic 

field inhomogeneities seen in FLAIR, that study found that bias field correction in this 

modality may result in distortion of real hyperintensities with a specific expense of subtle 

intensity differences. No T1 or FLAIR image had artifacts that were severe enough to 

interfere with structural or WMH segmentations. A board-certified neurologist was part of 

process of reviewing the FLAIR images and WMH algorithm development.

2.4 CSF collection and analysis

Participants underwent at least one lumbar puncture to obtain CSF for assays of several 

biomarkers. The sample collection and analysis processes are described in Shaw et al. 

(2009). Aβ+ participants were defined as those who had CSF Aβ42 levels less than 192 

pg/ml, consistent with prior guidelines (Shaw et al. 2009).

2.5 In-house WMH algorithm

We developed a semi-automated method to segment white matter hyperintensities using both 

T1-weighted and FLAIR images (Figure 1).

2.5.1 Creating white matter masks—White matter masks were used to exclude 

hyperintensities other than WMHs from our segmentations. To create these masks, we 

performed bias field correction on the T1-weighted scans using the Advanced Normalization 

Tools (ANTs) N4 correction (Tustison et al., 2010). We then submitted these bias-corrected 

images to FreeSurfer (version 5.3) to obtain tissue-segmentation masks and intracranial 

volume estimation (Fischl et al., 2002). FreeSurfer estimates intracranial volume (ICV) 

using the known relationship between the ICV and the linear transform of an individual 

brain to MNI305 template space (Buckner et al. 2004). Because white matter masks 

produced by FreeSurfer often omit WMHs, we constructed white matter masks by 

subtracting the gray matter and CSF masks from the full brain mask. Rarely, WMH were 

extensive enough that they were contiguous with gray matter on the T1-weighted image. 

When that happened, the intensity values were similar enough that WMHs were included 

erroneously in the gray matter mask. We therefore visually inspected and manually edited all 

WM masks to ensure that the gray matter masks did not include WMHs. Each participant’s 

resulting white matter mask was linearly transformed (6 degrees of freedom) to the 

participant’s own FLAIR image using FMRIB’s Linear Image Registration Tool (FLIRT) in 

FSL (Jenkinson and Smith, 2001; Jenkinson et al., 2002). This white matter mask in FLAIR 

space was then non-linearly transformed to the FLAIR image using the ANTs symmetric 

image normalization (SyN) method (Avants et al., 2008). We examined and edited the white 

matter masks as needed, in FLAIR space, to ensure all white matter (including WMHs) was 

included.

Next, for each participant, we constructed a mask of the peripheral white matter alone 

(which is less likely to contain WMHs) to calculate the mean intensity for the WM that does 

not contain lesions. To do this, first, we eroded a binary whole brain Montreal Neurological 

Institute (MNI 152) 1 mm template brain mask by 63% (an arbitrary value chosen to provide 

a mask that excluded peripheral white matter). We non-linearly transformed this eroded 
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template brain into each individual's T1-weighted image using the ANTs SyN method. The 

eroded brain masks were then non-linearly transformed into each participant’s FLAIR image 

space using ANTs SyN and were subtracted from the participant’s complete white matter 

mask in FLAIR space to create a mask that contained only the brain periphery.

2.5.2 Segmenting WMHs—Our in-house WMH segmentation protocol is illustrated in 

Figure 1 and detailed here. First, we created a reference standard segmentation that was 

visually similar to a manual segmentation in a sub-sample of four training participants who 

had minimal white matter hyperintensities (WMH) on the FLAIR image. We chose 

participants with minimal WMH, because for these participants, WMH were clearly defined 

and unambiguous, and they contributed minimally to the overall mean white matter intensity 

for that participant. In our four training participants, we automatically identified WMHs by 

applying a participant-specific intensity threshold at 99th percentile of the signal intensity in 

the total white matter for each participant, using the fslmaths function in FSL. We arrived at 

this 99th percentile threshold by visually assessing which threshold adequately segmented 

these clearly delineated lesions in our test participants. If we had included participants 

having extensive WMH in this training set, their mean white matter intensity would be low, 

because the WMHs themselves would reduce the mean signal intensity in the WM mask. 

Therefore, in participants with extensive WMH, a 99th percentile intensity threshold would 

not adequately identify WMHs. Once the WMHs were identified in these four participants, 

we used their data to calculate a study-specific intensity ratio that could be used to identify 

high intensity WMH, even in participants who also have more extensive and diffuse lesions. 

To calculate a study-specific intensity ratio, across the four training participants, we divided 

the mean minimum intensity of the WMHs by the mean intensity of the normal-appearing 

white matter (excluding the WMHs). The voxel, volume, and intensity information derived 

from the four training participants is tabulated in Table 2. This resulted in a study-specific 

WMH intensity ratio indicating how much greater the minimum intensity of WMHs was 

compared with the mean intensity of normal-appearing WM. We then obtained a participant-

specific WMH map, by calculating the mean intensity value of the participant’s FLAIR 

image within the peripheral white matter mask (see 2.5.1 Creating white matter masks) and 

multiplied it by our study-specific WMH intensity ratio to obtain a threshold, which we then 

applied to the participant’s original FLAIR image.

2.5.3 Regional WMH Segmentation—We investigated regional differences in WMH 

accumulation across three lobes: frontal, temporal, and parietal outlined based on the MNI 

lobe map atlas from FSL 5.0.7 (maxprob-thr0-1mm). To the extent that the standard lobe 

map did not cover the entire white matter, we manually extended the lobar gray matter 

boundaries into the white matter, and visually confirmed that the segmentations were 

accurate. Figure 2 depicts before and after we manually extended the lobar gray matter 

boundaries into the white matter. The lobar masks were registered to the participant’s 

FLAIR space. This allowed us to calculate the WMH volume for the frontal, temporal, and 

parietal lobes.

We also performed an analysis to separate periventricular and deep WMH. We did this by 

dilating the ventricle segmentation mask in the participant’s FLAIR space by a sphere kernel 
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of 5.16 mm (6 voxels × .86 mm resolution). Figure S1 in the supplemental material 

illustrates testing performed on the separation of periventricular and deep WMH boundaries 

by kernel size. We multiplied the dilated ventricle mask by the participant-specific WMH 

map to construct the periventricular WMH map. The deep WMH was calculated by 

subtracting the difference between the participant-specific WMH map and the 

periventricular WMH map volumes. We performed quality control on each of the 

segmentation masks to ensure that the individual masks’ boundaries were accurate and the 

ventricular segmentation did not have artificial enlargement.

2.5.4 Intensity thresholding—We next investigated how varying the inclusiveness of 

the WMH masks (to include or exclude more diffuse signal surrounding hyperintense 

lesions) affected the relationship of WMH volume to cognition. To do this we created masks 

based on different percentages of the constructed intensity ratio. We calculated WMH 

volumes derived from thresholding at 85%, 90%, 95%, and 105% of the intensity ratio. To 

determine the new threshold for each percentage we multiplied the percent by the unadjusted 

intensity ratio and applied the adjusted value to the mean signal intensity in the peripheral 

mask. Lower threshold percentages provided a more ‘lenient’ WMH map - that included 

more diffuse lesions - while higher values included only the highest intensity voxels in the 

white matter, often associated with more discrete lesions.

2.6 Existing white matter hyperintensity segmentation algorithms

We also evaluated how WMH volumes related to cognition using four WMH algorithms 

other than our own: 1) an intensity histogram based algorithm (DeCarli et al., 1995); two 

algorithms that are part of SPM’s lesion segmentation tool (LST): 2) the lesion growth 

algorithm (LGA) (Schmidt et al., 2012) and 3) the lesion prediction algorithm (LPA) 

(Schmidt, 2017) (http://www.applied-statistics.de/lst.html); and 4) FSL’s brain intensity 

abnormality classification algorithm (BIANCA) (Griffanti et al., 2016). We used the default 

settings of each algorithm.

1) The intensity histograms algorithm is the standard method used in ADNI to calculate the 

WMH volume. This algorithm uses a Bayesian probabilistic method to generate likelihood 

estimate values for WMH at each voxel in the white matter. These likelihoods are 

thresholded at three standard deviations above the mean to construct the binary WMH mask. 

2) LGA was implemented in the LST toolbox, version 2.0.15 (http://www.statistical-

modelling.de/lst.html) for SPM. T1-weighted and FLAIR images were used as inputs. The 

algorithm selects an initial lesion map and subsequently grows along voxels that are 

hyperintense relative to surrounding tissue. 3) LPA was implemented in the LST toolbox, 

version 2.0.15, for SPM. We used only FLAIR as input. The algorithm is a binary classifier 

using a logistic regression model trained on data from 53 participants with severe Multiple 

Sclerosis (MS). The model covariates include a similar belief map used in the LGA 

algorithm above and a spatial covariate that accounts for voxel-specific changes in lesion 

probability. The fitted model parameters are implemented to segment lesions of novel 

images by estimating the lesion probability across each voxel, outputting a lesion probability 

map. 4) BIANCA was implemented using FSL. We used a T1-weighted image, FLAIR 

image, and the same training set as we used for our in-house algorithm. BIANCA classifies 

Tubi et al. Page 7

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.applied-statistics.de/lst.html
http://www.statistical-modelling.de/lst.html
http://www.statistical-modelling.de/lst.html


each voxel based on intensity and spatial features to output the probability of that voxel 

being in a WMH. We used BIANCA’s default settings and implemented the default 

probability map threshold of 0.9 (probability of a voxel being a WMH), which historically 

has optimized the voxel WMH classification false positives and false negative detection rate 

(Griffanti et al., 2016). We ran BIANCA both with and without the same WM masks created 

using our in-house algorithm as inputs. Using a WM mask to exclude non-white matter has 

been shown to reduce false positives (Griffanti et al., 2016).

2.7. Statistics

2.7.1 Amyloid Group Differences—We stratified the cohort by CSF amyloid level 

(Aβ−, Aβ+) and evaluated demographic measures both within- and between-amyloid group. 

In our within-amyloid group analyses, we assessed differences between diagnostic groups 

(cognitively intact controls or MCI). We used Welch’s t-tests to evaluate group differences in 

age, education, and ICV, and a χ2 test to evaluate group differences in sex.

We covaried for age, sex, years of education, and ICV in all subsequent analyses. Adding 

scanner manufacturer as a covariate did not modify the relationship between WMH volume 

and clinical diagnosis and did not significantly contribute to our analyses, so we did not 

include manufacturer in the statistical models reported throughout the paper (Supplementary 

Table S1). For all statistical models with a binary dependent variable (such as diagnosis), we 

performed logistic regression. For all statistical models with a continuous dependent variable 

(such as cognitive composite scores), we performed multiple linear regression. We used the 

composite cognitive measures available on the ADNI website. However, when we further 

evaluated the contribution to our effects of individual neuropsychological subtests within the 

composite measures, we used Z-score transformed values in our analyses. All statistical 

analyses were performed in R version 3.5.1 (University of Auckland, Auckland, New 

Zealand) (R Core Team 2013).

2.7.2 In-house WMH Analysis—We used logistic regression to test our hypothesis that 

total WMH volume would be more associated with clinical diagnosis in Aβ− participants. 

To evaluate whether our results were specific to Aβ− participants, we also used logistic 

regression to relate WMH volume to diagnosis in Aβ+ participants. WMH volume was 

significantly related to diagnosis in Aβ− participants only. Therefore, all subsequent 

analyses were performed only in Aβ− participants. Analyses with Aβ+ participants can be 

found in the supplementary material (Table S4, Table S5, Table S6, Table S7).

To further investigate our significant results in Aβ− participants we examined whether 

regional differences in WMH accumulation (in the frontal, temporal, and parietal lobes as 

well as periventricular (PVWMH) and deep WMH (DWMH; regions across lobes) were 

associated with clinical diagnosis and executive function and memory. We corrected for 

multiple comparisons using the false discovery rate (FDR) approach, and report FDR-

adjusted p-values (Yekutieli and Benjamini, 1999).

We assessed whether changing the threshold of our in-house WMH algorithm (i.e., including 

or excluding more diffuse, lower-intensity voxels to WMHs) modified the relationship 

between WMH volume and clinical diagnosis. To do this, we used logistic regression to test 
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the association in Aβ− participants between clinical diagnosis and WMH volume calculated 

using different intensity ratios (at 85%, 90%, 95%, and 105% of the original intensity ratio). 

We performed additional analyses in segmentation methods that had an available threshold 

option (LST LGA and BIANCA). Using both the LST LGA method and the BIANCA 

method, we evaluated the relationship between WMH volume, derived from varying 

thresholds, and clinical diagnosis in Aβ− participants (Table S8 and Table S9; Figure S2 and 

Figure S3). Because peripheral (deep) WMH may be less intense than periventricular WMH, 

we further investigated the relationship between deep WMH and diagnosis in Aβ− 

participants with a more lenient threshold (85% of the intensity ratio) to deep WMH, using 

our in-house method. We then related deep WMH volume using the 85% intensity threshold 

to diagnosis in Aβ− participants. This analysis was meant to evaluate possible separate 

effects of location and intensity of WMHs.

2.7.3 WMH Segmentation Comparison—To evaluate differences across WMH 

volumes derived from various algorithms, we related WMH volume (predictor variable) 

calculated using each of the five segmentation algorithms, to clinical diagnosis (outcome 

variable), adjusting for age, sex, years of education, and ICV. To test model differences 

between the WMH segmentation algorithms, we performed a one-way ANOVA with 

pairwise comparisons, applying FDR to correct for multiple comparisons.

2.7.4 Executive Function & Memory Analysis—To assess whether WMH volume 

had any cognitive domain-specific effects, we performed multiple linear regression to relate 

WMH volume, derived from the segmentation algorithm that detected strongest associations, 

to composite scores of executive function and memory (Crane et al. 2012, Gibbons et al. 

2012). To further investigate any significant findings between WMH volume and executive 

function and memory, we evaluated the relationship between WMH volume and the 

composite score subtests. In this neuropsychological subtest analysis, we corrected for 

multiple comparisons by applying false discovery rate (FDR) and reported FDR adjusted p-

values (Yekutieli and Benjamini, 1999).

3. Results

3.1 Between and Within-Amyloid Group Comparison

In a within-amyloid group analysis, we found that in Aβ− participants, cognitively intact 

controls were significantly older than those with MCI (t = 2.850; p = 0.005). In Aβ+ 

participants, no statistically significant differences were found. When diagnosis was not 

considered, Aβ+ participants were significantly older than the Aβ− participants (t = 2.941; p 
= 0.004; Table 1). We controlled for age in all further analyses along with sex, years of 

education, and estimated ICV.

3.2 Regional Relationship to Diagnosis

In Aβ− participants only, higher total WMH volume derived from our in-house algorithm 

was significantly associated with worse clinical diagnosis (z = 2.373, WMH volume partial p 
= 0.018). In this model, higher age (z = −3.417, partial p < 0.001) and lower educational 

level (z = −1.842, partial p = 0.065) were also significantly associated with poorer clinical 
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diagnosis. Additionally, larger frontal, parietal, and periventricular WMH volume were 

associated with worse clinical diagnosis in Aβ− participants (Table 3). Results from the total 

WMH and regional analysis can be found in Table 3. In a follow-up analysis in Aβ− 

participants, we related regional WMH volume to executive function and memory scores. 

None of the individual regions were related to executive function (Supplementary Table S2) 

or memory (Supplementary Table S3).

We performed a follow-up analysis to further identify regional specificity of periventricular 

and deep WM effects, and found that larger WMH volumes in the frontal periventricular and 

parietal periventricular regions were significantly associated with worse clinical diagnosis in 

in Aβ− participants (Table 4).

No significant associations were found between total or regional WMH and clinical 

diagnosis in Aβ+ participants. All analyses in Aβ+ participants can be found in the 

supplemental material (Table S4, Table S5, Table S6, Table S7).

3.3 Intensity Threshold Modification

We next evaluated whether including less intense/more diffuse WMH voxels in the WMH 

volume measure affected the relationship we saw between WMH volume and clinical 

diagnosis in Aβ− participants. We did this by adjusting the intensity ratio thresholds used to 

define WMHs. In Aβ− participants, higher total WMH volume derived from both the 

unadjusted WMH threshold (i.e., 100%) and the 105% intensity threshold (which further 

excluded lower-intensity voxels) were significantly associated with poorer clinical diagnosis 

(Table 5, Figure 3). Thresholds of 85%, 90%, and 95% of the original WMH threshold 

included lower intensity voxels characteristic of diffuse lesions; WMH volumes calculated 

using these more inclusive thresholds were not significantly associated with clinical 

diagnosis (Table 5). For each intensity threshold we tested, the covariate of older age was 

significantly associated with poorer clinical diagnosis and lower educational level attained 

had a trend level association with poorer clinical diagnosis. Modification of thresholds using 

the LGA and BIANCA methods can be found in the supplementary material (Table S8, 

Figure S2, and Table S9, Figure S3). In a follow-up analysis we investigated whether 

applying a more lenient threshold to deep WMH resulted in a larger relationship between 

deep WMH volume and clinical diagnosis. We found that deep WMH volume when 

thresholded at 85% of the intensity ratio to allow the inclusion of lower-intensity lesions still 

was not significantly related to diagnosis (z = −0.307, p = 0.759).

3.4 Clinical Associations detected by other WMH Algorithms

Within our Aβ− group, we assessed the association between diagnosis and total WMH 

volume. We did this using six logistic regression analyses, one for each WMH segmentation 

method: 1) our in-house intensity-based algorithm; 2) a previously published WMH 

segmentation based on mathematical modeling of MR pixel intensity histograms (DeCarli et 

al., 1995): and three methods freely available online - 3) LST - LGA (Schmidt et al., 2012), 

4) LST - LPA, (Schmidt 2017), 5) FSL - BIANCA using an optional WM mask as input, and 

6) FSL – BIANCA without using an optional WM mask as input (Griffanti et al., 2016) 

(Figure 4).
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In non-demented Aβ− participants, greater total WMH volume was significantly associated 

with MCI diagnosis, calculated using four algorithms: 1) our in-house algorithm (p = 0.018), 

2) an algorithm based on MR pixel intensity histograms (p = 0.001) (DeCarli et al., 1995), 3) 

LGA (p < 0.001) (Schmidt et al., 2012), and 4) BIANCA using the optional WM mask as 

input (p = 0.032) (Griffanti et al. 2016). Total WMH volume was not significantly associated 

with diagnosis using LPA (p = 0.086) or BIANCA without using the optional WM mask as 

input (p = 0.088), using the default options (Table 6).

We performed a one-way ANOVA with pairwise comparisons (Table 7) to determine 

whether WMH volume was significantly different across algorithms. We found that WMH 

volumes calculated using LPA were significantly different from WMH volumes using all 

other methods. Our in-house method, LGA, BIANCA (masked), and the intensity histogram 

method did not provide WMH volumes that were significantly different from one another.

3.5 Executive Function and Memory

For simplicity of presentation, in subsequent analyses, we used the WMH segmentation 

method that produced the strongest association to clinical diagnosis (LGA) to further 

evaluate the relationship between WMH volume and cognition – specifically, 

neuropsychological composite measures of memory or executive function, although it is 

important to note that LGA WMH volumes were not significantly different from those 

calculated using the in-house, BIANCA (masked), or intensity histogram algorithms, all of 

which were significantly associated with diagnosis (Figure 4). Using multiple linear 

regression, we found that greater LGA-derived WMH volumes were significantly associated 

with lower executive function composite scores (omnibus p < 0.001; WMH volume partial t 
= 2.33; p = 0.021). LGA-derived WMH volumes were not significantly correlated with 

composite memory scores (omnibus p < 0.001; WMH volume partial t = 1.629; p = 0.106).

We further investigated our significant result to determine whether certain 

neuropsychological subtests may be driving the association between LGA-derived WMH 

volumes and executive function. We found that greater WMH volume was significantly 

associated with lower Category Fluency score (omnibus p < 0.001; WMH volume partial t = 

3.12; FDR adjusted p = 0.013). LGA-derived WMH volumes were not associated with Trail 

Making Test Part A (omnibus p < 0.001; WMH volume partial t = 1.96; FDR corrected p = 

0.157) or Part B (omnibus p < 0.001; WMH volume partial t = 0.79; FDR adjusted p = 

0.516), or any of the three clock drawing subscores: symbol (omnibus p < 0.001; WMH 

volume partial t = 1.389; FDR adjusted p = 0.516); numbers (WMH volume partial t = 

1.389; FDR adjusted p = 0.330); or time (omnibus p < 0.001; WMH volume partial t = 

0.151; FDR adjusted p = 0.880). We did not examine the relationship between WMH 

volume and the clock drawing circle or hand scores test, as there was ceiling effect on these 

tests – on the clock drawing circle subtest, all 143 of the Aβ− participants received a perfect 

score and on the hand subtest, 142 of the 143 participants received a perfect score.

4. Discussion

We investigated, in a sample of non-demented Aβ− older adults, the most clinically relevant 

features of WMH boundary selection, by relating WMH volume (using 5 different 
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algorithms) to clinical diagnosis and cognitive function. We found that 1) larger total, 

frontal, parietal, and periventricular WMH volumes, derived from our in-house algorithm, 

were significantly associated with a worse clinical diagnosis, 2) limiting WMH boundaries 

to voxels having the highest-intensity thresholds strengthened the relationship between 

WMH volume and clinical diagnosis, and 3) the most clinically relevant WMH segmentation 

algorithms (LGA, intensity histogram, our in-house method, and BIANCA with the WM 

mask option) were methods that limited boundary selection to the most high-intensity areas 

of the WMH. Our study is the first to compare multiple WMH segmentation methods using 

clinical diagnosis and cognitive composite measures to assess clinical relevance.

We found a significant effect between WMH volume and diagnosis only in Aβ− participants. 

Here, Aβ positivity may reflect AD-related neuropathological changes more broadly, which 

may be associated with cognitive effects, even in cognitively intact older adults (Braskie et 

al., 2010; Amariglio et al., 2012; Ho and Nation, 2018). Variability from such AD-related 

effects on cognition could add statistical noise to WMH-related cognitive effects in Aβ+ 

participants, making those effects harder to detect. The relationship between cerebral 

amyloidosis and WMH is currently debated (Roseborough et al., 2017), although emerging 

evidence indicates that Aβ and WMH may have both independent and interactive effects 

(Scott et al., 2016; Schreiner et al., 2018). WMH accumulation in Aβ− participants may 

represent an increased vulnerability to developing abnormal levels of Aβ later, although 

future longitudinal studies are needed to clarify this possibility. Additionally, the interaction 

between amyloid and WMH may also make it more difficult to detect an effect on cognition 

that is specifically attributable to WMH in Aβ+ participants. It is possible that Aβ may 

interact with the effect of WMH accumulation on cognition differently when evaluating 

cohorts with a broader range of diagnoses, such as those with symptomatic AD (Provenzano 

et al. 2014). However, within our cohort of non-demented older adults, the effect of subtle 

increases in WMH volume on cognition was only detectable in individuals without abnormal 

amyloid levels, suggesting that AD-specific processes may mask the effect of WMH 

accumulation before clinical onset of AD. These findings are consistent with our hypothesis 

that the relationship between WMH volume and clinical diagnosis is dependent upon both 

WMH boundary selection and amyloid-positivity status.

We found that larger total, frontal, and parietal WMH volumes were significantly associated 

with worse clinical diagnosis, while WMH in the temporal lobe were not. We also found that 

periventricular, but not deep WMH were significantly associated with clinical diagnosis, 

which is consistent with past findings relating periventricular WMH to global cognition 

(Kim et al., 2008; Bolandzadeh et al., 2012; Griffanti et al., 2018). However, our study found 

trend level significance when relating deep WMH to clinical measures. The ability to detect 

a robust effect may be a result of small discrete lesions having a different intensity 

distribution from larger lesions, with deep WMH appearing lighter than periventricular 

WMH. Therefore, deep WMH may be under-segmented by various segmentation methods, 

resulting in periventricular WMH appearing to have a stronger relationship to clinical 

variables than deep WMH. To test this, we performed an additional test in which we used a 

more lenient threshold to segment less hyperintense deep WMH. We found that when we 

segmented the lighter regions of deep WMH, the relationship to clinical diagnosis became 

weaker, suggesting that both the location and intensity of lesions are important to clinical 
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relevance. Periventricular and deep WMHs are both associated with severe myelin loss and 

increased microglia activity (Simpson et al., 2007), but may also have different etiological 

origins. Periventricular WMHs may be related to arterial pressure, plasma leakage, blood 

brain barrier permeability, and decline in total cerebral blood flow, while deep WMHs may 

be associated with axonal loss, arteriolosclerosis, and body mass index (ten Dam et al., 

2007; Haller et al., 2013; Wharton et al., 2015; Griffanti et al., 2018). Although future work 

is needed to illuminate the mechanisms of these findings, our findings suggest that 

disruption of global cognitive processes may be related to region-specific changes.

We found that WMH boundary selection was an important algorithm feature that modified 

the degree to which logistic regression could capture the relationship between WMH volume 

and clinical diagnosis. The WMH volumes calculated such that only the most hyperintense 

voxels were included, were best associated with clinical diagnosis. We further validated our 

intensity threshold findings by determining that the WMH segmentation methods most 

associated with diagnosis, using default settings, were the four algorithms that most limited 

WMH to highest intensity voxels (LGA, in-house method, the intensity histogram method, 

and BIANCA with the WM mask included as an input). The segmentations that were 

significantly associated with diagnosis provided smaller WMH volumes for the same scans. 

A visual review suggests that these segmentations captured the most discrete and highly 

intense regions (Figure 4). Additionally, when we tested different thresholds for selecting 

voxels using the three algorithms that allowed such adjustments, the thresholds that resulted 

in smaller WMH volumes composed of the most intense voxels were most closely related to 

clinical diagnosis. Our results suggest that optimization of algorithm parameters to capture 

the most intense WMH voxels will yield more robust classification results relevant to 

clinical diagnosis.

Using only default options, the WMH volumes that resulted in the largest volumes were 

derived from LPA and BIANCA without the WM mask and were not significantly 

associated with clinical diagnosis. LPA included lighter and more diffuse hyperintense 

regions in addition to brighter, more discrete lesions. Using additional optional parameters 

for LPA may have produced significant associations with diagnosis. BIANCA without the 

optional WM mask provided WMH estimates that appeared visually similar to the less 

inclusive in-house, histogram, and LGA methods, but also included some non-white matter 

hyperintense regions, such as in the cortex, cerebellum, and brainstem regions. Applying the 

BIANCA option to input a white matter mask prevented the inclusion of erroneous non-WM 

voxels in the WMH map, and WMH volume estimated using BIANCA with a WM mask as 

input was significantly associated with clinical diagnosis. We implemented each algorithm 

using the default parameters to provide varying segmentation results among segmentation 

methods allowing us to better investigate which WMH characteristics were most clinically 

relevant. Our purpose was not to recommend any one software package over another. Rather, 

our findings highlight the importance of limiting the WMH search to white matter regions 

and segmenting only the most hyperintense voxels, regardless of the algorithm used.

In follow-up analyses of Aβ− older adults, greater WMH volumes were associated with 

lower executive function composite scores. Although previous literature relating WMH 

volume to cognitive function is variable (Prins and Scheltens, 2015), mounting evidence 
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demonstrates that WMH volume has both broad and specific effects on cognitive function 

(Hedden et al., 2012; Kloppenborg et al., 2014). Globally, WMHs have been associated with 

future cognitive decline (Boyle et al., 2016), impacting multiple neuropsychological 

domains (Gunning-Dixon and Raz, 2000; Au et al., 2006). However, WMHs most 

consistently have been associated deficits in processing speed and executive function 

(Debette et al., 2010; Murray et al., 2010; Kloppenborg et al., 2014; Lampe et al., 2017), 

consistent with our current findings.

The association we found between WMH volume and executive function was driven 

primarily by deficits in category fluency – a type of verbal fluency test that here involves 

freely generating as many animal names as possible within a set time period. Category 

fluency, a sensitive marker for cognitive impairment, is impacted by frontal lobe WMH 

accumulation (Gootjes et al 2004), as it recruits both frontal and temporal lobe brain regions 

(Mummery et al., 1996; Gootjes et al., 2004; Baldo et al., 2006; Peter et al., 2016). Although 

temporal lobe WMH volume was not associated with category fluency measures, the effect 

of WMH volume on category fluency may be attributed to disruption of more global 

structural cortical connections, such as between the frontal and temporal lobes (Wiseman et 

al. 2018).

Our study included data only from non-demented older participants, and therefore may not 

be generalizable to participants with Alzheimer’s disease and other diseases affecting the 

white matter, such as multiple sclerosis. We related total and regional WMH volume to 

cognition in our study, but did not evaluate how the number of total or regional WMHs in 

each brain related to cognition. Such an analysis would be interesting and may yield 

different results. Use of intensity threshold to calculate WMHs, as in our method, may 

differently capture small and large lesions, as small discrete lesions may have a different 

intensity distribution from larger more diffuse lesions. We used a visual quality control 

assessment of each WM mask, and manual editing as needed for accuracy. Because our WM 

mask was created by subtracting the gray matter and CSF masks from the whole brain on the 

T1-weighted images, editing was only required when the WMH and gray matter, which have 

similar intensities on the T1-weighted images, were contiguous, in which case, the automatic 

segmentation may include WMH erroneously in the gray matter mask. This was not a 

common occurrence in the ADNI cohort, whose participants do not tend to have extensive 

WM pathology in the periphery. However, in a cohort that includes many participants with 

very extensive WMH pathology, this manual editing step may be more time consuming. 

Additionally, we used a limited set of open-source WMH toolboxes which may not capture 

all the possible variability of WMH boundary segmentations. These automated WMH 

segmentation methods have optional parameters that use different variations of location and 

intensity as inputs into either a linear or nonlinear classifier. We used the default settings on 

the various packages in order to arrive at variable segmentations, but optimization of these 

parameters may have resulted in significant associations between the WMH segmentation 

volumes and clinical diagnosis. Our intent here was not to evaluate the software packages 

per se, but to determine what type of segmentation would be most clinically relevant. Our 

converging results suggest that multiple algorithms may generate useful segmentations.
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Overall, our study sought to systematically assess automatic WMH segmentations to identify 

the most clinically meaningful results. Our findings suggest that WMH segmentations that 

exclude the lightest and most diffuse hyperintensities have the strongest clinical relevance 

and that this relationship is most evident only in Aβ− older adults. This suggests that AD-

specific processes, such as amyloid accumulation, may mask the cognitive consequences of 

WMHs. However, evaluation of higher intensity WMH volumes is a useful metric to classify 

global cognitive function and assess domain-specific changes in executive function in older 

adults. Our work is an initial step toward harmonizing WMH segmentation protocols, 

allowing for more robust and reliable investigations on how WMHs mechanistically relate to 

cognition and sub-optimal brain aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow diagram illustrating the workflow of our method to segment WMH. The intensity ratio 

is defined as Minimum Intensity of WMH
Mean WM Intensity without WMH .
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Figure 2. 
Image on the left depicts the coronal view of the MNI lobe map atlas from FSL 5.0.7 

(maxprobthr0-1mm). The image on the right depicts the lobe map after we manually 

extended the boundaries of the lobes into the white matter.
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Figure 3. 
WMH boundary segmentation based on varying intensity thresholds of the study-specific 

intensity ratio. The far-right image illustrates the 85%, 100%, and 105% threshold masks all 

overlaid on the base FLAIR image for comparison purposes.

Tubi et al. Page 22

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Range of WMH severity and variation in white matter segmentation methods. The severity 

was evaluated as WMH volume corrected for ICV. We defined mild WMH volume in a 

participant, when the individual’s total WMH volume was less than the mean total WMH 

volume across participants. Moderate WMH volume was defined as the individual’s total 

WMH volume being between the mean and two standard deviations above the mean across 

participants, and severe WMH volume when the individual’s total WMH volume was greater 

than two standard deviations above the mean across participants. For BIANCA, “masked” 

indicates that the same WM mask generated for our in-house algorithm was used as input for 

the analysis.
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Table 1.

Demographic features of the sample analyzed.

Aβ− Aβ+

Demographic Controls MCI Total Controls MCI Total

N 54 89 143 44 73 117

Age (years) 73.07 ± 5.53* 70.00 ± 7.29* 71.16 ± 6.83** 74.68 ± 7.17 73.26 ± 7.64 73.79 ± 7.47**

Sex (M/F) 32/22 46/43 78/65 23/21 40/33 63/54

Education (years) 16.81 ± 2.60 16.01 ± 2.47 16.31 ± 2.54 16.70 ± 2.47 16.40 ± 2.61 16.51 ± 2.56

ICV (mm3)
1.46 × 106 ± 1.37 

× 105
1.46 × 106 

± 1.32 × 105
1.46 × 106 

± 1.33 × 105
1.47 × 106 ± 1.51 

× 105
1.47 × 106 

± 1.47 × 105
1.47 × 106 

± 1.48 × 105

Shown as mean ± standard deviation. We evaluated group level differences, between amyloid groups (Aβ− vs. Aβ+) and within amyloid groups 

(control vs. MCI), across age, education, and intracranial volume (ICV), using Welch’s two-tailed t-tests. We evaluated sex using a χ2 test.

*
Significantly different between controls and MCI within Aβ group, p < 0.05

**
Significantly different between Aβ+ and Aβ− participants, p < 0.05
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Table 2.

Voxel, volume, and intensity information from the participants used to calculate the intensity ratio.

Training Set
Participant WMH Voxels WMH Volume WMH minimum

intensity
Mean intensity of

WM without WMH Intensity Ratio

1 1425 5262.30 536.65 395.29 1.36

2 1855 6850.22 551.40 404.26 1.36

3 2125 7847.29 579.15 405.49 1.43

4 1966 7260.14 553.34 366.39 1.51

Average 1842.75 6804.99 555.14 392.86 1.42

Mean volume is in mm3.
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Table 3.

Associations between in-house derived WMH volume by region and clinical diagnosis in Aβ− participants

Region

Controls MCI

z-score Partial
p-value

FDR
adjusted
p-value

Mean volume
± SD Median (IQR) Mean volume

± SD Median (IQR)

Total 2839 ± 2684 2084 (943-3763) 4379 ± 6609 2145 (1118-4118) 2.373 0.018* --

Frontal 584 ± 893 262 (119-622) 1389 ± 2639 418 (139-1512) 3.057 0.002* 0.010*

Parietal 739 ± 866 456 (152-944) 1489 ± 3032 356 (149-1146) 2.303 0.021* 0.035*

Temporal 117 ± 135 61 (18-188) 144 ± 200 65 (26-183) 1.448 0.148 0.148

Periventricular 1940 ± 1706 137 (807-2720) 2823 ± 3353 1667 (797-3285) 2.727 0.006* 0.015*

Deep 899 ± 1445 352 (92-972) 1555 ± 3570 383 (124-945) 1.757 0.079
•

0.099
•

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. Multiple 
comparison correction was applied to frontal, parietal, temporal, periventricular, and deep WMH volume analyses, using FDR adjusted values. 
Clinical diagnoses: MCI = 1; control = 0. SD = Standard Deviation; IQR = Interquartile Range

*
p < 0.05.

•
p < 0.10, indicating a trend level association.
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Table 4.

Associations between in-house derived WMH volume by sub region and diagnosis in Aβ− participants

Region

Controls MCI

z-score Partial p-
value

FDR
adjusted p-

value
Mean volume

± SD Median (IQR) Mean volume
± SD Median (IQR)

Frontal Periventricular 470 ± 725 193 (78-538) 954 ± 1488 351 (69-128) 3.252 0.001* 0.007*

Parietal Periventricular 453 ± 423 373 (144-618) 774 ± 1217 298 (129-787) 2.440 0.015* 0.044*

Temporal Periventricular 93 ± 112 48 (10-141) 105 ± 152 44 (15-138) 1.177 0.239 0.239

Frontal Deep 114 ± 252 34 (8-109) 435 ± 1297 54 (17-211) 1.907 0.057
•

0.085
•

Parietal Deep 286 ± 593 40 (2-250) 715 ± 1989 39 (2-242) 1.931 0.053
•

0.085
•

Temporal Deep 25 ± 51 6 (0-27) 39 ± 77 8 (0-44) 1.327 0.184 0.221

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. Multiple 
comparison correction was applied to frontal, parietal, temporal, periventricular, and deep WMH volume analyses, using FDR adjusted values. 
Clinical diagnoses: MCI = 1; control = 0. SD = Standard Deviation; IQR = Interquartile Range

*
p < 0.05.

•
p < 0.10, indicating a trend level association.
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Table 5.

Associations between in-house derived total WMH volume and clinical diagnosis by intensity threshold in Aβ
− participants

Intensity
Threshold
Percentage

(Ratio Number)

Controls MCI

z-score Partial
p-valueMean volume ±

SD Median (IQR) Mean volume ±
SD Median (IQR)

85% (1.207) 18206 ± 13717 14906 (7098-25585) 18524 ± 14935 14959 (8663-21507) 0.904 0.366

90% (1.278) 8830 ± 7714 6990 (3015-11760) 10145 ± 10898 6655 (3931-10841) 1.431 0.152

95% (1.349) 4750 ± 4324 3576 (1598-6191) 6426 ± 8417 3651 (1961-6329) 2.109 0.035

100% (1.42) 2839 ± 2684 2084 (943-3763) 4379 ± 6609 2145 (1118-4118) 2.373 0.018*

105% (1.491) 1799 ± 1831 1245 (563-2395) 3066 ± 5208 1338 (645-2781) 2.388 0.017*

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. Clinical 
diagnoses were coded as MCI = 1; control = 0. SD = Standard Deviation; IQR = Interquartile Range

*
p < 0.05.
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Table 6.

Associations between WMH volume by segmentation method and clinical diagnosis in Aβ− participants.

WMH
Segmentation

Method

Controls MCI

z-score Partial p-
valueMean volume ±

SD Median (IQR) Mean volume ±
SD Median (IQR)

In-house 2839 ± 2684 2084 (943, 3763) 4379 ± 6609 2145 (1118-4118) 2.373 0.018*

Intensity histograms 3133 ± 2788 2340 (1359-4076) 5955 ± 8686 2713 (1243-6664) 3.231 0.001*

LGA 2658 ± 3478 1525 (575-3076) 5457 ± 8473 1864 (315-6903) 3.533 < 0.001*

LPA 20163 ± 19443 12338 (6713-28781) 20617 ± 21128 11772 (5057-30651) 1.715 0.086
•

BIANCA (masked) 4272 ± 4063 2404 (1494-6386) 5442 ± 7020 2705 (1257-6564) 2.145 0.032*

BIANCA (unmasked) 14165 ± 5568 13610 (10209-17196) 16147 ± 8050 15285 (9845-20916) 1.705 0.088
•

Mean volume is in mm3. Each relationship was evaluated using a logistic regression, adjusted for age, sex, years of education, and ICV. For 
BIANCA, “masked” indicates that a WM mask was used as input for the analysis. Clinical diagnoses: MCI = 1; control = 0. SD = Standard 
Deviation; IQR = Interquartile Range

*
p < 0.05

•
p < 0.10, indicating a trend level association.
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Table 7.

One-way ANOVA with pairwise comparisons.

In-House Intensity Histogram LGA LPA

Intensity Histogram p = 0.66 -- -- --

LGA p = 0.78 p = 0.78 -- --

LPA p < 0.001* p < 0.001* p < 0.001* --

BIANCA (masked) p = 0.66 p = 0.93 p = 0.78 p < 0.001*

p-values displayed are corrected for multiple comparisons using the false discovery rate (FDR). For BIANCA, “masked” indicates that a WM mask 
was used as input for the analysis.

*
p < 0.05
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