
ARTICLE

Extensive rewiring of the EGFR network in
colorectal cancer cells expressing transforming
levels of KRASG13D
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Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but

how oncogenic mutations impact these interactions and their functions at a network-level

scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation

(KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor

(EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this

network is extensively rewired in cells expressing transforming levels of KRASG13D

(mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein

expression and phosphorylation. Mathematical modelling also suggests that the binding

dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring

substantially alters the composition of protein complexes, signal flow, transcriptional reg-

ulation, and cellular phenotype. These changes are validated by targeted and global experi-

mental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes

occur frequently in CRC and are prognostic of poor patient outcomes.
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PPINs are a major principle of biological organization. Sev-
eral large-scale studies have demonstrated their importance
in organizing fundamental cellular processes1–4. Increasing

evidence suggests that PPINs are altered in human disease and
that such changes contribute to pathogenesis3,5,6. However, we
lack a clear comprehension of how such changes occur and how
they affect PPIN function. This particularly applies to oncogenic
mutations, where we rarely understand how system wide effects
are generated. For instance, oncogenic RAS mutations, which
activate the ability of RAS proteins to engage downstream
effectors, occur in ~30% of all human cancers7. RAS mutated
cancers are resistant to most targeted therapies, and inhibiting
downstream effectors has proven ineffective, likely because of
complex feedback structures in the downstream pathways and the
large number of effector pathways8. These impediments highlight
the need for a systems level understanding of the RAS signaling
network and the changes associated with RAS transformation8.
The KRASG13D mutation (mtKRASG13D) investigated here is the
second most frequent RAS mutation in CRC7, and is associated
with aggressive behavior and poor clinical outcomes9.

We use quantitative mass spectrometry (qMS) to map KRAS
regulated PPINs in two closely related CRC cell lines that express
either transforming or non-transforming levels of mtKRASG13D.
Focusing on the epidermal growth factor receptor (EGFR) signaling
network, where KRAS plays a key role in CRC10, we analyze 1710
immunoprecipitates and map >6000 PPIs involved in EGFR sig-
naling (Fig. 1). To analyze this dataset we develop an analysis
pipeline for the quantitative comparison of PPIN data between
different cell lines. Finding that the expression of transforming
levels of mtKRAS correlates with substantial rewiring of the EGFR
PPIN, we analyze the functional consequences of this rewiring on
protein complex assemblies, information flow, and biological
responses including the prognosis of CRC patients. To facilitate the
utilization of this extensive data for further research we develop
PRIMESDB.eu (https://primesdb.eu/), an integrated database and
analysis platform for exploring the PPINs described here.

Results
Mapping the EGFR PPIN in mtKRAS Cells. We mapped the
effects of mtKRAS on PPINs downstream of the EGFR in HCT116
cells, which have been widely used to study mtKRAS functions in
CRC. HCT116 harbor an oncogenic KRASG13D allele, which was
targeted for disruption by homologous recombination to generate
the non-tumorigenic HKE3 cells11. A thorough genetic, biochem-
ical and biological characterization described in a previous pub-
lication12 and Supplementary Fig. 1 confirmed that HCT116 and
HKE3 are closely related cell lines. Compared to HCT116 cells,
HKE3 had a non-transformed phenotype, as reflected by EGFR
inhibitor sensitivity and reduced migration, proliferation, colony
forming ability, and anchorage independent growth (Supplemen-
tary Fig. 1). Interestingly, despite this non-transformed phenotype
HKE3 cells retain a genetically stable low-level expression of
mtKRASG13D, likely due to a duplication of the mutant
mtKRASG13D allele in HCT116 and knockout of only one copy in
the HKE3 cells (Supplementary Fig. 1A). Recent findings indicate
that oncogenic KRAS mutations occur in normal tissues and that
KRAS activity needs to exceed a threshold to drive cancer pro-
gression and metastasis13–16. Thus, this cell line pair offers the
opportunity to compare the EGFR PPIN in cells expressing
a transforming vs. a non-transforming dosage of mtKRAS.
Furthermore, HCT116 are not addicted to mtKRAS for survival,
minimizing selection pressure to acquire compensatory mutations
when mtKRAS dosage is reduced17.

To attain a representative coverage of the EGFR PPIN we
selected 95 bait proteins (Supplementary Data 1) based on a

highly curated EGFR signaling network map18 and a literature
survey of the EGFR pathways involved in CRC pathogenesis and
progression. The baits cover the main functions of EGFR
signaling including key kinases, phosphatases, scaffold and
adapter proteins in the network. The baits were expressed as
FLAG-tagged proteins carefully titrating transfection to achieve a
similar expression level in both cell lines. Baits were immuno-
precipitated and associated prey proteins were identified by
high-resolution Orbitrap qMS. To ensure high data quality, we
analyzed 95 bait and empty vector control immunoprecipitates
(IPs) from both forward and reverse SILAC labeled cells using
three biological and two technical replicates per bait resulting in
1710 samples and 1140 qMS analyses (Fig. 1). As common
analysis methods for AP-MS data are ill suited for quantitatively
comparing PPI data from different cell lines and from a biased
bait selection, we used HiQuant19, which we specifically
developed analyse MS data from complex experiments such as
ours. The pipeline includes rigorous steps for data quality control,
normalization, statistical analysis, and network construction. This
workflow includes a stringent two-step procedure to exclude false
positive interactors (Supplementary Methods, section 12). The
EGFR PPINs in the HCT116 and HKE3 cells, termed EGFR-
NetmtKRAS-Hi and EGFRNetmtKRAS-Lo, respectively, were recon-
structed from high-confidence bait–prey interactions.

EGFR PPIN network architecture. EGFRNetmtKRAS-Hi and
EGFRNetmtKRAS-Lo consist of 3162 and 2788 bait-prey interac-
tions, respectively (Supplementary Fig. 2A–E, Supplementary
Data 2). This network size is within the expected distribution of
known PPINs (Supplementary Fig. 3A). 93 of the 95 baits had a
least one prey detected in both cell lines. More than 70% of preys
in EGFRNetmtKRAS-Lo were also nodes in EGFRNetmtKRAS-Hi,
indicating that most nodes are true components of the EGFR
PPIN, since they were independently detected in both cell lines.
Both EGFRNets are small-world, single-component networks
(i.e., all nodes are reachable from one another) with similar scale-
free topologies and comparable other network properties such as
average path length, node degree, betweenness centrality (bc), and
clustering coefficients (Supplementary Fig. 2F–I). For example,
many of the major hubs (highly connected nodes) in EGFR-
NetmtKRAS-Hi are also hubs in EGFRNetmtKRAS-Lo including
GRB2, RAB5A, RAF1, and SH2D3C. While GRB2 is a well-
known hub coordinating different aspects of EGFR signaling20,
some of the other high bc nodes are thought to have specialized
functions. Our data suggest that these proteins are involved in a
far greater degree of crosstalk with other cellular processes than
previously assumed.

A comparison with currently known PPIs shows that >80% of
interactions discovered in our study are new, attesting to the value
of focused PPIN mapping studies complementing genome-wide
efforts and suggesting that many PPIs may be highly dependent on
the cellular context. Such a high proportion of novel interactions is
consistent with other large-scale, AP-MS based, interactome
mapping efforts1,2,4,21,22. Testing 17 arbitrarily chosen interactions
using conventional co-immunoprecipitation/Western blot experi-
ments showed that the PPI data were highly reproducible by a
different method (Supplementary Fig. 3B, C).

As AP-MS may underrepresent interactors of integral mem-
brane proteins23, we used MYTH, a membrane yeast two-hybrid
assay24, to identify binary protein interactors of the human EGFR
family, ERBB1–4 (Supplementary Methods, section 30). This
interactome map comprised 405 interactions (Supplementary
Fig. 4 and Supplementary Data 3) including 181 new interactions.
All bait–prey interactions detected in theEGFRNets can be
explored in the Supplementary Data and at http://primesdb.eu/.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14224-9

2 NATURE COMMUNICATIONS |          (2020) 11:499 | https://doi.org/10.1038/s41467-019-14224-9 | www.nature.com/naturecommunications

https://primesdb.eu/
http://primesdb.eu/
www.nature.com/naturecommunications


Bona fide, curated 
EGFR network from 
literature 

Gateway cloning of 
Flag-tagged baits;  
transfection and bait 
expression titration 

95 bait proteins 
covering the known 
EGFR network 

On-bead digestion, 
Mix SILAC samples 

IP FLAG-tagged 
Baits 

Protein identification, 
protein quantification, 
contaminant removal 
using MaxQuant  

Post-quantification and 
statistical analysis 
using HiQuant  

EGFRNets

ABI1
AKT
ARAF
.
.
.
YES1
YWHAE

Express equal 
amount of baits 

Nano-LC 
separation  

Compare baits vs. 
Ctrl and PPI changes 
between cell lines 

HKE3

HCT116

HCT116 EV Ctrl HKE3

Trypsin digestion

HCT116

1710 bait and control IPs

Orbitrap MS (1140 analyses)

Two technical replicates/sample

Not investigated

No rewired interactions

mtKRASLo-enhanced interactions

mtKRASHi-enhanced interactions

10.5

0.5 μg 1 μg

1 μg

1.5 μg

1.5 μg0.5 μg

0.5 μg 1 μg

1 μg

1.5 μg

1.5 μg0.5 μg

Bait

Loading
control

1.5 10.5 1.5 10.5 1.5 10.5 1.5
HKE3

Forward SILAC labeling
(three replicates/bait/cell line)

Reverse SILAC labeling
(three replicates/bait/cell line)

Heavy Medium Light

HeavyMediumLight

HM L

Fig. 1 Experimental and data analysis workflow for the comparative mapping of PPIs in the EGFR network. Baits were chosen based on the core EGFR
network described by Kiel et al.18 and additional manually curated literature information. Flag-tagged expression vectors were constructed using the
Gateway cloning system and transfected into HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells. Careful titration of the transfected plasmids ensured similar
protein expression in both cell lines grown in SILAC media as monitored by Western blotting. For MS experiments similar amounts of baits were expressed
in SILAC labeled HCT116 and HKE3 cells and immunoprecipitated (IP) with anti-Flag antibodies. To assure robust quantitation the SILAC label was
swapped, i.e. each bait was isolated from HCT116 and HKE3 cells grown in heavy or light medium, respectively. After trypsin digestion peptides were
identified and quantified by orbitrap mass spectrometry. Raw data were analysed using MaxQuant59 and further processed using HiQuant19 implementing
a stringent pipeline to retain only true interactors. Based on these data two quantitative protein–protein interaction networks, termed EGFRNetmtKRAS-Hi

and EGFRNetmtKRAS-Lo, were reconstructed and are shown in a combined differential network representation. EV Ctrl, empty vector control transfection.
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mtKRASHi induces extensive PPIN rewiring. To identify
interactions that were significantly rewired in mtKRASHi cells,
i.e., interactions that were gained/lost in one EGFRNet or present
in both but with significantly altered prey abundance, we statis-
tically compared prey abundance between each bait-prey complex
in the EGFRNets. Of the 4420 bait–prey interactions detected in
at least one EGFRnet (Supplementary Data 4), 1368 were sig-
nificantly rewired i.e., prey abundance was significantly different
between the two PPINs at P ≤ 0.05, significance A ≤ 0.05 (Sup-
plementary Data 5). Six hundred and thirty four of the rewired
interactions were edges only in EGFRNetmtKRAS-Hi, and 406 were
edges only in EGFRNetmtKRAS-Lo indicating that most rewiring is

due to interaction gains or losses (Fig. 2). The 328 remaining
rewired interactions were present in both networks but with
significantly different prey abundances (P ≤ 0.05, significance A ≤
0.05). These data suggest that the oncogenic mtKRAS activity in
mtKRASHi cells initiates a ripple effect throughout the network
substantially altering network topology far beyond direct KRAS
interactors.

Potential drivers of PPIN rewiring. To investigate which
molecular mechanisms could drive PPIN rewiring, we first ana-
lyzed whether genetic mutations other than KRASG13D played a
role, since genetic variation has previously been associated with
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PPIN rewiring25. Using whole genome sequencing we identified
genetic alterations, including copy number variations (CNVs),
insertions/deletions (InDels), synonymous and nonsynonymous
single-nucleotide-variants (SNVs) between the two cell lines
(Supplementary Data 6–8; Supplementary Fig. 5A). Using
the Genome Analysis Toolkit26 27 genes were predicted to be
impacted by structural variants, but no gene was a node in the
EGFRNets. Considering CNVs, five genes were EGFRNet nodes,
but only one gene product, PPP3CA, was rewired. Of the 170,135
SNVs and small InDels found different between mtKRASHi and
mtKRASLo cells 1091 were variants of predicted high/medium
impact27 (Supplementary Data 6). Of these, 70 were nodes in the
EGFR PPI network and 36 were rewired. Considering that
EGFRnets contain 4420 nodes, of which 1360 have rewired
interactions, SNVs affect 1.6% of nodes and 2.6% of rewired
interactions. These data suggest that structural variants, SNVs
and CNV-driven changes in gene/protein expression have limited
impact on EGFRNet rewiring. Nonetheless, we cannot rule out
that these or other genetic differences influence some PPIs by
affecting gene promoter usage, mRNA editing, or codon usage.
We also considered that rewired prey could simply represent
lowly or highly expressed nodes. However, we found no bias in
the gene expression distribution of rewired nodes compared to
unchanged nodes (Supplementary Fig. 5B) suggesting that genetic
changes that alter gene/protein expression, e.g., CNVs, do not
make major contributions to PPIN rewiring.

To further explore this, we directly tested whether changes in
protein expression between the two cell lines are linked to the
observed EGFRNet rewiring. We profiled protein abundances in
the mtKRASHi and mtKRASLo cell lines using qMS (Supplemen-
tary Data 9). 404 of the 4685 proteins quantified showed a
significant difference in abundance (P ≤ 0.05). Pathway analysis
revealed that proteins more abundant in mtKRASHi were
enriched for roles in the cell cycle, consistent with the increased
proliferation rate of these cells (Supplementary Fig. 1E). By
contrast, proteins more abundant in mtKRASLo cells were
enriched for roles in oxidative phosphorylation, lipid metabolism,
and the lysosome. The decreased expression of proteins involved
in oxidative phosphorylation in mtKRASHi cells is consistent with
a metabolic switch from oxidative phosphorylation to glycolysis, a
hallmark of cancer cells known as the Warburg effect28. A
strong relationship between KRASG12D dosage and increased
glycolysis was recently reported29. Similarly, lipid metabolism
reprogramming is also a hallmark of cancer cells, including CRC
cells30.

We found a weak (r2= 0.18) but significant correlation
(P < 0.001) between fold-change in abundance in the AP-MS
protein complexes and fold-change in protein expression between
the cell lines (Supplementary Fig. 5C). One hundred and fourteen
differentially expressed (DE) proteins were nodes in the
EGFRNets (Fig. 3a, Supplementary Fig 5D, E), two of them
corresponding to baits (RPS6KA1 and SH3KBP1, Δ= 1.7-fold).
This was not more than statistically expected (P= 0.054)
indicating that the EGFR network was not especially enriched
for DE proteins. However, 74 of the 114 DE proteins represented
rewired nodes, which was statistically significant (P= 4.21E−5),
confirming an association between differential node abundance
and network rewiring. Interestingly, some bait-prey complexes
were particularly enriched for DE proteins (Supplementary
Fig. 5F, G). For example, of 71 rewired preys in the SH2D3C
complex, 16 (22%) were also DE. Overall, these data suggest that
differences in protein expression between mtKRASHi and
mtKRASLo cells may underlie some of the rewired interactions.
However, this association was lost when considering proteins at
DE >2-fold. Furthermore, as ~90% of rewired nodes were not
identified as DE proteins, differences in protein expression

alone cannot explain the wide-spread network rewiring. We have
not investigated the reverse possibility that PPIs may affect
protein stability31,32.

To assess other potential drivers of PPIN rewiring, we
examined protein phosphorylation, which can generate docking
sites and affect binding affinities between proteins, thereby
influencing protein complex formation. qMS-based phosphopro-
teome analysis of mtKRASHi and mtKRASLo cells identified 384
differentially phosphorylated proteins (Supplementary Data 10).
Two hundred and seventy one proteins were preferentially
phosphorylated in mtKRASHi cells and were enriched for roles in
cell cycle and apoptosis related pathways, while the 121 proteins
preferentially phosphorylated in mtKRASLo cells were weakly
enriched for cytokine signaling and related processes (Supple-
mentary Data 10). Eighty nine differentially phosphorylated (DP)
proteins were nodes in the EGFRNets (Fig. 3b). Compared to the
number of network nodes that were also represented in the
phosphoproteomics screen, this was not more than statistically
expected (P= 0.06) indicating that the EGFRNets were not
enriched for DP proteins. However, 56 of the 89 DP proteins
(63%) mapping to EGFRNets were also significantly rewired
nodes (P < 0.01). Interestingly, this association was even stronger
when considering interactions that were enhanced (or only
found) in EGFRNetmtKRAS-Hi. Rewiring of these interactions was
significantly correlated with higher phosphorylation in the
mtKRASHi cells (P < 0.001). These results suggest that differential
phosphorylation could contribute to PPIN rewiring, especially
when mtKRAS signaling is high (Supplementary Fig. 5F, G).
However, as with differentially expressed proteins, the majority of
rewired nodes were not associated with differential phosphoryla-
tion. This suggests that the observed network rewiring is an
emergent property of the changed cellular state in cells expressing
transforming levels of mtKRAS and is not readily predicted by
changes in any single factor such as protein expression or
phosphorylation.

PPIN rewiring modifies protein complexes and their functions.
Pathway analysis of all 735 prey proteins involved in rewired
interactions revealed a statistically significant enrichment for
roles in processes including RNA splicing, mitochondrial trans-
lational, protein folding by the chaperonin-containing-TCP1
(CCT) complex and cell migration (Fig. 3c, Supplementary
Data 11). Interestingly, CRISPR and shRNA-based screens of
HCT116 cells and isogenic wild-type KRAS derivatives found that
synthetic lethal KRASG13D genes had roles in mRNA splicing and
mitochondrial translation, and that these processes were required
for KRASG13D oncogenicity33. Proteins encoded by synthetic
lethal genes identified in this CRISPR screen were significantly
enriched (9 of 55; P < 0.01) for rewired PPIs in our network. The
shRNA screen in this study identified several CTT components as
synthetic lethal genes. In our study, several baits co-precipitated
the entire CCT complex in both mtKRASHi and mtKRASLo cells
(Supplementary Data 4), with interactions between CCT and the
baits BMX, LCK, and PTK6, being significantly rewired (Sup-
plementary Data 5).

Similar correlations were observed when assessing how PPIN
rewiring affected the composition of known protein complexes
described in CORUM, a curated database of experimentally
determined mammalian protein complexes34. We detected 42
and 40 CORUM complexes where at least 70% of their
component proteins were nodes in EGFRNetmtKRAS-Hi and
EGFRNetmtKRAS-Lo, respectively (Supplementary Fig. 6, Supple-
mentary Data 12). Several of these CORUM complexes are
involved in processes mediated by EGFR signaling including actin
cytoskeleton organization, RAF, and NFκB signaling35,36.
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However, other complexes participate in functions not usually
associated with EGFR signaling, e.g. chromatin modification,
regulation of protein folding, mRNA splicing and protein
translation. This analysis suggests that PPIs organize different
aspects of EGFR signaling including roles that have not been
characterized yet. Most CORUM complexes were present in both
networks, although some were extensively rewired. CORUM
complexes, where >60% of constituent proteins were rewired
preys, included complexes involved in mRNA transcription,
splicing and protein folding (Supplementary Fig. 6) suggesting
that such house-keeping functions support mtKRAS transforma-
tion. Furthermore, complex formation can stabilize proteins31

and may contribute to the differential protein abundance between
mtKRASHi and mtKRASLo cells.

Interestingly, rewired interactions were non-randomly distrib-
uted across the bait-prey complexes (Supplementary Fig. 7).
Many bait-prey complexes, including AKT1, FGR, HDAC1,
LYN, MAPK3 (ERK1), RIPK1, and TNK1 complexes, had no
significantly rewired interactions, while others, such as MAP2K1
(MEK1), RAC1, and SH2D3C, were substantially rewired
(Supplementary Data 5). In some cases, rewiring predominantly
involved the gain of new bait–prey interactions in mtKRASHi

cells. For example, all 25 rewired bait–prey interactions in the
BAD complex were only detected or significantly more abundant
in the EGFRNetmtKRAS-Hi (Fig. 4a). BAD is a proapoptotic
protein37, which contributes to the higher apoptosis rate of
mtKRASHi vs. mtKRASLo cells, as shown by siRNA knockdown
experiments (Fig. 4b). Interestingly, the BAD interactions
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enhanced in EGFRNetmtKRAS-Hi included a higher abundance of
protein phosphatase 2A (PP2A) family members (Supplementary
Data 5), which correlated with a lower phosphorylation of BAD
on S112 and S155 in HCT116 (Fig. 4c). These sites inactivate
BAD’s pro-apoptotic function and can be phosphorylated by
cAMP dependent protein kinase (PRKA)37, which interacted with
BAD in both cell lines. Inhibition of PRKA reduced S112 and
S155 phosphorylation in mtKRASLo cells, while PRKA inhibition
increased BAD phosphorylation in mtKRASHi, especially on S112
(Fig. 4c). This differential action of PRKA is likely due to its
ability to activate PP2A by phosphorylating the B56δ subunit
(PPP2R5)38, which is mainly bound to BAD in mtKRASHi cells.

Consequently, PRKA inhibition preferentially enhanced apopto-
sis in mtKRASLo cells (Fig. 4d). These results suggest that PPI
rewiring can profoundly subvert the biological effects of PRKA
signaling, in this case converting a survival signal into a pro-
apoptotic signal (Fig. 4e).

Another substantially rewired node was PTK6 (Supplementary
Fig. 8). PTK6 is a poorly characterized tyrosine kinase, which is
amplified or overexpressed in 16% of CRC patients. PTK6 can
stimulate CRC cell survival and oncogenic signaling in a kinase
dependent manner, but suppresses epithelial-to-mesenchymal
transition in a kinase independent fashion39. PTK6 rewiring
mostly decreased interactions with the CCT chaperonin complex
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in mtKRASHi cells, whereas the interaction with metastasis
associated 1 family member 2 (MTA2) was increased (Supple-
mentary Fig. 8A). Given the key role that MTA2 plays in cell
motility and metastasis40, we examined whether PTK6 con-
tributed to the differential cell migration observed between
mtKRASHi and mtKRASLo cells (Supplementary Fig. 1F).
mtKRASHi and mtKRASLo expressed similar amounts of
endogenous PTK6 (Supplementary Fig. 8B). Overexpressing
PTK6 accelerated migration in HCT116 cells but inhibited it in
HKE3 cells (Supplementary Fig. 8C). Increased migration was
dependent on PTK6 kinase activity, as a kinase dead PTK6
mutant slowed migration (Supplementary Fig. 8D). Knocking
down endogenous PTK6 decreased migration specifically in
mtKRASHi but not in mtKRASLo cells (Supplementary Fig. 8E).
Taken together, these results suggest that PTK6 preferentially
enhances migration in cells with high KRAS activity.

Network rewiring alters information flow through EGFRNets.
The extensive changes in network wiring and protein complex
composition suggested that PPIN rewiring may alter signal pro-
cessing in the EGFR network. First, we explored how different
concentrations of active KRAS affects the formation of KRAS
complexes with known effector proteins. Activated RAS proteins
signal by binding a range of effectors through a single, shared
binding domain7 leading to competition between effectors. To
analyze the formation of specific KRAS-effector complexes we
constructed an equilibrium binding model of proteins competing
for a single target (see Methods section). This model classifies
KRAS effectors into low and high affinity binders, whose binding
dissociation constants (Kd’s) are greater or smaller, respectively,
than the abundance of active KRAS. It shows that for low-affinity
effectors the corresponding KRAS complex concentrations are
proportional to the effector concentration divided by the Kd,
whereas for high-affinity interactors the resulting KRAS com-
plexes concentrations are determined by the abundance of active
KRAS and effectors alone. Thus, changes in mtKRAS con-
centration can profoundly rearrange the composition of KRAS-
effector complexes, which rather than changing the strengths of
downstream pathway activation shifts signaling from high to low
affinity effectors as mtKRAS dosage increases (Fig. 5a). As mea-
sured by quantitative Western blotting, the mtKRAS concentra-
tions in mtKRASLo and mtKRASHi cells are ~150 nM and ~400
nM, respectively, indicating that high affinity RAS effector com-
plexes prevail in mtKRASLo cells, while low affinity effectors
dominate signaling in mtKRASHi cells. Specifically, the model
predicted that fold-changes in KRAS-bound fractions are higher
for low-affinity than for high-affinity effectors. Ranking effectors
by the fold-changes in KRAS-bound fractions allowed us to
estimate their relative contribution to downstream signaling.
Applying this analysis to baits that participate in bona-fide KRAS
effector pathways (RAF/MAPK, RAL, PI3K, TIAM, AFDN, PLCε,
and RIN1), we calculated the sensitivity of a node responding to
different mtKRAS doses by summing the log fold-changes of
interactions (normalized by the number of pathway nodes mea-
sured) in each bait-prey AP-MS complex. These experimentally
deduced sensitivity ranks of KRAS-effector complexes correlated
with the model-predicted ranks (Supplementary Data 13). These
results suggest that the threefold difference in mtKRAS activity
induces the formation of very different KRAS-effector complexes
that initiate network rewiring by engaging different signaling
pathways (rather than stronger activate the same set) that pro-
pagate changes further downstream.

Given these extensive changes in network wiring and protein
complex composition we hypothesized that PPIN rewiring would
also alter signal processing, leading to differential activation of

downstream transcriptional programs. In order to investigate this
hypothesis in an unbiased way not limited to known KRAS
effector pathways, we employed a computational modeling based
approach called information flow (IF) analysis41,42. This method
simulates IF in a network through discrete-time random walks
from a source node, i.e., EGFR, to downstream sinks, i.e.,
transcription factors (TFs). To model the impact of PPIN
rewiring, we simulated IF independently in the EGFRNetmtK-

RAS-Hi and EGFRNetmtKRAS-Lo networks and calculated an IF
score (IFS) for each node in the two networks that reflects the
volume of signals flowing through a node. Nodes with high IFS in
both networks included known key transducers of EGFR
signaling, e.g., GRB243, indicating that major hubs are used
regardless of mtKRAS dosage. However, 119 nodes had a >2-fold
difference in IFS in EGFRNetmtKRAS-Hi vs. EGFRNetmtKRAS-Lo

(Fig. 5b and Supplementary Data 14), indicating potentially
critical differences in signal processing. Interestingly, many of the
highest scoring nodes that received more information flow
in the EGFRNetmtKRAS-Hi network were proteins involved in
protein folding including heat shock protein (HSP) 70 family
members (HSPA1A and HSPA8), and HSP90 family members
(HSP90AA1, HSP90AB1, and HSP90AB3P). HSP70 and HSP90
expression is upregulated in many cancers including CRC44, and
high HSP70 expression is associated with poor clinical outcomes
in CRC45. Furthermore, HSP90 inhibitors are in clinical trials for
several cancers including CRC46. Another node with higher IFS
in EGFRNetmtKRAS-Hi was SRC, which is a major promoter of
CRC proliferation, metastasis, drug resistance, and is over-
expressed in ~80% of CRCs47. These data suggest that network
nodes with increased IF in mtKRASHi cells contribute to the
molecular pathogenesis of CRC and may represent potential
drug targets.

Next, we assessed whether PPIN rewiring alters IF to
transcription factors (TFs) in the EGFRNets (Fig. 5c). FOXO1
and MYC were predicted to receive higher IF in EGFRNetmtKRAS-

Hi. Assessing gene expression in both cell lines by RNAseq prior
to and following EGFR activation by TGFα, revealed that FOXO1
and MYC were more highly expressed in HCT116 cells (Fig. 5d,
e). On the other hand, TFs including STAT1 and FOS received
higher IF in EGFRNetmtKRAS-Lo, and their gene expression was
significantly elevated in HKE3 cells (Fig. 5f, g). These results were
consistent with the IF model predictions. Next, we analyzed TF
binding sites in the promoters of genes that were differentially
regulated between mtKRASHi and mtKRASLo cells. Genes
upregulated in mtKRASHi cells were enriched for MYC binding
sites (Fig. 5h), consistent with the prediction that MYC receives
more IF through EGFRNetmtKRAS-Hi. Conversely, genes upregu-
lated in mtKRASLo were enriched for the interferon-stimulated
response element (ISRE) motif (Fig. 5i), a key motif in the
promoters of STAT1/2-regulated genes48. The difference in FOS
gene expression between the cell lines was particularly evident 60
min post-TGFα stimulation. Consistent with the prediction of
higher FOS regulation through EGFRNetmtKRAS-Lo, the AP-1
binding site motif for FOS/JUN dimers was enriched in the
promoters of genes upregulated in mtKRASLo cells at this
timepoint (data not shown). The prediction that STAT1 receives
lower IF in EGFRNetmtKRAS-Hi is consistent with reports that
mtKRAS inhibits STAT1/2 expression49. To directly examine
STAT activity, we used luciferase reporter genes that are regulated
by STAT1/2/3 TFBS (Fig. 5j). STAT1/2 reporter activity was
significantly elevated in mtKRASLo, while STAT3 activity was
similar in mtKRASHi and mtKRASLo cells.

In summary, these data suggest that mtKRAS mediated PPIN
rewiring alters signal flow through the EGFR network leading to
the induction of different transcriptional programs. These
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analyses also support our PPIN reconstruction and the functional
consequences of PPIN rewiring by unbiased global approaches.

Alterations in rewired baits predict CRC patient survival. The
results presented above suggest that PPIN rewiring is associated
with mtKRAS signaling and oncogenic potential. Therefore, we
investigated whether alterations in bait proteins showing the most
rewiring were prognostic of CRC patients’ clinical outcomes. We
assessed survival data of 629 CRC patients from the TCGA
dataset50. Fifty-four percent of patients had genetic or expression
alterations in the top 20 most rewired bait proteins, as defined by
the sum of rewired interactions associated with each bait (Fig. 6a,
Supplementary Data 15). Patients with alterations in top 20 most
rewired baits had significantly poorer survival (P < 0.04) than
patients without alterations in these proteins (Fig. 6b). Ten-year
survival was 34.61% for patients with alterations in the top 20
rewired baits vs. 61.43% for patients without. These data were
robust to removing the bottom 50% of least significant (based on
the significance A value) rewired interactions from the rewiring
analysis and recalculating the top 20 most rewired baits. 18 of the
20 original top 20 baits were the same in this analysis (data not
shown). By contrast, there was no significant association between
alterations in the 20 least rewired bait proteins (Fig. 6c) and
patient survival (P= 0.20) (Fig. 6d), although all of these baits
were preselected because of their roles in the EGFR pathway. This
association with survival became even stronger (P= 9.855e−3), if
we defined the top 20 most rewired baits based on interactions
that were selectively enhanced in the mtKRASHi cells (Supple-
mentary Fig. 9A).

To assess the accuracy of the top-20 bait proteins to classify
patients into high and low risk groups, we trained a Lasso
classifier51 using the CRC patient data from TCGA. Five-fold
cross-validation by subsampling the patient data into training
(80%) and test (20%) datasets gave an accuracy of up to 0.79
(mean 0.70) and an area under the ROC curve (AUC) of 0.763
(Supplementary Fig. 9B). A similar classification using the bottom
20 least rewired proteins gave a much lower mean accuracy of 0.4
and AUC of 0.522. Several top rewired baits were highly
connected nodes. Therefore, to ascertain that the association
with patient outcomes was due to the rewiring of these baits and
not just because they were highly connected, we selected the
bottom 36 least rewired baits that together accounted for at least
the same number of interactions as the top 20 baits. Patients with
alterations in the top 20 rewired baits again showed significantly
poorer survival (P < 0.017, log-rank test) than patients with
alterations in these baits. (Supplementary Fig. 9C). Patients with
alterations in the top 20 rewired baits also showed significantly
poorer survival after adjusting for age and tumor stage (P < 0.03,
log-rank test). These data suggest that the proteins, which we
found to be the most rewired in mtKRASHi cells, are clinically
relevant as alterations in these proteins are prognostic of CRC
patient outcomes.

Discussion
Global PPIN mapping has validated the concept that the cell
organizes its proteome as modules of PPIs that enable it to carry
out its specific biological functions1,2,4. Many disease-associated
mutations affect PPIs25, but the extent of adaption to disease
mutations at a PPIN level and its functional consequences are
unknown. Our comparative mapping of >6000 PPIs in the EGFR
network in cells with low and high mtKRAS signaling reveals a
widespread rewiring of the EGFR signaling network. Interest-
ingly, rewiring percolates through the whole network and alters
interactions that occur between core components of the EGFR
pathway as well as interactions between proteins involved in

downstream and seemingly peripheral processes. This suggests
that enhanced mtKRAS activity results in extensive adaptive
changes that are reflected by a reorganization of the PPIN.
Genetic mutations associated with disease often alter PPIs25.
However, the deep network propagation of PPI changes arising
from a single mutation was unexpected and may explain why
blocking mtKRAS signaling by inhibiting single effector pathways
is ineffective8. Our global analysis and validation of the functional
consequences of PPIN rewiring facilitates the rational design of
combinatorial targeting of mtKRAS effectors, especially as PPIs
gained in mtKRASHi cells inversely correlate with CRC patient
survival. For instance, HSPs receive high IF in mtKRASHi cells,
and HSP90 inhibitors recently were found to enhance the effects
of conventional CRC drug therapies52. Likewise, our results that
phosphorylation changes contribute to PPIN rewiring may
“repurpose” kinase inhibitors as PPIN rewiring agents. We
recently showed that mtKRAS also profoundly changes the
metabolic and transcriptional landscapes of CRC cells53 con-
firming that mtKRAS widely affects cellular regulation on dif-
ferent levels. Surprisingly, our analysis shows that a low-level
expression of mtKRAS is compatible with normal (i.e., untrans-
formed) biochemical and biological behavior. This finding sug-
gests that oncogenic mutations must reach a threshold activity
before they produce a pathogenetic phenotype. While this view
challenges the genetic mutational dogma of carcinogenesis, it
reconciles with recent data finding oncogenic mutations in nor-
mal tissues54,55. The easy accessibility and analysis of our PPIN
data through PRIMESDB.eu and DyNet56, an application for the
visualization and analysis of dynamic molecular interaction net-
works will support systematic efforts of combinatorial mtKRAS
pathway targeting.

While our study is comprehensive and integrates PPIN
reconstruction with computational model analysis of network
functions, it also has limitations. Although we have thoroughly
characterized the two cell lines by WGS, biochemical and bio-
logical assays, we cannot formally exclude that differences other
than mtKRAS activities contribute to our results, e.g., differ-
ential bait expression vs. endogenous levels, epigenetic differ-
ences, or nonsynonymous mutations that affect splicing or
codon usage. The influence of such factors could be addressed
by reconstitution experiments that titrate mtKRAS dosage and
by studying other isogenic cell line pairs. Investigating all these
aspects was beyond the scope of this study. However, we
assessed and found no statistical association between rewiring
and alternative splicing (data not shown), which in binary
interaction screens substantially changed PPIs57. It also will be
important to test whether the observed PPI rewiring is common
to different mtKRAS cancer types. Our findings that PPI
changes correlate with CRC patient prognosis and often affect
proteins that are synthetic lethal with KRASG13D33 indicate that
a core signature of consistently altered PPIs may exist in
mtKRAS cells.

In summary, these results suggest that dynamic PPIN adap-
tations play major roles in translating the effects of genetic
mutations into quantitative functional effects that re-direct
information flow through signaling networks and reprogram
biological outcomes.

Methods
Cell lines and cell culture. HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells11

were provided by Drs Shirasawa and Sasazuki. Cell lines were authenticated by
whole genome sequencing (Supplementary Datas 6–8) and RNAseq as recently
described12.

Baits and expression vectors. For AP-MS experiments 95 baits (Supplementary
Data 1) were selected that provide a broad coverage of the known EGFR signaling
network. Bait cDNAs were obtained from Origene and cloned into the SF-TAP
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vector58 with the FLAG-tag at the N-terminus using the Gateway cloning system
(Thermo Fisher).

AP-MS experiments. Cells were transfected with baits titrated to achieve similar
expression levels between the cell lines and labeled with stable isotope (SILAC)
medium (Fig. 1). Baits were immunoprecipitated with anti-FLAG-M2 conjugated
agarose beads (Sigma-Aldrich A2220), digested with trypsin and analyzed by
quantitative MS using a Q-Exactive mass spectrometer (Thermo Fisher Scientific).
Data were analyzed with MaxQuant59 and HiQuant19 software packages. See
Supplementary Methods, sections 8–12, for a detailed description.

Protein expression profiling. Lysates of SILAC labeled cells were digested with
trypsin and analyzed on an Orbitrap Fusion Tribrid mass spectrometer (Thermo
Fisher Scientific). Data were analyzed with MaxQuant59 and HiQuant19 software
packages. See Supplementary Methods, sections 13–15, for a detailed description.

Phosphoproteomics. Cell lysates were digested with trypsin, phosphopeptides
were enriched using TiO2 beads and analyzed on a Q-Exactive mass spectrometer

(Thermo Fisher Scientific). MS data were analyzed with MASCOT 2.4 (Matrix
Science Ltd) and Progenesis 4 (Nonlinear Dynamics). See Supplementary Methods,
sections 16–18, for a detailed description.

Construction of protein–protein interaction networks (PPIN). The EGFR-
NetmtKRAS-Hi and EGFRNetmtKRAS-Lo networks were separately constructed by
combining bait–prey interactions from each of the 95 chosen baits. Bait-prey
interactions were included in the networks, if the abundance of the prey protein in
the pull-down was significantly higher (P ≤ 0.05) than in empty vector controls and
the significance A value for the prey protein was also ≤0.05. To identify interactions
that were significantly “rewired” in the HCT116 (EGFRNetmtKRAS-Hi) network
compared to the HKE3 (EGFRNetmtKRAS-Lo) network, we used HiQuant to directly
compare the SILAC data from the two cell lines. We defined interactions as being
“rewired” in EGFRNetmtKRAS-Hi, if the abundance of the prey protein in the pull-
down was significantly different (P ≤ 0.05) compared to EGFRNetmtKRAS-Lo and
the significance A value for the prey protein was also ≤0.05. Interactions that were
identified in only one EGFRNet, but where prey abundance was subsequently not
found to be statistically significantly different in the respective bait–prey complexes
in the two cell lines were not considered as rewired interactions. The top rewired
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Fig. 6 PPIN rewiring and CRC prognosis. a The top 20 most rewired bait proteins. Interactions where the prey protein was identified only in
EGFRNetmtKRAS-Hi or EGFRNetmtKRAS-Lo are shown as solid red or blue lines, respectively. Rewired bait-prey interactions where prey abundance was
significantly higher in EGFRNetmtKRAS-Hi or EGFRNetmtKRAS-Lo are shown as dotted red or blue lines, respectively. Bait–prey interactions which were not
significantly different are gray. b Six hundred and twenty-nine CRC patients from the TCGA were divided into two groups, those with alterations in the top
20 rewired bait proteins (339; 54%) and those without alterations in the top 20 rewired bait proteins (290; 46%). The alterations assessed were
mutations, copy number changes, mRNA expression changes, and protein expression changes. Kaplan–Meier survival curves were plotted for the two
patient groups using PRISM 7.0.3. Five-year survival was 53.5% for patients with genetic alterations affecting the top 20 rewired nodes compared to 68.5%
for patients without alterations in these proteins, and ten-year survival was 34.61 vs. 61.43%, respectively. The log-rank test was used to assess statistical
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nodes in EGFRNetmtKRAS-Hi were identified as those with most rewired interac-
tions. The topological properties of the networks including node degree,
betweenness centrality, clustering coefficient and network scale-freeness were
analyzed using the NetworkAnalyzer application60 in Cytoscape 361. Cytoscape
session files for the EGFRNetmtKRAS-Hi, EGFRNetmtKRAS-Lo networks can be
provided upon request.

Protein abundance and phosphorylation enrichment analysis. To investigate
whether nodes in the EGFRNetmtKRAS-Hi network were enriched for differentially
abundant proteins, a hypergeometric test was performed with the following
parameters:

p X � kð Þ ¼
Xn

x¼ k

K

x

� �
N � K

n� x

� �

N

n

� � ;

where N is the total number of proteins assayed in the protein expression analysis,
n the total number of differentially abundant proteins identified, K the number of
proteins in the EGFRNetmtKRAS-Hi network that were assayed in the protein
expression analysis, k the number of differentially abundant proteins observed in
the EGFRNetmtKRAS-Hi network.

A similar analysis was conducted to determine whether rewired nodes were
enriched for differentially abundant or phosphorylated proteins. See
Supplementary Methods, section 19, for a detailed description.

Equilibrium binding model of RAS binding partners to RAS-GTP. In order to
determine how the concentrations of KRAS-effector complexes change with the
concentration of active RAS in mtKRASHi and mtKRASLo cells, we developed a
dynamic mathematical model that allowed us to investigate how competition for
the single effector binding site on RAS and different abundances of low and high
affinity RAS effectors impact the formation of RAS-effector complexes. See Sup-
plementary Methods, sections 22–25, for a detailed description.

Information flow analysis of EGFRNetmtKRAS-Hi and EGFRNetmtKRAS-Lo net-
works. In order to analyze how the EGFR PPINs transduce information we
employed a computational modeling approach called information flow (IF) ana-
lysis62,63. To perform IF analysis from the EGFR at the cell membrane to nuclear
transcription factors (TFs), the two EGFRNets were first supplemented with
publicly available prey–prey interactions from InnateDB.com64 and 122 additional
nodes that are known to be involved in EGFR signaling18 but were not chosen as
bait proteins in our AP-MS experiments (Supplementary Data 14). These networks
are referred to as the HCT116IFANET and HKE3IFANET. Information flow analysis
was implemented using the CytoITMprobe software (damping factor= 0.85;
channel model selected)41, selecting EGFR as the source node of signaling and 19
downstream TFs (Supplementary Data 14) as the sinks for the information flow.
Information flow scores were determined by measuring how much information
flows through each node in the HCT116IFANET and HKE3IFANET networks. See
Supplementary Methods, section 26, for a detailed description.

Gene ontology, pathway, and transcription factor binding site analyses. Gene
ontology (GO) and pathway analyses were performed using InnateDB.com64

regarding GO terms or pathways with an FDR < 0.05 as significantly enriched.
Transcription factor binding site analysis was undertaken using the findMotifs.pl
program in HOMER v4.865, with the human hg38 promoter set in order to identify
enriched motifs. See Supplementary Methods, section 27, for a detailed description.

Analysis of CRC patient data. Survival data of 629 CRC patients were obtained
from the TCGA50, and correlated with alterations in genes encoding either the top
20 most rewired or the bottom 20 least rewired bait proteins. The alterations
included were mutations, copy number changes, mRNA expression changes, and
protein expression changes. As an additional control we selected a set of 36 baits
that accounted for the same number of interactions as the top 20 baits in the
network. The Kaplan–Meier curves were plotted using PRISM 7.0.3. See Supple-
mentary Methods, section 27, for a detailed description.

Western blotting. Cells were lysed in 1% NP40, 20 mM Tris-HCl pH 7.5, 150 mM
NaCl, 1 mM MgCl2) supplemented with protease inhibitor cocktail (Roche) and
phosphatase inhibitors (2 mM sodium orthovanadate, 10 mM sodium fluoride and
10 mM β-glycerophosphate; all from Sigma-Aldrich) for 10 min at 4 °C. Lysates
were cleared by centrifugation at 20,000 × g for 10 min, and adjusted to equal
protein concentrations. Proteins were separated by sodium-dodecylsulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene
difluoride (PVDF) membranes. Blots were incubated with the respective antibodies
and developed using Enhanced Chemiluminescence (ECL; Thermo Fisher)
according to the manufacturer’s instructions. Blots were quantified using the Image
J software and phospho-specific antibody signals were normalized to the total
abundance of the respective proteins.

Luciferase assays. The transcription factor response element activity was assessed
with luciferase constructs bearing response elements for STAT1 (4xGAS response
element; Stratagene, #219091–51), STAT1/STAT2 (IRSE/interferon alpha response
element66) and STAT3 (4xm67 response element67). A CMV-β-gal plasmid was co-
transfected as a control of transfection efficiency. Forty-eight hours post transfection
cells were stimulated with 10 nm human EGF (Roche; #11376454001) for 5 h before
luciferase and β-gal activity were measured using luciferase assay (Promega, #E4030)
and β-galactosidase assay kits (Promega, #E2000). Luciferase activity was normalized
againstβ-gal activity to correct for transfection efficiency.

Transcriptional profiling. HCT116 (mtKRASHi) and HKE3 (mtKRASLo) cells
were serum starved for 18 h before stimulation with TGF-α (0.01 µg/ml, Abcam)
for 0, 15, 30, 60, 90, and 120 min. RNA was extracted using the TRIzol reagent
(Thermo Fisher Scientific) from three biological replicates at each time point.
RNAseq was performed with an Illumina HiSeq 2500 machine using a v2 High
Output 100 cycle Kit (1 × 100 bp SR). Data were processed as described in the
Supplementary Methods.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNAseq data were deposited in the Gene Expression Omnibus under accession number
GSE105094. These data were used in Fig. 5d-i and Supplementary Fig. 5B. Whole
genome sequencing data were deposited in the NCBI short read archive under accession
number PRJNA374513. They were used in Supplementary Fig. 5A. Proteomics data were
deposited in the PRIDE database under the following accession numbers: PXD016512,
PXD016505, PXD016465, PXD016464, PXD016463, PXD016462, PXD016461 for the
AP-MS data, PXD016549 for the protein expression profiling data, and PXD016431 for
the phosphoproteomics data. AP-MS data can be visualized and browsed in PRIMESDB,
a database developed for this project and described in detail in the Supplementary Data.
PRIMESDB is accessible at primesdb.eu. is an observer member of The International
Molecular Exchange (IMEx) consortium, the international standards body for the
curation and exchange of published protein-protein interaction data68. These data were
used in Figs. 2, 3, 5b, 6 and Supplementary Figs. 2, 4, 6, 7, 9. All PPI data generated in this
study also been deposited with IMEx (IMEx accession number IM-26434). TCGA data
were obtained from https://www.cbioportal.org/study/summary?id=coadread_tcga. The
source data underlying Figs. 2a–c, 3a–c, 4a–d, 5a–j, 6a–d and Supplementary Figs. 1b–i,
2a-i, 3a–c, 4, 5a–f, 6a, b, 7, 8b–e, 9a–c are provided as a Source Data file

Code availability
Mathematica, R, and Cytoscape files with code are provided as Supplementary Software:
Supplementary Software 1. Mathematica code for Fig. 5a. Supplementary Software 2.
Cytoscape session file for Supplementary Fig. 2A. Supplementary Software 3. R-code and
source data used for Supplementary Fig. 3A. Supplementary Software 4. Cytoscape session
file for Supplementary Fig. 5C, D. Supplementary Software 5. Cytoscape session file for
Supplementary Fig. 5E, F. Supplementary Software 6. Cytoscape session file for
Supplementary Fig. 6A, B. Supplementary Software 7. R-script for Supplementary Fig. 9B.
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