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Abstract

An important aspect of network-based analysis is robust node definition. This issue is critical for 

functional brain network analyses, as poor node choice can lead to spurious findings and 

misleading inferences about functional brain organization. Two sets of functional brain nodes from 

our group are well represented in the literature: (1) 264 volumetric regions of interest (ROIs) 

reported in Power et al., 2011 and (2) 333 cortical surface parcels reported in Gordon et al., 2016. 

However, subcortical and cerebellar structures are either incompletely captured or missing from 

these ROI sets. Therefore, properties of functional network organization involving the subcortex 

and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning 
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method to resting-state fMRI data to generate novel functionally-constrained ROIs in the 

thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs in three 

datasets using several criteria, including agreement with existing literature and anatomical atlases. 

Further, we demonstrate that combining these ROIs with established cortical ROIs recapitulates 

and extends previously described functional network organization. This new set of ROIs is made 

publicly available for general use, including a full list of MNI coordinates and functional network 

labels.
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1. Introduction

The brain is organized into areas that interact with one another to form distributed large-

scale networks (Allman and Kaas, 1971; Felleman and Van Essen, 1991; Petersen and 

Sporns, 2015). Researchers studying the brain at the network level have revealed both basic 

principles of brain organization (Bassett and Bullmore, 2006; Honey et al., 2007; Power et 

al., 2011; Sporns et al., 2004; van den Heuvel and Sporns, 2011; Yeo et al., 2011) and 

insights into neurologic and psychiatric diseases (Corbetta and Shulman, 2011; Kim et al., 

2014; Seeley et al., 2009; Sorg et al., 2007). Much of this work has borrowed concepts and 

tools from the field of graph theory in order to model the brain as a network (Bullmore and 

Sporns, 2009; Sporns, 2011). A graph is a mathematical description of a network, which 

comprises a set of elements (nodes) and their pairwise relationships (edges (Bondy and 

Murty, 1976)). Therefore, network approaches require the definition of a set of nodes, such 

as regions of interest (ROIs) in the case of brain networks.

Ideally, nodes should be internally coherent (e.g., functionally homogeneous) and 

independent, separable units (Bullmore and Bassett, 2011; Butts, 2009, 2008; Wig et al., 

2011). Brain areas and their constituent components—local circuits, columns, and domains 

(Kaas, 2012)—display many of these properties, and thus, are suitable nodes for brain 

network analysis. Research efforts focused on node definition often employ data-driven 

techniques to parcellate the cerebral cortex into a set of ROIs meant to represent putative 

functionally homogeneous brain areas (Cohen et al., 2008; Craddock et al., 2012; Glasser et 

al., 2016; Gordon et al., 2016; Nelson et al., 2010; Power et al., 2011; Schaefer et al., 2017; 

Wig et al., 2013). Most such studies have used restingstate functional connectivity MRI, 

which measures correlations in low-frequency bloodoxygen-level-dependent (BOLD) 

signals across the whole brain while subjects remain awake and alert without engaging in an 

explicit task (Biswal et al., 1995; Gusnard and Raichle, 2001; Snyder and Raichle, 2012). 

While many of these existing sets of ROIs sample the cortex quite well, most approaches 

have under-sampled or completely omitted the subcortex and cerebellum (but see Ji et al., 

2019).

The poorer representation of these structures is a limitation of previous work, as closed loop 

anatomical circuits connect the subcortex and cerebellum to the cortex (Woolsey et al., 
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2008). In addition, these structures are known to be integral for many behavioral, cognitive, 

and affective functions. For example, regions of the cerebellum are involved in adaptive 

behaviors (Thach et al., 1992), including fast adaptations, like eye-blink conditioning 

(Steinmetz et al., 1992; Perrett et al., 1993), as well as those that occur over longer 

timescales, like prism adaptation (Martin et al., 1996; Baizer et al., 1999; Morton and 

Bastian, 2004), and higher order cognitive functions, such as semantic processing (Fiez, 

2016; Guell et al., 2018). Likewise, regions of the basal ganglia and thalamus are important 

for both lower level sensory and higher order cognitive functions (Alexander et al., 1986; 

Jones, 1985). Furthermore, subcortical structures and the cerebellum have been implicated in 

a variety of neurologic and psychiatric diseases. For instance, the basal ganglia are affected 

in several movement disorders (Greene et al., 2017, 2013; Rajput, 1993; Vonsattel et al., 

1985), the hippocampus is disrupted in Alzheimer Disease (Hardy and Selkoe, 2002), the 

amygdala is implicated in Major Depressive Disorder (Frodl et al., 2002) and Urbach-

Wiethe Disease (Siebert et al., 2003), and the cerebellum is disturbed in Schizophrenia 

(Andreasen et al., 1996; Bigelow et al., 2006; Brown et al., 2005; Kim et al., 2014) and 

Autism Spectrum Disorder (Fatemi et al., 2002), to name a few. Moreover, interactions 

between the cortex and both subcortical and cerebellar regions are crucial for carrying out 

functions in health (Bostan and Strick, 2018; Greene et al., 2014; Hwang et al., 2017; 

Kiritani et al., 2012) and disease (Andreasen et al., 1999; Gratton et al., 2018a; 

Schmahmann, 2004). Because of these interactions between multiple structures, it has been 

postulated that subcortical regions may have important hub-like properties for integrating 

brain systems (Hwang et al., 2017) and may constrain network-level topology (Bell and 

Shine, 2016; Garrett et al., 2018). Thus, brain network analyses should include these 

important regions in order to have a more complete picture of brain organization and 

function.

An issue potentially impeding the inclusion of these regions is that subcortical and deep 

cerebellar nuclei are small relative to the spatial resolution of fMRI, often occupying just a 

few voxels, whereas brain areas in the cerebral cortex (e.g. Area V1) are typically larger. 

Furthermore, depending on the acquisition sequence, these regions may have lower signal 

quality (Ojemann et al., 1997) or, especially for the cerebellum, may be captured 

incompletely. Finally, most existing techniques for parcellating the brain into areas, such as 

gradient-based techniques (Cohen et al., 2008; Gordon et al., 2016; Nelson et al., 2010; Wig 

et al., 2013), were designed for the cortical surface, making them less easily applied to 

structures where surface-based mapping is less appropriate (basal ganglia, thalamus), prone 

to error (medial temporal lobe) (Wisse et al., 2014), or less well-established (cerebellum). 

Despite these difficulties, inclusion of the subcortex and cerebellum is crucial to properly 

represent the brain as a network. While there are existing anatomical atlases of the subcortex 

(Morel, 2013) and cerebellum (Diedrichsen et al., 2009), functionally defined regions may 

complement anatomical ones and provide a better correspondence to functionally defined 

cortical areas and task-based measures from fMRI.

Our lab previously published two (now widely used) sets of ROIs: (1) 264 volumetric ROIs 

(Power et al., 2011) and (2) 333 surface-based cortical parcels (Gordon et al., 2016). The 

first was created via combined task fMRI meta-analysis and resting-state functional 

correlation mapping, and the second was created via a gradient-based parcellation of resting-
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state fMRI data. These two ROI sets sample the cortex well, representing a diverse set of 

brain areas that can be organized into functional networks. Many investigators have used 

them to describe functional brain organization in a variety of healthy samples (Power et al., 

2013; Zanto and Gazzaley, 2013), lifespan cohorts (Baniqued et al., 2018; Gallen et al., 

2016; Gu et al., 2015; Nielsen et al., 2018; Rudolph et al., 2017), as well as populations with 

neurologic and psychiatric diseases (Gratton et al., 2018a; Greene et al., 2016; Sheffield et 

al., 2015; Siegel et al., 2018). However, the first set (264 volumetric ROIs) under-samples 

subcortical and cerebellar structures, as only 17 ROIs are non-cortical, and the second set 

(333 parcels) is restricted to the cortex only, similar to other popular ROI sets, e.g. (Glasser 

et al., 2016; Yeo et al., 2011).

The goal of the current study was to expand these ROI sets to better represent subcortical 

and cerebellar structures. Novel ROIs were created in the thalamus, basal ganglia, and 

cerebellum by use of a data-driven, winner-take-all partitioning technique that operates on 

resting-state fMRI data (Choi et al., 2012; Greene et al., 2014; Zhang et al., 2010). 

Additional ROIs were generated in the amygdala and hippocampus, and all ROIs were 

validated via several criteria. Finally, we characterized whole-brain functional network 

organization using these refined subcortical and cerebellar ROIs combined with previously 

established cortical ROIs. The fully updated set of ROIs is made publicly available for 

general use, including a list of coordinates and consensus functional network labels, at 

https://greenelab.wustl.edu/data_software.

2. Material and Methods

2.1. Primary dataset- WashU 120

2.1.1. Dataset characteristics—The primary dataset used in this study has been 

described previously (Power et al., 2011). Eyes-open resting-state fMRI data were acquired 

from 120 healthy, righthanded, native English speaking, young adults (60 F, age range 18–

32, mean age 24.7). Subjects were recruited from the Washington University community and 

screened with a self-report questionnaire. Exclusion criteria included no current or previous 

history of neurologic or psychiatric diagnosis as well as no head injuries resulting in a loss 

of consciousness for more than 5 minutes. Informed consent was obtained from all 

participants, and the Washington University Internal Review Board approved the study. The 

data are available at https://legacy.openfmri.org/dataset/ds000243/.

2.1.2. Data acquisition—A Siemens MAGNETOM Tim TRIO 3.0T MRI scanner and a 

12 channel Head Matrix Coil were used to obtain T1-weighted (MP-RAGE, 2.4s TR, 

1×1×1mm voxels) and BOLD contrast sensitive (gradient echo EPI, 2.5s TR, 4×4×4mm 

voxels) images from each subject. The mean amount of BOLD data acquired per subject was 

14 minutes (336 frames, range = 184–729 frames). Subjects were instructed to fixate on a 

black crosshair presented at the center of a white background. See Power et al., 2011 for full 

acquisition details.

2.1.3. Preprocessing—The first 12 frames (30 seconds) of each functional run were 

discarded to account for magnetization equilibrium and an auditory evoked response at the 

start of the EPI sequence (Laumann et al., 2015). Slice timing correction was applied first. 
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Then, the functional data were aligned to the first frame of the first run using rigid body 

transforms, motion corrected (3D-cross realigned), and whole-brain mode 1000 normalized 

(Miezin et al., 2000). Next, the data were resampled (3 cubic mm voxels) and registered to 

the T1-weighted image and then to a WashU Talairach atlas (Ojemann et al., 1997) using 

affine transforms in a one-step operation (Smith et al., 2004).

Additional preprocessing of the resting-state BOLD data was applied to remove artifacts 

(Ciric et al., 2017; Power et al., 2014). Frame-wise displacement (FD) was calculated as in 

Power et al., 2012, and frames with FD greater than 0.2 mm were censored. Uncensored 

segments with fewer than 5 contiguous frames were censored as well (mean +/− std frames 

retained = 279 +/− 107). All censored frames were interpolated over using least squares 

spectral estimation (Hocke and Kämpfer, 2009; Power et al., 2014). Next, the data were 

bandpass filtered from 0.009–0.08 Hz and nuisance regression was implemented. The 

regression included 36 regressors: the whole-brain mean, individually defined white matter 

and ventricular CSF signals, the temporal derivatives of each of these regressors, and an 

additional 24 movement regressors derived by expansion (Friston et al., 1996; Satterthwaite 

et al., 2012; Yan et al., 2013). FreeSurfer 5.3 automatic segmentation was applied to the T1-

weighted images to create masks of the gray matter, white matter, and ventricles for the 

individual-specific regressors (Fischl et al., 2002). Finally, the data were smoothed with a 

Gaussian smoothing kernel (FWHM = 6 mm, sigma = 2.55).

At the end of all processing, each censored/interpolated frame was removed from the time 

series for all further analyses.

2.2. Secondary dataset- HCP 80

2.2.1. Dataset characteristics—Due to a partial cutoff of cerebellar data in over half 

of the subjects in the primary dataset (outside of the field of view), an independent 

secondary dataset was used to supplement analyses related to the cerebellum. Since the 

cerebellum was not cutoff in every subject in the primary dataset, we were able to create a 

cerebellar portion of the group average matrix derived from just those subjects with full 

cerebellar coverage. We used data from 80 unrelated individuals from the Human 

Connectome Project (HCP) 500 Subject Release (40F, age range 22–35, mean age 28.4) who 

had high-quality (lowmotion) data, described previously (Gordon et al., 2017a). All HCP 

data are available at https://db.humanconnectome.org.

2.2.2. Data acquisition—A custom Siemens SKYRA 3.0T MRI scanner and a custom 

32 channel Head Matrix Coil were used to obtain high-resolution T1-weighted (MP-RAGE, 

2.4s TR, 0.7×0.7×0.7mm voxels) and BOLD contrast sensitive (gradient echo EPI, 

multiband factor 8, 0.72s TR, 2×2×2mm voxels) images from each subject. The HCP used 

sequences with left-to-right and right-to-left phase encoding, with a single RL and LR run 

on each day for two consecutive days for a total of four runs (Van Essen et al., 2012). Thus, 

for symmetry, the BOLD time series from each subject’s best (most frames retained after 

censoring) LR run and their best RL run were concatenated together.

2.2.3. Preprocessing—The preprocessing steps were the same as those detailed in 

Section 2.1.3 except for the following: (1) the first 41 frames (29.52 seconds) of each run 

Seitzman et al. Page 5

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://db.humanconnectome.org/


were discarded, (2) no slice timing correction was applied, (3) field inhomogeneity 

distortion correction was applied (using the mean field map), (4) the data were not 

resampled (they were collected at 2 cubic mm isotropic voxels), and (5) the Gaussian 

smoothing kernel was smaller (FWHM = 4 mm, sigma = 1.7). The first two changes are due 

to the increased temporal resolution of the HCP data acquisition (0.72s TR) and the last two 

changes are due to the increased spatial resolution of HCP data acquisition (Glasser et al., 

2013). Distortion correction was not applied to the primary dataset because field maps were 

not collected in most participants. In addition, the increased temporal resolution caused 

respiration artifacts to alias into the FD trace (Fair et al., 2018; Siegel et al., 2017). Thus, FD 

values were filtered with a lowpass filter at 0.1 Hz and the filtered FD threshold was set at 

0.1 mm (mean +/− std frames retained = 2236 +/− 76).

For the purpose of the winner-take-all partitioning of the secondary dataset (described in 

section 2.4), a CIFTI was created for each subject. Thus, preprocessed cortical BOLD time 

series data (from the secondary dataset only) were mapped to the surface, following the 

procedure of Gordon et al., 2016, and combined with volumetric subcortical and cerebellar 

data in the CIFTI format (Glasser et al., 2013; Gordon et al., 2016).

At the end of all processing, each censored/interpolated frame was removed from the time 

series for all further analyses.

2.3. Validation dataset- MSC

2.3.1. Dataset characteristics—Since the primary and secondary datasets were used 

to create the subcortical and cerebellar ROIs (described in section 2.5), results for functional 

network community assignment (described in section 2.7) were validated with a third 

independent dataset, the Midnight Scan Club (MSC), described previously (Gordon et al., 

2017b). These data are available at https://openneuro.org/datasets/ds000224/versions/00002. 

The MSC dataset consists of 5 hours of resting-state BOLD data from each of 10 individuals 

(5 F, age range 24–34, mean age 29) over a two-week period.

2.3.2. Data acquisition—The same scanner, head coil, and acquisition parameters 

described in Section 2.1.2 were used to for the MSC. However, a single resting-state run 

lasting 30 minutes was collected on 10 separate days. Each scan was acquired starting at 

midnight (Gordon et al., 2017b).

2.3.3. Preprocessing—For each subject, all runs were concatenated together in the 

order that they were collected. The initial preprocessing steps were the same as those 

detailed in Section 2.1.3 except for the following: (1) the functional images were registered 

to the average T2-weighted anatomical image (4 were collected per subject), then to the 

average T1weighted anatomical image (4 were collected per subject), and finally to the 

Talairach atlas, (2) field inhomogeneity distortion correction was applied (using the mean 

field map), and (3) one subject (MSC08) was excluded due to a substantial amount of 

lowquality data and self-reported sleeping during acquisition, as detailed previously (Gordon 

et al., 2017b; Laumann et al., 2016).
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Additional preprocessing followed Raut and colleagues (Raut et al., 2019). Again, FD was 

used to exclude high-motion frames; however, due to respiratory artifacts affecting the 

realignment parameters (Power et al., 2018; Siegel et al., 2017), a lowpass filter (0.1 Hz) 

was applied to those parameters before calculation of FD. Consequently, the threshold for 

frame censoring was lowered to 0.1mm. Frames with outstanding (>2.5 standard deviations 

above the mode computed across all runs) DVARS values (as calculated in Power et al., 

2012) were also excluded. All censored frames were linearly interpolated, and then bandpass 

filter (0.005–0.1 Hz) was applied.

Finally, component-based nuisance regression was implemented. Individual-specific 

FreeSurfer 6.0 segmentation was used to define masks of the gray matter, white matter, and 

ventricles. A mask of extra-axial (or edge (Patriat et al., 2015)) voxels was also created by 

thresholding the temporal standard deviation image (>2.5%) that excluded the eyes and a 

dilated whole-brain mask. BOLD data was extracted from all voxels in each mask 

(separately), and dimensionality reduction was applied as in CompCor (Behzadi et al., 

2007). The number of components retained was determined independently for each mask 

such that the condition number (i.e., the maximum eigenvalue divided by the minimum 

eigenvalue) was greater than 30. All retained components were submitted to a regressors 

matrix that also included the 6 realignment parameters. To avoid collinearity, singular value 

decomposition was applied to the regressors covariance matrix. Components of this 

decomposition were retained up to an upper limit (condition number >=250). Then, all of the 

final retained components, the whole-brain mean, and its temporal derivative were regressed 

from the BOLD time series (Raut et al., 2019).

At the end of all processing, each censored/interpolated frame was removed from the time 

series for all further analyses.

2.4. Winner-take-all partitioning of the subcortex and cerebellum

In order to identify functional subdivisions within subcortical structures and the cerebellum, 

a winner-take-all partitioning technique was applied to the basal ganglia, thalamus, and 

cerebellum, as previously described (Greene et al., 2014). Past applications of this winner-

take-all approach have yielded results consistent with known connectivity from the animal 

literature (Buckner et al., 2011; Choi et al., 2012; Fair et al., 2010; Greene et al., 2014; 

Zhang et al., 2008).

Briefly, the mean resting-state time series were extracted from each of 11 previously defined 

cortical networks (Power et al., 2011): default mode, frontoparietal, cinguloopercular, 

salience, dorsal attention, ventral attention, visual, auditory, somatomotor dorsal, 

somatomotor lateral, and orbitofrontal. This subset of networks (from the original 15 

described in Power et al., 2011) was selected on the basis of being previously well 

characterized and validated by multiple methods (see Yeo et al., 2011; Greene et al., 2014). 

In order to remove the shared variance among cortical networks thereby increasing 

specificity of the subcortico-cortical and cerebello-cortical correlations, partial correlations 

were then calculated between the time series from each cortical network and the resting-state 

time series from each subcortical or cerebellar gray matter voxel (e.g., for each cortical 

network and subcortical voxel, a residual correlation was computed after partialling out the 
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signal from the other cortical networks). Each voxel was then assigned to the network with 

which it correlated most in a winner-take-all fashion (Buckner et al., 2011; Choi et al., 2012; 

Greene et al., 2014; Zhang et al., 2010), generating a functional partition of subcortical and 

cerebellar structures.

2.5. ROI creation

Spherical ROIs (diameter = 8mm) were placed in the (volumetric) center of each of the 

winner-take-all partitions in the basal ganglia, thalamus, and cerebellum. Then, the ROIs 

were manually adjusted such that (1) all ROIs included only gray matter voxels and (2) no 

ROIs had any overlapping voxels. If an ROI did not fit entirely within a single winner-take-

all partition, it was excluded. Two additional ROIs (one per hemisphere) were added to the 

center of the amygdala, since the entire structure was assigned to a single network (default 

mode) via the winner-take-all approach. The winner-take-all approach also assigned the 

entire hippocampus to a single network (default mode). However, given previous evidence 

for distinct functional connectivity profiles for the anterior and posterior portions of the 

hippocampus (Kahn et al., 2008), we added four ROIs (two per hemisphere) to sample the 

anterior and posterior hippocampus. In total, 34 subcortical and 27 cerebellar ROIs were 

created.

These new subcortical and cerebellar ROIs were then combined with two previously 

described sets of cortical ROIs from our lab, as follows:

ROI Set 1 (Power264 + new)—Spherical cortical ROIs were used from the 264 

volumetric ROIs reported in (Power et al., 2011). Four of these ROIs in the medial temporal 

lobe (two per hemisphere) were removed (Talairach coordinates: (−20, −24, 18), (17, −30, 

−15), (−25, −41, −8), (26, −39, −11)) and replaced by the four new hippocampus ROIs, due 

to some overlapping voxels. In addition, the 17 subcortical and cerebellar ROIs from the 

original 264 were replaced by 55 new subcortical and cerebellar ROIs. Finally, the 2 new 

amygdala ROIs were added. Thus, ROI Set 1 is composed of 239 cortical, 34 subcortical 

(including the amygdala and hippocampus), and 27 cerebellar volumetric ROIs, for a total of 

300 ROIs.

ROI Set 2 (Gordon333 + new)—ROI set 2 was generated by combining the 333 

surfacebased cortical parcels (Gordon et al., 2016) with the newly generated subcortical and 

cerebellar ROIs. Thus, ROI Set 2 is composed of 333 surface-based cortical parcels and 34 

subcortical (including the amygdala and hippocampus) and 27 cerebellar volumetric ROIs, 

for a total of 394 ROIs. For all analyses using this ROI set, we utilized the center of each 

cortical parcel projected into volumetric atlas space (Gordon et al., 2016). The parcels in this 

format are publicly available at https://sites.wustl.edu/petersenschlaggarlab/

parcels-19cwpgu/.

2.6. Seedmaps and consensus functional network communities for each ROI

2.6.1. Seedmaps—To validate the winner-take-all assignments of voxels used for ROI 

placement, we first conducted seedmap analyses to examine how each ROI was correlated 

with every other gray matter voxel. A seedmap represents the pattern of correlations between 
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the mean BOLD time series from a given ROI and all other gray matter voxels in the brain. 

We generated group-average seedmaps for both ROI Sets and each dataset (primary, 

secondary, validation). The preprocessed BOLD time series for each gray matter voxel 

within each ROI were averaged together (after removing censored and interpolated frames). 

Then, the Pearson correlation between each new ROI and every other gray matter voxel in 

the brain was computed for each subject. The subject-specific maps were Fisher 

transformed, averaged together, and inverse Fisher transformed.

2.6.2. Correlation matrices—We generated correlation matrices to examine the 

community structure of the new ROIs. A correlation matrix is the set of all possible pairwise 

correlations between mean BOLD time series from each ROI organized into a symmetric 

matrix (since correlations are undirected). We computed correlation matrices for both ROI 

Sets and each dataset (primary, secondary, validation). The preprocessed BOLD time series 

for each gray matter voxel within each ROI were averaged together (after removing censored 

and interpolated frames). Then, the Pearson correlation between every pair of ROIs was 

computed to create a 300 × 300 (ROI Set 1) and 394 × 394 (ROI set 2) correlation matrix for 

each subject. Matrices were individually Fisher Z transformed, all matrices were averaged 

together (within each ROI set and dataset; thus, six group-average matrices were created in 

total- one 300 × 300 and one 394 × 394 for each of the WashU 120, HCP 80, and MSC 9), 

and finally, inverse Fisher transformed.

2.6.3. Community detection—To determine the functional network membership of 

each ROI, an information-theoretic community detection algorithm was implemented 

(InfoMap (Rosvall and Bergstrom, 2008)). InfoMap requires a sparse matrix, so an edge 

density threshold was applied to the correlation matrices. The networks (correlation 

matrices) were thresholded until only the strongest X percent of edges remained. All 

retained edges maintained their correlation value or weight (i.e., the networks were not 

binarized). We ran InfoMap over a range of thresholds (X = 2–10% inclusive, with a 1% step 

increment, following Power et al. (2011)).

In general, the magnitude of BOLD correlations between the cortex and the subcortex, the 

cortex and the cerebellum, and the subcortex and the cerebellum is substantially weaker than 

within-structure (and particularly, cortico-cortical) correlations. The primary reasons for this 

are likely distance from the head matrix coil and signal dropout due to sinuses. For instance, 

in the primary dataset, off-diagonal (between-structure) correlations from the subcortex and 

cerebellum account for 40% of the weakest decile of correlations (i.e., the 10% of 

correlations closest to 0), even though the subcortex and cerebellum account for only 23% of 

all ROIs. Therefore, in order to ensure that between-structure correlations were included, 

structure-specific thresholding was used (Marek et al., 2018). The correlation matrix was 

separated into cortical, subcortical, and cerebellar components (e.g., the subcortical 

component is every entry in each row corresponding to any subcortical ROI) and the edge 

density thresholds were applied to each component separately. Thus, if a 2% structure-

specific edge density was applied to the matrix, the top 2% of cortical, top 2% of 

subcortical, and top 2% of cerebellar correlations (excluding diagonal entries) were 

extracted and all other correlations were set to 0.
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2.6.4. Consensus network procedure—Consensus functional network communities 

were determined in a semi-automated, multistep process. First, a weighting procedure was 

applied across InfoMap thresholds. For the 2% and 3% thresholds the weight was 5, for the 

4% and 5% thresholds the weight was 3, and the weight was 1 for all other thresholds. These 

weights were chosen to bias the consensus solution to have approximately 17 networks on 

the basis of work from Yeo and colleagues (Yeo et al., 2011). Since smaller networks tend to 

be observed at sparser thresholds, those thresholds contribute more weight than the denser 

thresholds. For each ROI (independently), the InfoMap-determined community at each 

threshold was noted, taking the weights into account, and the highest weighted community 

was assigned as the consensus.

After this automated consensus procedure, authors BAS, CG, and DJG reviewed the 

community assignment of each new subcortical and cerebellar ROI. In ambiguous cases 

(e.g., an even split in assignment across thresholds), we consulted literature describing the 

anatomy and function of that brain region. In cases when the InfoMap and the winner-take-

all assignments differed, we adjudicated between the two using a previously described 

template-matching algorithm (from (Gordon et al., 2017a)). Briefly, a seedmap was 

generated for each ROI, and binarized such that all correlation values greater than 0 were set 

to 1 (all others set to 0). Then, the cortical portion of this binary seedmap was compared to 

14 network templates (binary representations of wholenetwork seedmaps defined a priori) 
via the dice coefficient. Each ROI received the network label for which the dice overlap was 

maximal. There were 24 ROIs that required adjudication in this way.

All cortical ROIs retained their original assignment from published works (Power et al., 

2011 for ROI Set 1 and from Gordon et al., 2016 for ROI Set 2) unless there was strong 

evidence to overturn the original. Specifically, if an ROI in the present InfoMap solution 

received the same assignment across all thresholds and that assignment was distinct from the 

original, then the ROI was assigned to the novel network community (detailed in Section 

3.3). Furthermore, 5 ROIs originally assigned to the salience network were reassigned to the 

cingulo-opercular network. We made this change because (1) the ROIs showed profiles 

intermediate between salience and cinguloopercular assignments and (2) previously 

published studies revealed that these brain regions demonstrate task-evoked activity 

consistent with the cingulo-opercular network (Dosenbach et al., 2006; Dubis et al., 2016; 

Gratton et al., 2018b, 2017; Neta et al., 2014).

2.6.5. Validation of ROIs and consensus networks—The primary and secondary 

datasets were used to create the subcortical and cerebellar ROIs, respectively. The validation 

dataset (MSC) was used to test the validity of the consensus functional network 

communities in both cases. The network community assignment for each ROI was compared 

across all datasets, and discrepancies were noted. Further, consensus networks were 

compared with those from previously published literature including the Morel anatomical 

atlas of the subcortex and the SUIT anatomical atlas of the cerebellum. Additionally, the 

winner-take-all assignments were compared between split-halves of the primary dataset. 

Finally, we measured the degree of confidence in the “winning” network for each subcortical 

and cerebellar voxel by calculating the difference in functional connectivity between the 

winning and second place network assignments, as in Marek et al., 2018. This analysis was 
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conducted with the primary dataset (WashU 120) for the basal ganglia and thalamus, and 

with the validation dataset (MSC) for the cerebellum. We examined the location of each ROI 

with respect to this estimation of confidence in the winner-take-all assignments (SI Figure 

1).

2.7. Accounting for ROIs with strong functional connectivity to multiple networks

The InfoMap and winner-take-all approaches each yield a single network solution for each 

ROI. However, there is evidence that regions within the subcortex connect with multiple 

functional networks, as previous studies have identified zones of integration within the basal 

ganglia and thalamus (Greene et al., 2020; Garrett et al., 2018; Hwang et al., 2017). Such 

integration may be a source of low-confidence winner-take-all assignments (SI Figure 1). To 

address this issue, we used the validation dataset (MSC) to identify ROIs that overlap with 

“integrative” voxels. As in Greene et al., 2020, a voxel was considered integrative if its 

correlation with any network was within 66.7% of its correlation with the “winning” 

network. Note that identification of integrative voxels is highly similar across thresholds 

(within 50–75% of the “winning” network) and with different methodologies (e.g., a method 

based on effect size). Then, we calculated the percent of voxels within each non-cortical ROI 

that overlapped with integrative voxels. ROIs with a majority of overlapping voxels (>50%) 

were flagged as “integrative.”

2.8. Spring-embedded graphs and participation coefficient

To visualize the community structure of networks in an abstract graph space, 

springembedded graphs were created. The networks (correlation matrices) were thresholded 

in the same way as in Section 2.6.3, and the resulting matrices were submitted to a physical 

model of connected springs (the Kamada-Kawai algorithm, as used in Power et al., 2011). 

Correlations between pairs of ROIs were modeled as force constants between connected 

springs such that strongly correlated ROIs were “pulled” close to one another. ROIs were 

colored according to their consensus functional network community or their anatomical 

location.

To quantify the degree to which an ROI plays a hub-like role in the network, the 

participation coefficient of each ROI was computed across (structure-specific) edge density 

thresholds between 5 and 25%. Participation coefficient was calculated as defined for 

weighted networks in Rubinov and Sporns, 2010 using code from the Brain Connectivity 

Toolbox (Rubinov and Sporns, 2010).

3. Results

3.1. Subcortical and cerebellar ROIs

The final set of subcortical and cerebellar ROIs overlaid onto the winner-take-all partitions 

are displayed in Figures 1 and 2, respectively. The winner-take-all partitions were similar to 

previously published partitions for the basal ganglia (Choi et al., 2012; Greene et al., 2014), 

thalamus (Hwang et al., 2017), and cerebellum (Buckner et al., 2011), and showed good 

split-half replication (dice overlap of 61.5% in the thalamus and 60.1% in the basal ganglia; 

SI Figure 2). Many ROIs outside the cortex agree with anatomical divisions from previously 
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established subcortical (Morel, 2013) and cerebellar (Diedrichsen et al., 2009) atlases, as 

shown in Figure 3. ROIs that do not show perfect correspondence with anatomical parcels 

may reflect discrepancies between anatomical and functional division of these structures, 

potentially due to finer parcellations in the anatomical atlases. A majority of the ROIs were 

contained within high confidence winner-take-all parcels, as assessed in Marek et al., 2018 

(SI Figure 1).

The 34 subcortical ROIs sampled the following anatomical structures (bilaterally): the head 

and tail of the caudate; anterior dorsal, posterior dorsal, anterior ventral, and posterior 

ventral putamen; the globus pallidus (internus and externus combined); the ventral striatum 

(i.e., nucleus accumbens); the amygdala (nuclei not distinguished); anterior and posterior 

hippocampus; and regions in the thalamus. The locations of the thalamic ROIs included the 

following nuclei and surrounding territory (the resolution of our data was not fine enough to 

delineate precise thalamic nuclei): medio-dorsal (MD), latero-dorsal (LD), ventro-anterior 

(VA), ventro-lateral (VL), ventro-postero-lateral (VPL), and lateral geniculate nucleus 

(LGN)-pulvinar. The 27 cerebellar ROIs sampled the vestibulo-, spino-, and cerebro-

cerebellum, including the cerebellar vermis, classical motor cerebellar cortex, and cerebellar 

association cortex (Woolsey et al., 2008).

3.2. Correlation structure replicates across datasets

Exemplar seedmaps from the new ROIs for the primary dataset are displayed in Figure 4 and 

the group-average correlation matrices for all datasets using ROI Set 1 are displayed in 

Figure 5. The correlation matrices using ROI Set 2 are displayed in SI Figure 3. The 

seedmaps were comparable to previously published maps (Figure 4). The matrices were 

quite similar across datasets (r120,HCP = 0.90, r120,MSC = 0.93, rHCP,MSC = 0.87), with results 

from the primary dataset replicating best in the validation (MSC) dataset. However, in the 

secondary (HCP) dataset, there was approximately 0 correlation between subcortical ROIs 

and all other ROIs, including homotopic subcortical ROI pairs. The likely reason for this 

difference is due to poor temporal signal-to-noise ratio in the subcortex of HCP data (Ji et 

al., 2019), which we demonstrate here in SI Figure 4. Thus, we excluded the secondary 

dataset from all further analyses.

3.3. Functional network organization using the expanded ROI Set

We used a data-driven community detection algorithm (InfoMap) on weighted networks to 

determine the functional network community membership of the expanded set of ROIs 

(Rosvall and Bergstrom, 2008). The results of this analysis are displayed in Figure 6. 

Communities are shown for all tested edge density thresholds alongside the consensus 

network communities (see section 2.6).

In the subcortex and cerebellum, the consensus network communities were as follows: ROIs 

in the caudate associated with the default mode network (head) or the frontoparietal network 

(tail). The putamen and globus pallidus ROIs joined the somatomotor dorsal network. In the 

thalamus, the default mode network was assigned to mediodorsal region, the 

cinguloopercular network to the laterodorsal and ventral anterior regions, the somatomotor 

dorsal network to the ventrolateral and ventral posterolateral regions, and the visual network 
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to the ROI that includes the lateral geniculate nucleus and the posterior portion of the 

pulvinar. We use the names of the thalamic nuclei for convenience here, even though the 

ROIs encompass more gray matter than just the nuclei themselves. Cerebellar ROIs joined 

various networks, including the default mode, frontoparietal, and cinguloopercular networks 

(lateral), the somatomotor networks (motor cerebellar cortex), and the visual network 

(vermis). Most of the observed network assignments agree with known brain function, such 

as the association between ventral posteriolateral thalamic region and the somatomotor 

dorsal network.

While some ROIs did not vary in network membership across thresholds (e.g., the tail of the 

caudate ROIs), others changed network membership after a certain threshold (e.g., the 

putamen ROIs) or switched between two or more networks (e.g., some of the thalamic 

ROIs). This variation is similar to the variation seen with cortical ROI assignments (e.g., see 

Figure 1 from Power et al., 2011 and Figure 2A from Power et al., 2013) and is indicative of 

the loss of some finer-scale community structure at denser thresholds.

Importantly, we replicated these community assignments in the validation dataset (MSC; 

note that we did not use the secondary dataset for this analysis due to poor signal-to-noise in 

the subcortex). The consensus communities from the primary and validation datasets were 

broadly consistent across the two ROI Sets, with 55 out of 61 subcortical (including the 

amygdala and hippocampus) and cerebellar ROIs receiving the same assignment. For 24 

ROIs, the InfoMap and winner-take-all assignments differed, requiring adjudication. A 

template-matching approach was implemented to adjudicate the consensus network of these 

ROIs. As an example, an ROI in the dorsal striatum was assigned to the salience (winner-

take-all) and default mode (InfoMap) networks. The template-matching approach provided 

evidence for a final assignment to the salience network (Figure 7; see section 2.6.4; dice 

overlap with salience network template = 0.78).

Most cortical ROIs retained their functional network membership from Power et al., 2011 

(ROI Set 1) or Gordon et al., 2016 (ROI Set 2). Nonetheless, with to the addition of the new 

ROIs, we observed two functional networks not previously observed with the original ROI 

sets: (1) a network composed of ROIs in the amygdala, ventral striatum, and orbitofrontal 

cortex, which we will call the “striatal-orbitofrontal-amygdalar (SOFA)” network and (2) a 

network composed of ROIs in the anterior hippocampus and entorhinal cortex, which we 

will call the medial temporal lobe (MTL) network. In addition, in ROI Set 1, 10 previously 

unlabeled ROIs were now assigned to a network: 4 to the SOFA network, 3 to the MTL 

network, 2 to the visual network, and 1 to the dorsal attention network. Also, 12 ROIs 

changed network membership: 2 from the cinguloopercular network to the somatomotor 

dorsal network, 1 from the auditory network to cinguloopercular network, and 9 from the 

salience network to the frontoparietal (2), dorsal attention (1), and cinguloopercular (6) 

networks. For ROI Set 2, 39 previously unlabeled ROIs were assigned to a network: 8 to the 

SOFA network, 10 to the MTL network, 16 to the parietooccipital network, and 5 to the 

default mode network (SI Figure 5). Again, consensus communities from the primary and 

validation datasets were broadly consistent.
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Given the evidence that some regions in the subcortex connect to multiple functional 

networks (Greene et al., 2020; Garrett et al., 2018; Hwang et al., 2017), we identified ROIs 

that overlap with integrative subcortical voxels (i.e., voxels with strong functional 

connectivity to more than one cortical functional network). We found that 8 ROIs in the 

basal ganglia and 6 ROIs in the thalamus contained a majority of integrative voxels (Figure 

8). Therefore, we flag these ROIs as “integrative” and report the percent of integrative voxels 

in addition to their community assignment in the publicly available ROI list. In the 

cerebellum, no ROIs met these criteria.

3.4. Subcortical and cerebellar ROIs affiliate with known functional networks

To visualize the ROIs in functional network space, we created spring-embedded graphs, 

displayed in Figure 9 (other edge densities in SI Figure 6). The implemented spring model 

aggregates nodes with strong correlations between themselves and weak correlations with 

other nodes. Thus, it is possible to observe which nodes segregate into separate communities 

and which nodes act as connector hubs, mediating interactions across different network 

communities (Cohen and D’Esposito, 2016; Gordon et al., 2018; Gratton et al., 2012; 

Hagmann et al., 2008; Mattar et al., 2015; Power et al., 2013; van den Heuvel and Sporns, 

2013).

As is evident from the position of the bolded network nodes, the subcortical and cerebellar 

ROIs were distributed throughout the spring-embedded graph. For instance, the cerebellar 

ROIs (gray) were not segregated from the rest of the network communities as in previous 

reports (Gratton et al., 2018a; Power et al., 2011). This finding was consistent between the 

primary and validation datasets. However, we observed that the basal ganglia, thalamus, and 

cerebellum did segregate into their own network communities when the graph was created 

without structure-specific edge density thresholding (SI Figure 6; see Section 2.6.3 for the 

thresholding procedure). That is, the basal ganglia, thalamus, and cerebellum clustered into 

their own separate network communities with standard edge density thresholding (applying 

the threshold uniformly to the whole correlation matrix), likely because of the lower 

correlation magnitudes associated with these regions.

To assess the effect of including the new ROIs on network topology, we examined two 

graph-theoretic network measures: modularity and participation coefficient (SI Figure 7; 

Rubinov and Sporns, 2010). Addition of the non-cortical ROIs decreased modularity, with 

structure-specific thresholding resulting in a further decrease. Similarly, the participation 

coefficient of ROIs in the subcortex was significantly higher, on average, than ROIs in the 

other structures, consistent with the finding that some of these ROIs contained integrative 

voxels. Structure-specific thresholding resulted in higher average participation coefficient for 

all structures.

4. Discussion

Here we present a set of regions of interest (ROIs) that sample the basal ganglia, thalamus, 

cerebellum, amygdala, and hippocampus more completely than previous ROI sets in order to 

provide a whole-brain description of functional network organization. We found that the 

refined region sets recapitulate previous network organization results in the cortex and 
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extend functional brain network characterization to the subcortex and cerebellum. Notably, 

these results replicated across independent datasets. In addition, with the inclusion of the 

new ROIs, we observe two additional functional networks that were not present in Power et 

al. (2011) and Gordon et al. (2016): a striatal-orbitofrontalamygdalar (SOFA) network and a 

medial temporal lobe (MTL) network.

4.1. Improved sampling of the subcortex and cerebellum

Many recent research efforts have used the 264 ROIs from Power et al., 2011 or the 333 

surface-based parcels from Gordon et al., 2016 to study brain network organization. These 

studies have examined both structural and functional network organization in a wide variety 

of samples, including healthy young adults (Power et al., 2013; Zanto and Gazzaley, 2013), 

developmental cohorts (Gu et al., 2015; Nielsen et al., 2018; Rudolph et al., 2017), older 

adults (Baniqued et al., 2018; Gallen et al., 2016), and a plethora of neurological and 

psychiatric populations (Gratton et al., 2018a; Greene et al., 2016; Sheffield et al., 2015; 

Siegel et al., 2018). We have gained a better understanding of typical and atypical human 

brain organization from these efforts. However, a full characterization of whole-brain 

network organization in these populations is incomplete due to the common 

unsderrepresentation of the subcortex and cerebellum. While there is recent work that has 

focused separately on networks in the thalamus, subcortex, and cerebellum (e.g., Bell and 

Shine, 2016; Buckner et al., 2011; Choi et al., 2012; Greene et al., 2014; Hwang et al., 

2017), here we offer a set of ROIs that encompass all of these structures to encourage 

broader adoption of a whole-brain approach (as recently used in (Nielsen et al., 2019)).

The functionally-defined subcortical and cerebellar ROIs presented in the current work 

provide a better sampling of these structures. By improving their representation, we were 

able to delineate well-characterized and additional functional network communities (relative 

to our past descriptions). The ability to uncover these networks, which have been previously 

described using other methods, illustrates the importance of representing the entire brain in 

network-based analyses. Further, these improved ROI sets may allow future studies to 

discover previously unobserved, yet critical deviations in functional network organization in 

diseases and disorders in which the subcortex and cerebellum are implicated (e.g., Parkinson 

Disease, Tourette Syndrome, Schizophrenia).

It is worth noting that, by definition, the cortical surface parcels omit the subcortex and 

cerebellum. Yet, it is technically possible to parcellate the subcortex and cerebellum using an 

adapted gradient-based methodology (such as the one from Gordon et al., 2016). This 

approach would require extending the gradient technique to three dimensions. As fMRI 

technology and analysis strategies improve, it would be useful to compare the current results 

to a full subcortical and cerebellar parcellation using this or other gradient-based techniques.

A methodological issue to note is that the winner-take-all approach used to define 

subcortical and cerebellar parcels here may be sensitive to the number of a priori cortical 

networks used in the analysis. Increasing the number of cortical networks included may 

allow for finer parcellation of certain structures. Here we used previously well-characterized 

cortical networks that have been consistently found using multiple methods by multiple 

research groups (Power et al., 2011; Yeo et al., 2011). Conversely, InfoMap does not require 
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an a priori number of networks, but may be sensitive to thresholding issues (discussed 

below). Importantly, final network assignments for the ROIs were designated using a 

combination of both techniques. Moreover, 14 ROIs that demonstrated strong connectivity 

with multiple functional networks were noted as integrative.

4.2. Functional connectivity of the refined ROIs is consistent with previous studies and 
replicates across independent datasets

Correlation seedmaps from the refined ROIs agree with functional connectivity profiles 

reported in previous studies. For example, the ROIs added to the ventral striatum and the 

head of the caudate correspond closely to the seeds placed in the superior ventral striatum 

(VSs) and dorsal caudate (DC) reported in Di Martino et al., 2008, and our seedmaps are 

highly similar to theirs. Likewise, seedmaps from the amygdala agree well with those from 

Roy et al., 2009. The same is true for the thalamus (Hwang et al., 2017) and cerebellum 

(Buckner et al., 2011).

Moreover, the full correlation structure (shown in correlation matrices) was quite 

comparable across the diverse datasets. The one major discrepancy was that in the 

subcortical portion of the matrix from the secondary (HCP) dataset, we observed 

correlations near zero. The reason for this observation is likely poor temporal signal-tonoise 

ratio (tSNR) in the subcortex of HCP data (Ji et al., 2019). Several factors may contribute to 

this poor tSNR. (1) The HCP used a custom scanner and coil, which caused unique magnetic 

field inhomogeneities, possibly in part due to subjects’ heads being outside of the isocenter 

of the field. (2) The imaging sequence used an aggressive multiband factor and TR (MB = 8, 

TR = 0.72s) and (3) small voxels (2 cubic mm) were used for acquisition (Glasser et al., 

2013; Van Essen et al., 2012). Each of these factors substantially increase electronic, 

thermal, and other physical sources of noise (Triantafyllou et al., 2005) relative to slower 

sequences with larger voxels. These effects may be amplified as a function of the distance of 

the imaged structure from the head coil, resulting in the poorest tSNR in the subcortex. 

Further work is needed to determine the specific contributions of each factor, as well as 

others heretofore unconsidered, to the observed poor tSNR.

The presented group-level descriptions converge on a very similar picture of functional 

network organization in the subcortex and cerebellum. However, there are individual 

differences in both subcortical and cerebellar functional network organization (Marek et al., 

2018; Greene et al., 2020), as have been found in cortical functional network organization. 

Future work designed for in-depth study of individuals, as in Poldrack et al., (2015), Filevich 

et al., 2017, Braga and Buckner (2017), and Gordon et al. (2017b), will be important for 

elucidating such individual differences. In fact, in-depth study of the cerebellum (Marek et 

al., 2018) and subcortex (Greene et al., 2020) in individuals reveals both common and 

unique features in its functional organization. Furthermore, future work may be able to 

include the brainstem as well in a whole-brain functional network atlas, although there are 

several technical issues to overcome (e.g., CSF pulsations, small nuclei size).
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4.3. SOFA and MTL functional networks map onto known human brain systems

Group-average functional network organization in the cerebral cortex is largely consistent 

across studies (Power et al., 2011; Yeo et al., 2011), and the addition of refined subcortical 

and cerebellar ROIs did not change functional network organization in the cortex 

substantially (although we observed associations between these canonical networks and 

ROIs in the subcortex and cerebellum). However, the addition of these subcortical and 

cerebellar ROIs allowed for the identification of two additional functional networks 

compared to the networks reported using the original ROI sets in Power et al. (2011) and 

Gordon et al. (2016): (1) the “SOFA” network composed of the amygdala, orbitofrontal 

cortex, and ventral striatum, and (2) the “medial temporal lobe (MTL)” network composed 

of the anterior hippocampus and entorhinal cortex. It is worth noting that the SOFA network 

has been observed in studies focusing on reward and emotion processing (Camara et al., 

2009) and its cortical and striatal portions are very similar to the limbic network from Yeo et 

al., (2011) and Choi et al., (2012). The MTL network has been observed in a study of 

highly-sampled individuals (Gordon et al., 2017b) as well as studies focused on the 

hippocampus (Greicius et al., 2009). Here, we demonstrate that these networks are 

measurable at the group-level when the whole brain is represented sufficiently. In addition, 

we found that some cortical ROIs that were previously unlabeled (i.e., they did not group 

with any community) received labels with the inclusion of the refined subcortical and 

cerebellar ROIs, with many of them joining the SOFA and MTL networks.

The SOFA and MTL functional networks map onto well-characterized brain systems. Most 

of the ROIs in the SOFA network are likely connected to each other anatomically in rodents, 

nonhuman primates, and humans (Ongur and Price, 2000; Carmichael and Price, 1995; 

Amaral and Price, 1984). Moreover, these brain areas are known to be functionally related, 

as they are important for various aspects of decision making and reward-related behavior, 

such as economic choice (Padoa-Schioppa and Assad, 2006), emotional regulation (Phelps, 

2006), and gambling (Bechara et al., 2000, 1997). Likewise, the ROIs in the MTL network 

are well-connected anatomically (Duvernoy, 1988; Woolsey et al., 2008) and support various 

aspects of memory formation, consolidation, and retrieval, as well as other important 

functions, such as spatial mapping (Burgess et al., 2002; Moser and Moser, 1998; Tulving 

and Markowitsch, 1998). Though our current work is agnostic to the function of these brain 

systems, we show that their constituent regions demonstrate coherent spontaneous 

fluctuations in infraslow BOLD signal.

4.4. Some ROIs in the subcortex exhibit functional connectivity with multiple cortical 
networks

There is evidence to suggest that regions of the basal ganglia and thalamus act as integration 

zones, combining information from multiple functional brain networks (Garrett et al., 2018; 

Haber, 2003; Hwang et al., 2017). A majority of the non-cortical ROIs included in this study 

exhibited functional connectivity primarily with just one cortical functional network, and 

therefore, can be considered network-specific ROIs. Particularly in the cerebellum, we found 

that all ROIs were network-specific. However, in the basal ganglia and thalamus, some of 

the ROIs overlapped with integration zones, as they contained voxels with strong 

connectivity to multiple cortical networks. These subcortical integration zones have been 
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explored more fully in Greene et al., (2020), demonstrating preferential integration of 

particular networks with given subregions of the basal ganglia and thalamus. These findings 

are consistent with models of subcortico-cortical connectivity describing parallel and 

integrative circuits (Haber, 2003) as well as with previous non-human primate research 

(Averbeck et al., 2014; Choi et al., 2017) and human neuroimaging work (Garrett et al., 

2018; Hwang et al., 2017) showing that subcortical structures contain integrative hubs.

We allow users of our ROI Sets to account for the above feature of brain organization as 

flexibly as possible. For each ROI, we provide the percent of voxels overlapping with 

integrative zones, and we flag “integrative” ROIs as those with a majority of voxels in such 

regions (in our publicly available lists). Thus, users can incorporate this information as 

desired and include or exclude certain ROIs in order to craft an ROI Set best-suited to 

investigate their research questions.

4.5. Subcortical and cerebellar ROIs affiliate with known functional networks

To visualize the organization of the ROIs in functional network space, we created spring-

embedded graphs. We observed that the subcortical and cerebellar ROIs affiliate with 

various well-characterized network communities composed of cortical regions instead of 

segregating on their own (i.e., away from cortical ROIs), particularly after structure-specific 

thresholding (see below). This organization fits with the known anatomy and function of the 

subcortex and cerebellum better than a model in which each structure is segregated into its 

own community. For instance, individual nuclei in the thalamus project directly to distinct 

brain systems (Woolsey et al., 2008) and play unique roles in behaviors associated with 

those systems (Guillery, 1995; Van Der Werf et al., 2000). Likewise, striato-cortical and 

cerebello-cortical anatomical connections show specific projections to unique regions of 

cortex (Woolsey et al., 2008) and are known to be integral for the function of various large-

scale, distributed systems, such as the motor system (Glickstein and Doron, 2008) and 

regions of higher order systems (Alexander et al., 1986; Strick et al., 2009). Investigation of 

network measures revealed that the subcortical ROIs have a higher participation coefficient, 

on average, than other structures, meaning they have modest-to-high correlations with 

multiple networks. This result is consistent with the idea that subcortical structures contain 

integrative hubs (Hwang et al., 2017); Greene et al., 2020). Likewise, the non-cortical ROIs 

decrease the modularity of the whole network, reflecting decreased segregation and 

increased integration. These results are consistent with the finding of integrative ROIs in the 

subcortex described above. It should be noted, however, that several methodological factors 

may affect or potentially bias network measures like participation coefficient, such as 

structure-specific thresholding and the interaction between structure size and BOLD fMRI 

spatial autocorrelation.

The demonstration that subcortical and cerebellar ROIs affiliate with cortical networks was 

revealed by the use of structure-specific edge density thresholding (i.e., thresholding the 

cortex, subcortex, and cerebellum separately). In most network analyses, only the strongest 

positive correlations are considered for network-based analyses, such as spring-embedded 

graphs. However, subcortical correlations are generally weaker than cortical correlations 

(likely due to distance from the head matrix coil and signal dropout due to sinuses). Thus, if 
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the top 5% strongest positive correlations are selected, almost all subcortical correlations 

will be excluded. To avoid this exclusion, we implemented structure-specific thresholding. 

This choice ultimately affects the nature of the spring-embedded graph as well as the 

determination of functional network communities and network measures. Without structure-

specific thresholding, subcortical ROIs group with one another into two separate network 

communities (basal ganglia and thalamus), while the entire cerebellum is lumped into one 

network community. In terms of human brain functional organization, this pattern of 

clustering seems artificially inflated due to low subcortex-to-cortex and cerebellum-tocortex 

correlations. By using structure-specific thresholding, we were able to observe functional 

network organization that is more consistent with the known functions of the subcortex and 

cerebellum. However, this approach may affect graph theoretic network measures in the 

subcortex and cerebellum, and thus, deserves future investigation.

4.6. “Optimal” ROI set depends on research question

There are advantages to both anatomical and functional network-based divisions of ROIs. 

For instance, anatomical network divisions allow for analysis of important distinctions 

between the cortex, subcortex, and cerebellum, whereas functional network divisions are 

likely to better represent putative brain function. Likewise, there are fundamental differences 

between anatomical and functional atlases, with anatomical atlases parsing the brain 

according to anatomical divisions and cytoarchitecture, and functional atlases parsing the 

brain according to functional criteria. For instance, the cerebellum is probabilistically 

divided into lobes and crura in one anatomical atlas (Diedrichsen et al., 2009). While many 

of these divisions align well with the ROIs presented here, some ROIs do not fit within the 

probabilistic boundaries. Thus, some ROIs may better reflect functional rather than 

anatomical divisions in the cerebellum. Similarly, many of the divisions in a commonly used 

subcortical anatomical atlas (Morel, 2013) agree well with the ROIs presented here, with the 

exception of a few anatomical parcels that are likely beyond the resolution of the fMRI data 

used here. Ultimately, researchers should be cognizant of these effects when choosing how 

to perform network-based analyses and which atlas or ROI Set to use. We advise readers to 

use the analysis strategy and atlas that best suits their research questions.

4.7. Conclusions

We created new subcortical and cerebellar ROIs to improve the representation of these 

structures for brain network analysis. Combining these new ROIs with previously 

characterized cortical ROIs allowed further insight into whole-brain functional network 

organization. Going forward, inclusion of these ROIs will yield more comprehensive results 

from fMRI studies of typical and atypical brain organization and function. The ROI Sets and 

consensus functional network assignments described here are available for immediate 

download and use at https://greenelab.wustl.edu/data_software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Subcortical ROIs.
The new ROIs (white circle with black outline) are displayed in serial coronal (A), sagittal 

(B), and axial (C) sections of the thalamus and basal ganglia, with the cortical functional 

networks for reference (D). The ROIs are overlaid on top of the voxel-wise winner-take-all 

partitions.
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Figure 2: Cerebellar ROIs.
The new ROIs (white circle with black outline) are displayed in serial coronal (A), sagittal 

(B), and axial (C) sections of the cerebellum, with the cortical functional networks for 

reference (D). The ROIs are overlaid on top of the voxel-wise winner-take-all partitions. 

ROIs in the amygdala and anterior hippocampus are overlaid on anatomical coronal sections 

in the bottom right panel of C.

Seitzman et al. Page 29

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Functionally-defined ROIs overlaid onto anatomical parcellations.
Many of the subcortical and cerebellar ROIs are contained within a single anatomical parcel 

from the Morel atlas of the subcortex (A) and the SUIT atlas of the cerebellum (B), 

indicating good agreement between the current functional parcellation. A few ROIs overlap 

multiple anatomical parcels (e.g., dorsolateral thalamus, right posterior cerebellum), which 

may be a consequence of a finer parcellation than is possible with the current fMRI data.
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Figure 4: Exemplar seedmaps for the new ROIs.
Functional correlation seedmaps are shown for an exemplar ROI in the cerebellum (A) and 

dorsal striatum (B). The consensus functional network assignment of each ROI is 

represented by its color (left column). Seedmaps display the correlations between the mean 

BOLD signal from the ROI in question and the BOLD signal from every other gray matter 

voxel (middle column). Results were similar to comparable seedmaps from previously 

published studies (right column). Images from Buckner, R.L. et al., 2011. The organization 

of the human cerebellum estimated by intrinsic functional connectivity. Journal of 
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Neurophysiology 106 (5) 2322–2345; and, Di Martino, A. et al., 2008. Functional 

Connectivity of Human Striatum: A Resting State fMRI Study. Cerebral Cortex 18 (12), 

2735–2747 reproduced with permission from The American Psychological Society and 

Oxford University Press. (C) Correlation structure for the Medial Temporal Lobe (left) and 

Striatal OrbitoFrontal Amygdalar (right) networks are displayed (see section 3.3).

Seitzman et al. Page 32

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Correlation matrices are similar across datasets.
The full (300 × 300) correlation matrices for ROI Set 1 are displayed for each dataset in the 

left column, and zoomed-in versions of the subcortical and cerebellar portions of the 

matrices are displayed in the right column (the corresponding images for ROI Set 2 are 

shown in SI Figure 3). The cortical portion of the correlation matrix is sorted by functional 

network community, whereas the subcortical and cerebellar portions are sorted first by 

anatomical structure (i.e., basal ganglia, thalamus, and cerebellum) and then by functional 

network community (within each structure). The matrices are similar to one another (e.g., 

the correlation between the primary and validation datasets is 0.93), except for the 

subcortical portion of the secondary dataset (HCP- Human Connectome Project). We 

observed poor temporal signal-to-noise in subcortical HCP data (SI Figure 4). The first row 

and column of the matrices correspond to unlabeled regions (i.e., InfoMap was unable to 

assign these ROIs to a network, similar to Power et al., 2011 and Gordon et al., 2016).
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Figure 6: InfoMap-defined functional network communities.
The InfoMap-defined functional network community of each ROI is displayed. (A) Cortical 

ROIs are shown projected onto the surface of the brain, and some of the non-cortical ROIs 

are displayed in axial slices to the right of the cortical surface. (B) The matrices represent 

the functional network assignment of each ROI across all tested edge densities (each 

column, denoted by the tick marks, represents one edge density), with the consensus 

functional network community displayed in the last column of each matrix (delineated by 

the vertical black line). Results are shown for the primary and validation datasets. The 
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matrices on the left represent the cortical ROIs, and the colors correspond to the labels in A. 

The matrices on the right show zoomed-in results for all noncortical ROIs. Results were 

highly consistent in the subcortex, cerebellum, amygdala, and hippocampus, with a total of 3 

disagreements between datasets (in addition to 3 unlabeled ROIs at the bottom of the 

cerebellum forming their own “network” in the MSC dataset).
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Figure 7: Disambiguation of discrepancies between assignments.
In cases where the winner-take-all assignment and InfoMap solution differed, a template-

matching approach (Gordon et al., 2017a) was used to determine the consensus ROI 

assignment. This exemplar ROI (head of the caudate) was assigned to the salience network 

(black) via the winner-take-all approach and the default mode network (red) via InfoMap. 

The ROI’s seedmap is more similar to the salience network (left, black outline) than the 

default mode network (left, red outline), especially on the lateral surface of the brain. 

Arrows highlight functional connectivity within the salience and default mode network 

regions. The template-matching approach confirmed the stronger similarity to the salience 

network (dice overlap with salience network template = 0.78).
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Figure 8: Some ROIs in the basal ganglia and thalamus have strong connectivity to multiple 
networks.
Integrative voxels in the basal ganglia and thalamus are displayed in red and yellow colors. 

These voxels have strong connectivity to more than one cortical functional network. Some of 

the novel ROIs (displayed in translucent white) contain a majority of integrative voxels 

(green arrow), while other ROIs contain few or none (purple arrow).
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Figure 9: Spring-embedded graphs show that subcortical and cerebellar ROIs affiliate with 
wellcharacterized network communities.
Spring-embedded graphs are displayed for ROI Set 1 using the primary and validation 

datasets at a structure-specific edge density threshold of 3% (other edge densities shown in 

SI Figure 6; see section 2.6.3 for the thresholding procedure). Non-cortical ROIs are larger 

and have a bold outline. The color of each ROI represents its consensus functional network 

community assignment, except for the non-cortical ROIs, which are labeled by anatomical 

structure. The basal ganglia, thalamus, and cerebellum distribute throughout the graph, 

affiliating with well-characterized networks rather than segregating into their own 

communities.

Seitzman et al. Page 38

Neuroimage. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Material and Methods
	Primary dataset- WashU 120
	Dataset characteristics
	Data acquisition
	Preprocessing

	Secondary dataset- HCP 80
	Dataset characteristics
	Data acquisition
	Preprocessing

	Validation dataset- MSC
	Dataset characteristics
	Data acquisition
	Preprocessing

	Winner-take-all partitioning of the subcortex and cerebellum
	ROI creation
	ROI Set 1 (Power264 + new)
	ROI Set 2 (Gordon333 + new)

	Seedmaps and consensus functional network communities for each ROI
	Seedmaps
	Correlation matrices
	Community detection
	Consensus network procedure
	Validation of ROIs and consensus networks

	Accounting for ROIs with strong functional connectivity to multiple networks
	Spring-embedded graphs and participation coefficient

	Results
	Subcortical and cerebellar ROIs
	Correlation structure replicates across datasets
	Functional network organization using the expanded ROI Set
	Subcortical and cerebellar ROIs affiliate with known functional networks

	Discussion
	Improved sampling of the subcortex and cerebellum
	Functional connectivity of the refined ROIs is consistent with previous studies and replicates across independent datasets
	SOFA and MTL functional networks map onto known human brain systems
	Some ROIs in the subcortex exhibit functional connectivity with multiple cortical networks
	Subcortical and cerebellar ROIs affiliate with known functional networks
	“Optimal” ROI set depends on research question
	Conclusions

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:

