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Abstract

The brain is worthy of study because it is in charge of behavior. A flurry of recent technical 

advances in measuring and quantifying naturalistic behaviors provide an important opportunity for 

advancing brain science. However, the problem of understanding unrestrained behavior in the 

context of neural recordings and manipulations remains unsolved, and developing approaches to 

addressing this challenge is critical. We discuss considerations in computational neuroethology — 

the science of quantifying naturalistic behaviors for understanding the brain — and propose 

strategies to evaluate progress. We point to open questions that require resolution and call upon the 

broader systems neuroscience community to further develop and leverage measures of naturalistic, 

unrestrained behavior, which will enable us to more effectively probe the richness and complexity 

of the brain.
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The goal of computational neuroethology is to understand the relationship between the brain and 

purposive behavior that evolved under natural selection. Technology is transforming how we 

measure and model naturalistic behavior, affording new insight into brain function.

Leveraging naturalistic behavior to explore brain function

Two distinct traditions have shaped how neuroscientists think about behavior in the lab 

(Gomez-Marin et al., 2014). Comparative psychology studies the ability of the brain to 

generate behaviors in response to rewards and punishments (Domjan, 1987). This 

perspective has led to a large body of work in which animals are trained in the laboratory to 

respond to specific sensory cues. By combining these behavioral methods with neural 

recordings and manipulations, modern neuroscience is now addressing fundamental 

questions about how task-related variables are encoded in the brain, and about how neurons 

and circuits generate task-related behaviors (Jazayeri and Afraz, 2017; Krakauer et al., 

2017). Animals are typically trained to produce simple actions (e.g., to lick a port, or to 

reach for a target) that are easy to measure and readily correlated with neural activity 

patterns. In addition, animals are often (but not always) physically restrained, both to 

facilitate neural recordings and to avoid spurious movements that complicate inferences 

about the meaning and purpose of measured patterns of neural activity.

Ethology, on the other hand, has historically focused on natural behavior (Tinbergen, 1951; 

Tinbergen, 1963). The underlying hypothesis of ethology is that exposing the structure of 

behavior — how behavior in the natural environment is built from components and 

organized over time in response ecologically-relevant stimuli — will yield insights into how 

the brain creates behavior (Simmons and Young, 1999; Tinbergen, 1951). However, 

traditional ethology has focused on observing the behavior of animals without neural 

recordings or interventions. Exploring neural activity during the expression of “naturalistic” 

behaviors (which here is taken to mean behaviors that are representative of actions generated 

during complex real-world tasks, like exploring new environments, obtaining food, finding 

shelter, and identifying mates, and therefore largely self-motivated and expressed freely 

without physical restraint; see Glossary) has the potential to reveal how the brain does much 

of what the brain evolved to do. Furthermore, ethology has revealed that many naturalistic 

behaviors are built from components that are probabilistically expressed as sequences, a 

feature that in principle can be used to reveal dependencies in both neural activity and 

actions across multiple timescales, and to illuminate how longer-lasting brain states specify 

the moment-to-moment contents of behavior (Baerends, 1976; Manoli et al., 2006; 

Tinbergen, 1951).

We argue that understanding the relationship between brain and behavior will require 

bringing the traditions of psychology and ethology together, towards an integrated study of 

naturalistic behavior spanning a gamut of questions from brain mechanisms to evolution. 

Despite the compromises imposed by training and/or restraint, the comparative psychology 

framework for relating neural activity to behavior has yielded, and will continue to yield, 

key insights into the mechanisms that support perception, govern decision making and 

regulate action (Juavinett et al., 2018; Panzeri et al., 2017). Technical advances — ranging 
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from the development of virtual reality-based tasks to the use of touchpads for operant 

conditioning — are integrating increasingly naturalistic behaviors into training-based 

experiments (Mar et al., 2013; Minderer et al., 2016). Furthermore, the development of 

deep-learning based frameworks for tracking e.g., paws during reaching (see below) has 

revealed the behavioral richness and variability that underlies even simple behavioral reports 

like pellet grabs or lever presses (Graving et al., 2019; Guo et al., 2015; Mathis et al., 2018; 

Nath et al., 2019; Pereira et al., 2019). In contrast, the technical and conceptual challenges of 

relating naturalistic, unrestrained and minimally shaped behavior to neural activity are 

formidable and only beginning to be addressed, leaving that area ripe for further 

development.

In the past decade, a field we now call “computational ethology” has begun to take shape. It 

involves the use of machine vision and machine learning to measure and analyze the patterns 

of action generated by animals in preparations designed to evoke ethologically-relevant 

behaviors (Anderson and Perona, 2014). Technical progress in statistical inference and deep 

learning, the democratization of high-performance computing (due to falling hardware costs 

and the ability to rent GPUs and CPUs in the cloud), and new and creative ideas about how 

to apply technology to measuring naturalistic behavior have dramatically accelerated 

progress in this research area.

Approaches from computational ethology may be particularly important in a future in which 

we have access to recordings from many thousands of neurons, with the richness of neural 

codes on full display. Indeed today, nearly all of the neurons in the brains of the worm C. 
elegans and the zebrafish D. Rerio can be recorded simultaneously, thereby allowing a large 

fraction of the brain’s neural dynamics to be observed (Cong et al., 2017; Kim et al., 2017; 

Nguyen et al., 2016; Symvoulidis et al., 2017; Venkatachalam et al., 2016). Given that — 

even in restrained animals — subtle movements can have pervasive effects on neural 

dynamics, obtaining unbiased and holistic measurements of an animal’s behavior will be 

important to understanding dense neural activity (Musall et al., 2019; Stringer et al., 2019). 

We further propose that making sense of high-dimensional neural data will ultimately be 

facilitated by access to behaviors whose complexity and dimensionality is of a similar order 

as the neural space that is concurrently being surveyed. This perspective makes urgent the 

need to develop methods that combine analysis of naturalistic, unrestrained behavior with 

measures of neural activity. Here we review progress towards a science of computational 

neuroethology — the problem of relating naturalistic behavior to neural recordings or 

manipulations in order to better understand brain function.

Challenges in computational neuroethology

Studying neural activity as animals behave freely has led to some of the most exciting 

discoveries in brain science over the past 50 years, including place cells (Hartley et al., 

2014), grid cells (Rowland et al., 2016), replay (Foster, 2017), mechanisms of non-

associative learning (Kandel et al., 2014), and the escape response (Medan and Preuss, 

2014). However, to approach these problems without the benefit of restraint (i.e., head 

fixation), researchers have, by necessity, focused on those behaviors that are simplest to 

quantify. For example, an animal’s head direction can be quantified by a single angle; its 
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location can be quantified by an (x,y) pair of spatial coordinates; and a gill-withdrawal or 

escape reflex can be quantified by a single binary variable. These behaviors are trivial to 

estimate by eye, easy to plot on a graph, and unambiguous in their timing.

Unfortunately, most naturalistic behaviors — from exploration of a novel environment to 

mating rituals — are not well captured by simple parameters like centroid position or head 

direction (Fig. 1). First, naturalistic behaviors involve coordinated movements of limbs, 

facial features and other body parts, and often include rapid changes in the animal’s three-

dimensional pose, i.e., its dynamics. Understanding dynamics requires simultaneous 

measurements of how the positions of many different body parts evolve over time. Second, 

although naturalistic behaviors are often built from stereotyped components (referred to 

variously as behavioral “motifs,” “modules”, “syllables,” “primitives,” and “movemes”), 

labeling behaviors on a moment-to-moment basis is made complicated by spatial and 

temporal variability in the execution of each behavior (Anderson and Perona, 2014; Berman 

et al., 2014; Flash and Hochner, 2005; Tinbergen, 1951; Wiltschko et al., 2015). This 

variability, taken with the observation that many spontaneous behaviors evolve continuously 

over time, makes it difficult to assign labels and explicit start and stop times to individual 

actions. Third, because naturalistic behaviors can be described at different levels of 

granularity, there are many simultaneously valid descriptions of an animal’s behavior at any 

given time point (Dawkins, 1976). For example, replaying a video of a mouse in slow-

motion will reveal kinematics of limb movement as the animal turns its body, but the same 

movements when played on fast-forward will reveal whether the animal is in the midst of 

sleep, courtship or escape behaviors. Finally, identifying actions is complicated by the 

ability of animals to do more than one thing at once. Some of the authors of this review, for 

example, claim to be able to walk and chew gum at the same time. This parallelism 

undermines descriptions of action in which each moment in time is associated with only a 

single behavior.

It is no coincidence that naturalistic behavior shares many characteristics with neural 

activity: high dimensionality, time-evolving structure, variability and organization at 

multiple temporal and spatial scales (Panzeri et al., 2015). However, efforts to develop 

methods to understand the spontaneous behavior of untethered animals have lagged 

substantially behind those to measure neural activity. In part this is because of a 

longstanding focus on a limited set of assays that provide low-dimensional descriptions of 

complex patterns of action (e.g. the three-chamber social assay, the open field test, and the 

tail-suspension test), whose aim is to probe the psychological state of the animal, and which 

therefore have been heavily used in the pharmaceutical industry (Crawley, 2003, 2008). The 

availability of commercial tracking software has contributed to a perception that 

automatically measuring and characterizing naturalistic behavior is either a trivial problem, 

or one that has already been solved (Spink et al., 2001; Verbeek, 2005). To the contrary, a 

number of outstanding challenges need to be addressed if we seek to leverage the strengths 

of naturalistic behavior to better understand brain function. Below we describe the current 

conceptual and technical framework that supports efforts in computational neuroethology; 

we later discuss additional future progress that remains to be made.
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Technology for quantifying behavior

Animal behavior inherently evolves over time. Capturing its time-varying structure requires 

measuring features of an animal’s body and pose, tracking those features over time, and then 

identifying patterns that correspond to different movements, behaviors, or behavioral states 

(Fig. 2). Given the pervasive use of cameras as sensors, here we largely consider this process 

from the perspective of video data of worms, flies, fish and mice; however, all of the 

described steps have been applied to other animals (like bacteria and birds) and other types 

of datastreams (like accelerometry or ultrasonic vocalizations) (Berg, 1975; Coffey et al., 

2019; Markowitz et al., 2013; Van Segbroeck et al., 2017; Venkatraman et al., 2010). It is 

also important to note that although video of behaving animals is most often obtained from a 

single viewpoint using standard video cameras (Drai and Golani, 2001; Spink et al., 2001; 

Verbeek, 2005), recent innovations (including depth cameras and image fusion approaches) 

allow researchers to track freely-behaving animals to be tracked via video in three 

dimensions (Günel et al., 2019; Hong et al., 2015; Nath et al., 2019; Straw et al., 2011; 

Wiltschko et al., 2015).

Feature extraction

A mouse’s pose (i.e., its posture), a bird’s beak, and the angle of a fly’s wing are all features 

that may be relevant to an analysis of behavior. When studying insect locomotion, for 

example, one may wish to measure the position of each insect leg in relation to the other legs 

(Wilson, 1966). Two decades ago, this meant recording video of the insect and manually 

identifying the location of each of its legs or joints at each point in time (Strauss and 

Heisenberg, 1990). Early automated techniques required painting the animal’s joint or leg, 

adding a small marker or dye, or using sophisticated imaging modalities like frustrated total 

internal reflection to highlight points of interest. Image processing algorithms could then 

automatically extract the location of these points of interests, obviating the need for manual 

identification (Bender et al., 2010; Kain et al., 2013; Mendes et al., 2013; Petrou and Webb, 

2012).

Markerless approaches are an important alternative to these methods, as they enable 

automatic extraction of specific kinematic features without the use of surrogate markers. For 

animals whose anatomy is relatively simple, like worms or drosophila larvae, simple 

computer vision algorithms can automatically identify such features without any human 

supervision (Broekmans et al., 2016; Gershow et al., 2012; Liu et al., 2018b; Stephens et al., 

2008). For animals whose anatomy is more complex, “supervised” machine learning 

approaches — in which humans identify which features to track and provide labeled data 

used to train a machine learning-based feature detection algorithm — can be used to 

facilitate feature identification and tracking from video. Platforms that use this strategy 

(including CADABRA and JAABA) have been widely used in a variety of contexts 

(Branson et al., 2009; Dankert et al., 2009; Kabra et al., 2013). Similarly, the LocoMouse 

platform uses supervised machine learning techniques to recognize the precise position of 

paws, joints, the snout, and the tail in mice walking on a track (Machado et al., 2015). 

Recently, there has been an explosion in artificial neural network-based algorithms that can 

track human-identified anatomical keypoints in video (Graving et al., 2019; Mathis et al., 
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2018; Pereira et al., 2019). By tracking several of these keypoints in parallel, aspects of an 

animal’s pose can be estimated using a limited amount of training data. These methods are 

gaining fast adoption for their versatility, ease of use, and accuracy. However, their use is 

limited to situations in which the relevant keypoints are readily identifiable by human 

researchers, and by themselves automated pose estimators are not sufficient to produce a 

classification of an animal’s behavior or reveal its time-varying structure.

Image properties can also be analyzed without human supervision to identify statistical 

regularities that recur in the pixel data themselves which can capture or reflect important 

features of an animal’s behavior. Such “unsupervised” algorithm-driven approaches can 

extract features that are recognizable to a human (like the degree to which the left wing is 

lifted, or a grimace in a mouse face) and can also yield features that a human would be hard-

pressed to name (Berman et al., 2014; Musall et al., 2018; Stringer et al., 2019; Wiltschko et 

al., 2015). Because it is not always clear which behavioral features are most relevant or 

informative in a particular experiment, the ability to identify unexpected features is a 

potential benefit of taking this sort of approach.

Large numbers of behavioral features are often required to capture behavior within a given 

experiment. The high-dimensionality of behavioral data can be cumbersome, and thus 

dimensionality reduction is commonly used after feature extraction to generate a lower-

dimensional dataset that approximates the original feature set. Many such approaches — like 

Principal Components Analysis (PCA) — are familiar from their use in neural data (Pang et 

al., 2016). Given a set of data about behavioral features, PCA identifies an ordered set of 

principal components (PCs), each of which constitutes a different “axis” representing 

progressively less variance present in the data. A reduced subset of these PCs can be used to 

approximately reconstruct the underlying features using fewer dimensions than present in 

the original data. In C. elegans, for example, the animal’s centerline captures most of the 

worm’s behavior (Croll, 1975) but reconstructing this sinusoidal centerline requires tens of 

(x,y) coordinates. When transformed into a new basis set defined by PCA, these centerlines 

can be represented nearly as well by just three numbers, aka the “Eigenworm” (Stephens et 

al., 2008), thus providing a more tractable representation for use in subsequent analysis. It is 

important to note that the largest sources of behavioral variance may not reveal those 

features that most meaningfully describe a particular behavior.

Temporal Dynamics

Imagine a video of a worm crawling on an agar plate. A single frame of video provides no 

information about the animal’s velocity, whether it is accelerating or decelerating, or even 

whether it is moving forward or backward. Multiple sequential frames, on the other hand, 

reveal the evolution of the worm’s position and pose, which can be used as building blocks 

to create a description of behavior. Behavioral representations can incorporate information 

about time by considering behavioral features in either the time domain or the frequency 

domain. Most commonly, analysis of behavior takes place exclusively in the time domain — 

researchers consider how a given behavioral feature (after extraction and dimensionality 

reduction) evolves over time, and then use that information to characterize behavioral 

dynamics or to identify behavioral motifs. For example, behavioral motifs in the worm have 
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been identified by using a sliding time window to capture worm postures (Brown et al., 

2013).

Alternatively, behavioral features can be first transformed into frequency space before 

considering how behavior evolves over time. Whereas a time domain analysis would 

represent a beating wing as the position of the wing over time, a frequency domain analysis 

would instead represent the same moving wing as its characteristic wing beat frequency. The 

MotionMapper platform (see below) takes this approach to format video data before 

downstream identification of behavioral motifs (Berman et al., 2016; Klibaite et al., 2017; 

Liu et al., 2018a; Pereira et al., 2019; Wang et al., 2016). Frequency domain analyses are 

well suited for representing cyclic motions (e.g., walking gaits, wing flapping, head 

swinging), and simplify the problem of identifying relationships between behaviors that are 

similar but out of phase (e.g., a walking bout starting with the right foot and a walking bout 

starting with the left foot). Importantly, both time- and frequency-domain approaches require 

the experimenter to select a relevant timescale at which behavior is thought to be organized. 

In the time domain, this timescale defines the duration or distribution of durations of each 

behavioral motif, and in the frequency domain this timescale sets the lowest frequency that 

can be represented. In both cases the choice of timescale plays an important role in 

determining whether an animal’s action is naturally represented as a single contiguous entity 

or as separate behavioral motifs.

Organizing data and assigning labels

Behavior can be described as being continuous (i.e., following a trajectory through a 

behavioral space), discrete, or a combination of the two (Fuchs, 1967). For example, the 

behavior of a worm exploring its environment can be elegantly described using dynamical 

systems approaches as a continuous trajectory through posture space (Stephens et al., 2010). 

Similarly, brief elements of action (frequently corresponding to semantically low levels of 

behavior) can follow simple trajectories that are best described as continuous processes 

(Katsov et al., 2017; Wiltschko et al., 2015). However, animals can also express one or more 

of a large number of possible discrete behaviors that are stereotyped, distinct from each 

other, and are organized at a variety of timescales. Behavior therefore often requires labeling 

to identify which behavioral motifs or states are being expressed at a particular time point: 

e.g., was the animal awake or asleep, mating or fighting? Labeling also provides access to 

information about when particular behaviors started and stopped, and reveals the sequences 

of actions taken during an experiment. Traditionally, labeling has been done by hand — 

ethologists inspected either raw video of behavior or extracted behavioral feature data, and 

then segmented those data using their own implicit criteria to label the types of actions being 

exhibited by a given subject. This sort of hand-labeling, when used to build transition 

probability matrices, leads to the generation of ethograms, the lingua franca of traditional 

ethologists (Baerends, 1976; Tinbergen, 1951). Relatively low-tech heuristic methods have 

automated some of these human intuitions — for example, when a mouse’s nose is high 

enough to break a laser beam placed in an open field, the mouse is labeled as “rearing” 

(Crawley, 2003).
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Machine learning is now revolutionizing the process of labeling behavioral data and 

generating ethograms. As with feature extraction, automated labeling often takes advantage 

of supervised learning approaches, in which machine learning algorithms are trained to 

identify particular behaviors based upon a set of human-curated examples (Branson et al., 

2009; Dankert et al., 2009; Kabra et al., 2013; Machado et al., 2015; Mueller et al., 2019; 

Ravbar et al., 2019). JAABA, for example, includes an interface that allows researchers to 

indicate which video snippets correspond to a particular behavior of interest, and which can 

then be used to train a classifier to identify when that behavior occurred (Kabra et al., 2013). 

Multiple classifiers can be built for different behaviors of interest, allowing researchers to 

flexibly extract complex information about when different behaviors are expressed (Robie et 

al., 2017).

Alternatively, unsupervised methods take advantage of statistical regularities in behavioral 

feature data to identify repeatedly-used motifs of action (Berman, 2018; Brown and De 

Bivort, 2018; Nater et al., 2010). Two exemplar methods (of many) highlight the different 

paths that can be taken in using the inherent structure of behavioral data to define a 

description of behavior. MotionMapper takes as its input video data, and then after pre-

processing (which includes a PCA-based dimensionality reduction step, and the reformatting 

of these dimensionally-reduced data into a frequency domain representation), these data are 

further dimensionally reduced by projecting them into a two-dimensional space through a 

non-linear method called t-stochastic nearest neighbor (tSNE) embedding (Berman et al., 

2016; Klibaite et al., 2017; Liu et al., 2018a; Pereira et al., 2019; Wang et al., 2016). All 

unsupervised behavioral methods have to address the problem of “lumping” versus 

“splitting” — the granularity at which a given behavioral datastream is broken up into parts. 

MotionMapper addresses this challenge by subjecting the behavioral tSNE embeddings to 

watershed-based clustering, which identifies reused motifs of action (which appear as peaks 

in the tSNE embedding) as well as behaviors that are less stereotyped (which appear as 

valleys). A comparison of clustering-based unsupervised behavioral classification methods 

can be found in (Todd et al., 2017).

Motion Sequencing (MoSeq), on the other hand, takes advantage of a classic method in 

time-series analysis: the hidden Markov model (HMM)(Eddy, 2004). MoSeq (reviewed in 

(Datta, 2019)) takes as its input 3D data obtained from depth cameras, and then uses 

statistical learning techniques to fit a hierarchical variant of the HMM, in which each 

behavioral component is modeled as a continuous auto-regressive process in pose space, 

while the components themselves (whose duration distributions are flexibly modeled based 

upon the data) are modeled using an HMM (Johnson et al., 2016; Markowitz et al., 2018; 

Pisanello et al., 2017; Wiltschko et al., 2015). The fitting procedures used by MoSeq allow it 

to flexibly learn the identity, number and ordering of 3D behavioral components (called 

“syllables”) for any given dataset. MoSeq — like all HMMs — is a generative model that 

after training can generate a synthetic 3D mouse (whose realism can be measured via 

statistical comparisons to held-out data). The fitting procedure underlying MoSeq explores 

different descriptions of behavior — “lumping” some movements together and “splitting” 

others — as it seeks an representation for behavior that best predicts held-out behavioral 

data.
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It should be clear that all behavior pipelines — supervised or unsupervised — require the 

experimenter to make choices. These choices include which behavioral features to quantify, 

whether to analyze behavior in the time or frequency domain, which timescales to consider, 

whether behavior will be represented as continuous, discrete or both, and if discrete how to 

address the problem of granularizing behavior into elements. Optimal choices should reflect 

the nature of the ethological task the animal is solving, and the inherent structure of the data; 

as our ability to record neural activity improves, these choices should be made with an eye 

towards maximizing our ability to understand the relationship between brain and behavior 

(perhaps at the expense of understanding behavior per se).

Emerging methods in computational neuroethology are yielding insight 

into the relationship between brain and behavior.

Methods for monitoring naturalistic behavior in the laboratory are largely in their infancy, 

and yet have already made contributions to understanding the relationship between brain and 

behavior; below we review highlights. Note that for brevity here we largely focus on 

analysis of freely-behaving animals during neural recording or neural manipulation, 

although where relevant we point to examples of interesting analysis in more structured 

settings.

Forward screens to identify neurons and circuits for behavior

In Drosophila, modern genetics has yielded collections of driver lines that, either alone or in 

combination, afford specific access to nearly every neuron in the fly brain (Jenett et al., 

2012). The near-simultaneous development of these driver libraries and methods for 

automated behavioral classification is enabling a new type of forward screen, one that seeks 

to identify neurons that are necessary or sufficient for particular behaviors or behavioral 

components. This strategy has been particularly successful at identifying and dissecting 

neural circuit that underlie fly behaviors (Albin et al., 2015; Hoopfer et al., 2015; von 

Philipsborn et al., 2011). For example, to identify neurons linked to aggression, researchers 

expressed neural actuators or inhibitors (such as the thermogenetic activator TrpA1 or the 

constitutive inhibitor Kir2.1) in specific neural populations, and used CADABRA and/or 

JAABA to quantify the behavioral influence of the targeted neuron (Asahina et al., 2014; 

Duistermars et al., 2018; Hoopfer et al., 2015). Because these automated methods 

dramatically reduce the time it takes to score videos, thousands of lines could be quickly 

analyzed, enabling both screens focused on likely neurons of interest (i.e., neurons that 

express neuromodulators) as well as screens that survey the entire brain. This work has 

revealed key roles for tachykinin-expressing neurons, octopamine receptor-expressing 

neurons, P1 neurons, and fruitless-positive aSP2 neurons in driving or modulating 

aggression, and has identified population of neurons that control discrete behavioral modules 

that collectively comprise threat-related behaviors (Asahina et al., 2014; Duistermars et al., 

2018; Hoopfer et al., 2015). It has also revealed epistasis relationships between different 

identified neural populations, for example, that P1 neurons and octopamine receptor-

expressing neurons likely functionally converge upon aSP2 neurons (Watanabe et al., 2017). 

Similar optogenetic-based screens that leverage machine vision at scale have been used to 
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identify neural circuits related to fly feeding and courtship (Albin et al., 2015; von 

Philipsborn et al., 2011).

Recent work has built upon this success to characterize the effects of neural activation and 

silencing on fly behavior more broadly (Robie et al., 2017). In this work, 20 male and 

female flies were imaged in parallel; video data was then used to identify a set of 128 hand-

engineered features describing the behavior of each fly, which in turn was submitted to a set 

of supervised classifiers (built using JAABA) to identify specific behaviors (e.g., walking, 

chasing, mating). The behavioral consequences of thermogenetically activating each of more 

than 2000 Gal4 lines (whose anatomy was previously characterized) was assessed using this 

method. The output of this process was a map linking sub-regions of the fly brain with 

particular behaviors; this map identified likely relationships (such as that between a series of 

visual areas and walking behaviors, and between fruitless-positive neurons and wing 

extension) as well as an online resource to mine the data for further hypothesis generation.

These screens demonstrate the power of scalable machine vision-based methods to reveal 

the neural substrates of behavior. Complementary experiments have also been carried out 

using unsupervised behavioral classification methods. For example, a variant of hierarchical 

clustering has been used to characterize the set of behavioral components and sequences that 

make up Drosophila larvae behavior before and after channelrhodopsin-based actuation of 

more than 1000 Gal4 lines (Vogelstein et al., 2014). This experiment identified a set of 29 

atomic movements falling into four basic categories (e.g., avoid, escape, backup, turn), and 

generated a look-up table linking each line to its characteristic behavioral consequence. A 

related set of experiments has been performed in the adult fly through the use of 

MotionMapper (Berman et al., 2014; Cande et al., 2018). Flies whose descending neurons 

(which connect the CNS to effector motor centers in the ventral nerve cord) were 

optogenetically activated exhibited changes in each of the 5 behavioral categories identified 

by MotionMapper; furthermore, these experiments revealed dependencies between the 

optogenetically-induced behaviors and the behaviors that was expressed immediately prior 

(Cande et al., 2018).

Probing sensorimotor processing

Rich descriptions of innate animal behavior are proving critical for probing mechanisms of 

sensorimotor processing. For example, much of our understanding of neural mechanisms 

underlying sensory-driven navigation in drosophila larvae comes from machine vision-based 

behavioral quantification. Drosophila larvae exhibit a stereotyped head-swing behavior that 

probes the sensory environment before the animal commits to a new movement direction. 

Computer vision-based behavior quantification systems such as (Gershow et al., 2012) 

automatically detect these head swings, and have been used to demonstrate that larvae 

temporally compare light intensites or chemical concentrations during head swings to chart 

future movements (Gepner et al., 2015; Gershow et al., 2012; Hernandez-Nunez et al., 2015; 

Kane et al., 2013; Schulze et al., 2015). Combined behavioral measurements and cell-

specific inactivations have also identified specific lateral neurons downstream of the 

Bolwig’s Organ that are crucial for mediating phototaxis (Kane et al., 2013). Similarly, work 

spanning many labs (reviewed in (Calabrese, 2015) ) has used automated measures of 
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behavior to reveal neural loci where chemosensory signals are integrated with photosensory 

signals for driving multi-sensory behavioral decisions (Gepner et al., 2015; Hernandez-

Nunez et al., 2015; Schulze et al., 2015).

One common thread to these experiments is the combined use of optogenetic stimulation of 

sensory neurons and simple neural models to link sensory inputs to the animal’s head-

swings and turns. By automatically detecting a different set of behaviors — “hunching” and 

“bending” — Jovanic and colleagues conducted a complete neural dissection of the larvae’s 

aversive response to mechanical stimulation, which included functionally and anatomically 

mapping a set of specific reciprocal inhibitory circuits from sensory input to motor output 

(Jovanic et al., 2016; Ohyama et al., 2013); this work illustrates how the automated analysis 

of naturalistic behavior can be used in concert with connectomics, electrophysiology, 

optogenetics, genetics and modeling to probe a complete sensorimotor circuit. Similar work 

in C. elegans using a variety of methods (including clustering and MotionMapper) has 

quantified behavioral responses to the optogenetic activation of a nociceptive neuron, and to 

characterize the innate behaviors expressed by thousands of individual worms during 

optogenetic stimulation of their mechanosensory neurons (Liu et al., 2018a; Schwarz et al., 

2015).

Automated behavior measures have also revealed new insights into the sensorimotor 

transformations driving social behaviors. For example, during courtship, adult Drosophila 
detect the sound and behavior of potential mates to dynamically coordinate its response. 

Male song production was long thought to be a fixed action pattern and any variability in the 

song was considered noise. Careful measures of social behaviors during song production 

instead showed that the details of the song, such as choice of pulse versus sine, could be 

quantitatively predicted from the kinematic details of inter-animal behavior (Coen et al., 

2014). Further measures of song and inter-animal behavior during calcium imaging revealed 

new forms of song, detailed neural correlates of male song production, and the neural coding 

of male song in the female auditory system (Clemens et al., 2018; Clemens et al., 2015) as 

well as internal latent states that are correlated with neural processing (Calhoun et al., 2019). 

Generalized linear models were used throughout this body of work to mathematically relate 

inter-animal behavior, song features and neural coding (Clemens and Murthy, 2017).

Relating global brain dynamics to naturalistic behavior

Large-scale recording techniques now allow patterns of neural actively to be measured from 

hundreds to thousands of neurons at cellular resolution throughout the brain, providing an 

unprecedented view into neural computations and representational strategies (Williamson et 

al., 2019). While such experiments still sub-sample neural activity in rodents or non-human 

primates, progress is being made in methods characterize the global pattern of brain 

dynamics exhibited during naturalistic behavior in a variety of simpler model organisms. 

This work finds its origins in brain-scale recordings made at cellular resolution via calcium 

imaging in small transparent organisms like larval zebrafish or C. elegans during partial or 

complete immobilization. Investigations of whole-brain activity during fictive locomotion in 

zebrafish have been crucial for mapping and identifying functional roles of new brain areas, 

including those for motor adaptation learning (Ahrens et al., 2012), turning behavior (Dunn 
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et al., 2016); and for discerning sensory vs motor areas (Chen et al., 2018). In C. elegans, 

measures of fictive locomotion inferred from interneuron activity has revealed stereotyped 

low-dimensional neural state-space trajectories that explain over 75% of the variance of 

brain-wide calcium activity during immobilization (Kato et al., 2015).

In the past few years, such whole-brain imaging approaches have been adapted to freely 

moving zebrafish and C. elegans (Cong et al., 2017; Kim et al., 2017; Nguyen et al., 2016; 

Symvoulidis et al., 2017; Venkatachalam et al., 2016). Recordings from neurons in the head 

of larval zebrafish during innate foraging behaviors have identified brain regions related to 

the animal’s swim bout angle and bout speed (Kim et al., 2017); similarly, recordings have 

been made during prey-capture to relate neural activity to the distance between the zebrafish 

and its paramecium prey, or to features of the animal’s eye convergence angle and head 

orientation (Cong et al., 2017). And in C. elegans, combining whole-brain recordings during 

unrestrained movements with whole body posture analysis has revealed new insights into 

where and how neural activity codes for locomotion (Scholz et al., 2018); in this work, a 

neural decoder of behavior was used to show that during unrestrained behavior only a small 

fraction of the brain’s neural dynamics (<5%) are explained by locomotory behavior, 

suggesting that the rest of the worm brain’s activity may be involved in other computations.

Probing the relationship between pose dynamics and motor circuits

Animals interact with the world by generating kinematics that support precise task-related 

movements (like grasping an object) and large-scale changes in pose (like rearing). 

Computational approaches have played a prominent role in quantifying the detailed 

kinematics of reaching or grasping behaviors in head-fixed primates and rodents, and to 

relate measured kinematics to neural dynamics (e.g.,(Churchland et al., 2012; Guo et al., 

2015)). Improved measures of behavior now allow kinematic measurements during the self-

generated locomotory behavior of unrestrained rodents. For example, LocoMouse has been 

used to recently demonstrate that the temporal and spatial aspects of adaptation to a split-

belt treadmill are dissociated, and that a key locus within cerebellum is required to 

compensate for lateralized speed perturbations (Darmohray et al., 2019). While LocoMouse 

estimates gait parameters in a specialized apparatus (in which a camera images the mouse 

from two orientations), related future experiments exploring locomotion in the open field or 

other contexts will likely take advantage of deep learning-based point tracking methods like 

LEAP, DeepLabCut, and DeepPoseKit (Graving et al., 2019; Mathis et al., 2018; Nath et al., 

2019; Pereira et al., 2019).

While point-tracking methods are well suited to monitor the position of easily-segmented 

features like paws or the base of the tail, clearly identifying keypoints can be difficult over 

much of the surface of many animals (like furry rodents). Alternative methods may therefore 

play an important complementary role in measuring the global pose dynamics expressed by 

animals as they generate naturalistic movements (Meyer et al., 2018; Venkatraman et al., 

2010). For example, accelerometer data has also been used to parse spontaneous mouse 

behavior into motifs through the use of unsupervised affinity propagation-based techniques; 

this behavioral clustering has been combined with miniscope recordings to show that 

individual behavioral motifs are encoded by ensembles of direct and indirect striatal medium 
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spiny neurons whose variance is systematically related to morphological similarities and 

differences in 3D behavior (Klaus et al., 2017).

Depth cameras have also been used to directly measure 3D information about an animal’s 

pose dynamics, and to use that information to explore brain circuits regulating action. By 

combining MoSeq with electrophysiological, multi-color photometry and miniscope 

methods, neural correlates for 3D behavioral syllables have recently been identified in 

dorsolateral striatum (DLS) (Markowitz et al., 2018). These experiments reveal a systematic 

fluctuation in neural activity associated with transitions between behavioral syllables over 

time, and an obligate role for DLS in generating appropriate behavioral sequences both 

during exploration and odor-guided naturalistic behaviors. Furthermore, MoSeq has been 

combined with optogenetic stimulation to reveal the differential consequences of activating 

the motor cortex, the dorsal and the ventral striatum (Pisanello et al., 2017; Wiltschko et al., 

2015). These results are consistent with similar results recently obtained using marker-based 

approaches to explore the relationship between 3D posture and activity in posterior parietal 

cortex (Mimica et al., 2018). Future benchmarking will reveal the trade-offs (if any) between 

direct measurements of 3D pose with specialized hardware (like depth cameras) and indirect 

estimates using more accessible hardware (like standard CCDs used to generate 3D keypoint 

tracking through image fusion, or marker-based approaches).

Addressing the challenges that remain: a way forward for behavior-guided 

discovery in the brain

As is made plain by the examples above, although important progress is being made in 

relating brain activity to naturalistic behaviors, there are a host of conceptual and technical 

issues that remain. Behavior manifests itself as complex moment-to-moment trajectories; 

yet, it is driven by often long-lasting internal states like e.g., sleep, wakefulness, hunger, 

thirst, as well as external states such as the availability of resources. Thus a description of 

natural behavior must be hierarchically organized in time, and it remains unclear how to best 

identify behavioral hierarchies in a given dataset (Berman, 2018; Tao et al., 2019). 

Furthermore, identifying this sort of hierarchical structure requires large-scale data, and in 

particular, experimental set-ups and analysis pipelines that enable long-term assessment of 

behavior; this contrasts with most current naturalistic behavioral experiments, in which 

animal behavior is measured for minutes rather than hours (but see (Jhuang et al., 2010; 

Ohayon et al., 2013)).

Second, there is the problem of context — the richness of naturalistic behaviors is most fully 

observed in complex environments where sensory cues and affordances evoke the complete 

behavioral repertoire of the animal, and yet naturalistic behaviors in the lab are largely 

assessed in impoverished arenas. Future improvements in machine vision, virtual reality and 

robotics should allow animals explore increasingly realistic contexts while researchers 

monitor spontaneous naturalistic behavior (e.g., (Del Grosso and Sirota, 2019; Meyer et al., 

2018)). One humble and yet not fully addressed challenge is segmentation — if a lab animal 

is in an arena with a lot of stuff (as will be the case if e.g., a mouse is imaged across its 

lifetime in its homecage during enrichment), it can be difficult to reliably tell the surface of 
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the animal apart from objects around the animal. This is most difficult when considering 

social behaviors, which requires pose estimation of more than one animal at a time. Recent 

improvements in deep learning are helping to address this problem, as has the use of 3D 

cameras, but additional technical work will be required if we are to better understand the 

behavioral diversity of animals as they interact with realistic environments (which include 

conspecifics and predators) (Hong et al., 2015; Markowitz et al., 2018; Nath et al., 2019).

Finally, gaining access to multi-scale relationships between brain and behavior requires an 

understanding of how brain activity itself is organized and evolves over time. While much 

progress has been made in developing methods to infer structure in high-dimensional neural 

data, the field is still in flux (Cunningham and Yu, 2014; Williamson et al., 2019). As a 

consequence, most of the methods currently used to relate brain activity to complex 

naturalistic behavior — like linear regression — are drawn from the standard toolkit. An 

important road forward will be to build methods and model classes in which structure in the 

neural data and naturalistic behavioral data are jointly inferred (Glaser and Kording, 2016). 

Ideally, joint inference will allow trial-by-trial variability in neural data to be related to trial-

by-trial behavioral performance (e.g, the kinematics that underlie the expression of any 

given instance of an identified behavioral motif, which in the context of naturalistic behavior 

can be considered a “trial”). It remains to be seen whether the tools used to solve the 

problem of organizing behavioral data will be the same as those used to jointly infer joint 

structure in neural and behavioral data.

Given that human-imposed design decisions suffuse any quantification of animal behavior, 

what types of behavioral representations are maximally informative for understanding brain 

function? Historically, a given behavioral analysis method has been judged to be successful 

if it can be used to discern a difference after an experimental manipulation. This standard 

arose from the tradition of behavioral neurogenetics, where observable behavioral 

differences are used to support forward screens whose goal is to identify individual genes 

that contribute to the generation of behavior (Benzer, 1971). Importantly, this standard ducks 

the key conceptual questions in computational neuroethology: how do we choose which 

distance metrics to use to tell us whether any two behaviors are similar or different, how do 

we balance “lumping” versus “splitting,” and in a given situation how do we decide whether 

to characterize behavior as continuous, discrete, or both?

We argue that future development of methods in computational neuroethology should adopt 

a set of simple design principles. These principles do not address all the key questions posed 

above, but instead are intended to prompt an ongoing conversation about how we measure 

behavior:

• Timescales. Humans have traditionally applied labels to animal behavior that 

operate on timescales of seconds or longer — think running, grooming, rearing 

— because that is the timescale at which perception and language most 

conveniently intersect. The availability of automated behavioral analysis methods 

circumvents this limit. Thus behavioral measurements and segmentations should 

ideally include the timescale at which neural variability is expected to occur. 

Furthermore, since slow behaviors can reflect fast neural activity, and rapid 
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behavioral events can reflect long-term neural dynamics, when possible 

behavioral descriptions should organize information hierarchically to facilitate 

multi-scale neurobehavioral discovery.

Successfully meeting this imperative for many naturalistic behaviors will require 

ongoing improvements both in behavioral measurements (e.g., faster and higher 

resolution cameras, better tracking, improved data compression) and in analytical 

methods for characterizing behavior at multiple timescales at once.

• Interpretability. Descriptions of behavior should lend themselves to hypothesis 

generation. Representations or models whose latent variables can be directly 

related to neural activity are more useful than those whose underlying variables 

lack obvious meaning; from this perspective, a behavioral representation can be 

thought of as “making sense” in light of neural activity, and such representations 

are useful for generating hypotheses about neural mechanisms underlying action. 

In a similar vein, representations whose latent variables correspond to a human 

intuition about behavior are more useful than those that do not; an “Eigenworm” 

is interpretable by a human and therefore useful for articulating hypotheses about 

how worm behavior might be organized, whereas PCA over arbitrary collections 

of behavioral parameters may not yield to human intuition. While artificial 

neural networks are able to generate excellent predictions about behavior, it is 

often hard for a human to understand what the network actually learned that 

enabled it to make a prediction, or to relate what the network learned back to a 

latent variable that might be detected in the brain. This does not mean eschewing 

approaches like deep learning — indeed such methods are currently playing a 

central role in detecting behavioral features — but rather deploying them 

selectively to support hypothesis generation. One such example is the recent use 

of a variational autoencoder to reformat raw mouse videos before submission to 

an interpretable generative model (Johnson et al., 2016).

• Prediction. When possible, prediction should be adopted as a standard for 

judging the quality of behavioral representations. Effective behavioral 

representations should be able to predict behavior (in those circumstances when 

behavior is expected to be predictable) or neural activity; conversely, an effective 

behavioral representation should enable actions to be predicted from neural 

activity. As neuroscientists, this goal of being able to predict brain from behavior 

and vice versa strikes to the heart of our motivation for studying behavior. 

Therefore, prediction quality is a natural arbiter for deciding amongst model 

parameters or competing behavioral representations. Prediction also affords the 

possibility of finding the right balance between parsimony and richness, as 

testing the predictive performance of different models of behavior potentially 

offers a solution to the problem of “lumping” versus “splitting.” Of course, one 

fundamental challenge that remains is deciding what sort of predictions are most 

relevant in a particular experimental context. In the long run, it is likely that 

multiple types of prediction (including of simultaneously measured neural data, 

of genomic or transcriptomic data, or of different treatment classes) will be 
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required to fully assess and compare the performance of different behavioral 

analysis methods.

The future of computational neuroethology

We are now gaining access to powerful tools for recording behavior, including machine 

learning-based methods to extract key features like joint angles and body postures, and for 

organizing this information to understand how behavior is structured and evolves over time. 

These tools will only get better, and enable increasingly dense characterization of action. 

Thanks to ongoing technical progress in both brain recording and behavioral analysis, we 

will soon face the serious problem of relating high dimensional time-varying neural data to 

high dimensional time-varying behavioral data. A major goal for future research will be to 

identify those behavioral representations that will give us the most insight into how neural 

circuits create behavior. Meeting this goal will require a dedicated effort on the part of 

neuroscientists to build tools for characterizing naturalistic behavior with the same vigor and 

creativity that they have thus far largely reserved for measuring and characterizing neural 

activity.

In looking towards this future it is helpful to ask what it means to “understand” the 

relationship between naturalistic behavior and the brain. Psychologists would likely agree 

that this answer requires a full account of those brain circuits that regulate a given behavior, 

including testable predictions about how circuit manipulations will affect behavior. 

Ethologists would wish to understand how behavior helps a given species prosper in its 

ecological niche, including accounts of how behavior emerges through evolutionary 

pressures, and arises in each individual through the interplay of genetics and learning. These 

different levels of explanation are interdependent and equally valid (Barlow, 2012).

And yet, the conceptual difficulties in reaching this understanding may sometimes appear 

rather daunting (Gomez-Marin et al., 2014; Jazayeri and Afraz, 2017; Krakauer et al., 2017). 

How do we search the immense brain for the circuits that are relevant for a given naturalistic 

behavior? How should we interpret the neural signals that we record, some of which may be 

as complex as the behavior itself and many of which may be irrelevant? Which is the right 

representation of behavior, and at what temporal and semantic scale should we look? How 

do we know which behavioral features are meaningful and which are idiosyncratic? How do 

we relate the goal we presume the animal is pursuing with the observed behavior? And when 

we finally describe a circuit, how do we think about the computation that it is intrinsically 

carrying out to support behavior, independently of the circuit details?

We argue that progress in computational neuroethology will require the biologist to think, at 

times, like an engineer — to propose mechanisms that might allow an animal to reach an 

ethological goal. Identifying possible mechanisms requires answering three questions that 

echo Marr’s three levels of analysis of perception (Marr, 1982): First, what ethological goal 

is any given behavior to meant to address and how shall we measure whether a particular 

action helps an animal reach its goal? Second, given the available sensory inputs and 

physical constraints, what computational strategies could allow an animal to reach its goal? 

Third, how should algorithms that support goal-oriented behavior be implemented in the 
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hardware of a nervous system? This engineering mindset is illustrated by the book 

‘Vehicles’ by Valentino Braitenberg, which suggests that testable hypotheses about how the 

brain creates naturalistic task-driven behaviors can be generated by attempting to design 

simple automata that can accomplish that same task (Braitenberg, 1986).

Importantly, this process of mapping goals to algorithms produces normative models. These 

models are valuable in many ways: to generate hypotheses about which neural signals to 

look for in the brain with relation to behavior, to evaluate whether the observed neural 

signals are sufficient for a particular task, to assess which behavioral features are noise and 

which are diagnostic of the main design choices and trade-offs (for example sensitivity to 

input noise vs. circuit complexity), and to taxonomize behaviors in the context of a goal at 

different scales of temporal and semantic resolution. The use of methods in computational 

neuroethology — whether focused on simple trained behaviors or complex, unrestrained 

patterns of action, whether done in single animals or at scale — will teach us about the 

structure of behavior; extracting meaning from these experiments and understanding how 

behavior meaningfully relates to brain activity will require a notion of the animal’s goals in 

generating a behavior, and in the long run, normative models for how a brain might 

accomplish that goal. The engineering approach has been very fruitful in understanding 

perception and learning (Nakayama and Shimojo, 1992; Navalpakkam et al., 2010; 

Reichardt et al., 1983; Shadlen and Newsome, 1998; Sutton and Barto, 1998); when taken 

with the conceptual and technical advances in computational neuroethology, we predict this 

approach will play an equally powerful role in the study of naturalistic behavior.

Acknowledgements

We are unfortunately unable to comprehensively cite the rich literature on this topic due to space limitations — we 
thank the many talented colleagues working in this area for inspiration. This review was prompted by symposium 
sponsored by the Simons Collaboration on the Global Brain. SRD, AL, DJA and PP are supported by grants from 
the Simons Collaboration on the Global Brain. SRD is supported by NIH grants U24NS109520, RO1DC016222, 
U19NS108179, and U19NS112953. AL is supported by NSF CAREER Award 1845137.

GLOSSARY

Behavioral representation
A quantitative distillation of any aspect of the time-varying behavior exhibited by an animal 

in an experiment. Such representations can vary in form from classical ethograms to low-

dimensional plots capturing the trajectory of an animal in space

Naturalistic
as with “ethologically-relevant,” (see below) there are many definitions for naturalistic, and 

indeed most experiments in behavioral neuroscience can justifiably be argued to be 

naturalistic at some level. Here, we take the word “naturalistic” to mean behaviors that are 

representative of actions generated during complex real-world tasks, like exploring new 

environments, obtaining food, finding shelter, and identifying mates; naturalistic behaviors 

as referred to herein are also largely self-motivated and expressed freely without physical 

restraint. This definition is meant to distinguish such behaviors from those that are imposed 

by researchers on animals through overtraining, or those that are more constrained due to 
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e.g., head fixation (although, as mentioned above, there are contexts in which those types of 

behaviors are quite reasonably also referred to as “naturalistic”)

Ethologically-relevant
as with “naturalistic,” (see above), “ethologically-relevant” is an adjective whose meaning is 

in the eye of the beholder; again, this term can be appropriately applied to many kinds of 

behavioral experiments, including those in which animals are subject to training and 

restraint. Here, we take “ethologically-relevant” to mean a set of behaviors that support tasks 

animals have to address as part of the existential challenge of living in a particular 

environmental niche

Behavioral label
a behavioral label is a descriptor applied to an epoch of behavioral data. Behavioral labels 

can cover descriptions of behavior at many levels of granularity, and run the gamut from “a 

twitch of motor unit 72 in the soleus muscle” to “hibernating.”

Behavioral motif
a stereotyped and re-used unit of movement. The terms “motif,” “moveme,” “module,” 

“primitive” and “syllable” have all been used interchangeably, and none of these terms is 

linked to a rigorous definition of the spatiotemporal scale at which a unit behavior is 

organized. Similarly, action and behavior here and elsewhere are used to refer to collections 

of units of behavior, but again, there is no rigorous line that separates these or related terms. 

Perona and Anderson have argued for a taxonomy in which moveme is the simplest 

movement associated with a behavior, an action is a sequence of movemes, and an activity is 

a species-characteristic set of movemes and actions (Anderson and Perona, 2014)

Behavioral sequence
an epoch in which more than one behavioral motif is expressed; sequences cof motifs an be 

either deterministic (e.g., motif A always follows motif B), or probabilistic (e.g., motif A 

follows motif B fifty percent of the time)

Artificial neural network
class of machine learning algorithms that operate by simulating a network of simplified 

neurons. These often are trained through supervised learning

Behavioral feature
a relevant attribute of an animal that, when observed over time, helps define behavior. For 

example, the location of a paw

Trajectory
the motion of a point in space over time. This can be either a physical object, like an 

animal’s paw through real space, or it can be abstract like the animal’s current behavior state 

as it travels through behavior state space

Behavior analysis pipeline
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a set of algorithms that, all together, take a raw recording of behavior (usually video) and 

returns high level representations of the animal’s behavior, such as trajectories, motifs, 

sequences or behavior labels

Dimensionality
number of variables required to describe a dataset. For example the (x,y) position of a mouse 

paw has dimensionality of 2. A complete description of its pose requires many more 

variables and thus has higher dimensionality

Dimensionality reduction
mathematically approximating a dataset using fewer than the original dimensions. For 

example, Stephens et al 2008 showed that a worm’s centerline originally requiring 100 

points could be well-approximated by three numbers. Dimensionality reduction usually 

requires a change in the representation of the data

Embedding
a type of dimensionality reduction that takes data, which is assumed to exists on a high 

manifold, and unwraps it into a lower dimensional space where it is more easily visualized. 

T-SNE and U-MAP are two examples of embeddings that are gaining adoption in the life 

sciences

Temporal dynamics
here, how behavior features change over time. These can be mathematically represented in 

the time-domain, or in the frequency-domain

Key-point
region of interest in an image, such as an animal’s joint or appendage

Supervised learning
a computer algorithm that learns to performs a task, such as identifying an animal’s joint in 

an image, through human provided examples

Behavior state-space
a mathematical space (possibly high dimensional) such that a point in this space corresponds 

to a specific instance of animal behavior

Behavior map
visualization of a behavior state-space, usually refers to a two-dimensional visualization. 

Convenient for visualizing how an animal’s behavior is organized into clusters or how it 

might differ from another animal

Principal Components Analysis (PCA)
A mathematical change of basis that is commonly used for dimensionality reduction in many 

behavioral analysis pipelines. PCA identifies a new basis set in which to represent data. A 

truncated version of this dataset serves as a useful lower-dimensional approximation of the 

original data
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Fig 1. Challenges in computational ethology.
A characteristic sequence of behaviors exhibited by a mouse in its home cage as it 

thigmotaxis around the walls, approaches some food, eats and then sleeps (center, mouse 

cartoons). Several key challenges face any segmentation of continuous behavior into 

components are illustrated. First, the behavior of most model organisms occurs in three 

dimensions (green). Second, behaviors need to be labeled, which raises the problem of 

“lumping” versus “splitting” (red); for example, mice thigmotax, a behavior in which mice 

exhibit locomotion and turning behaviors that are deterministically sequenced to generate an 

action where the animal circumnavigates its cage. Is thigmotaxis a singular behavior 

(because its elements are deterministically linked during its expression), or it is a sequences 

of walking, turning and walking behaviors? Third, should behavior be considered at a single 

timescale that serially progressed, or instead considered a hierarchical process organized at 

multiple timescales simultaneously (blue). Fourth, when the mouse is sniffing and running 

at the same time, is that a compositional behavior whose basis set includes “run” and “sniff,” 

or is “running+sniffing” a fundamentally new behavior (purple)?

Anderson et al. Page 27

Neuron. Author manuscript; available in PMC 2020 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Typical stages in a behavioral analysis pipeline.
Conceptual steps involved in any behavior analysis pipeline (left) with references to 

published example pipelines that are openly available for use (right). Shaded region 

indicates the steps that each method implements. a. Animal behavior is recorded. b. Features 

are extracted. Features may be interpretable, e.g. a mouse’s paw position; or abstract e.g. an 

algorithmically defined weighted set of pixels. Automatic feature extraction can roughly be 

divided into algorithms that use classical computer vision feature detection, supervised 

learning, or unsupervised learning. High-dimensional descriptions of behavior features can 

optionally be approximated with fewer-dimensions via dimensionality reduction. c. To leap 

from features to behavior requires first representing the temporal dynamics of the features. 

Feature dynamics can be represented in either the time- or frequency domain. Additional 

dimensionality reduction can optionally be performed at this stage. d. The resulting temporal 

dynamics are organized into behavior which can be either discrete or continuous. For 

discrete behavior representations, feature dynamics are clustered and labeled (e.g. ‘Sniffing’ 

or ‘Turning’) using either supervised or unsupervised machine learning. For continuous 

descriptions of behavior, trajectories through behavior space are analyzed and interpreted 

e.g. using dynamical systems models.

Anderson et al. Page 28

Neuron. Author manuscript; available in PMC 2020 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Pose estimation.
Recent advances in artificial neural networks allow identifiable points on an animal’s surface 

(e.g., joints) to be automatically detected from images with minimal human supervision, 

even when animals interact or are in rich and complex backgrounds (Graving et al., 2019; 

Mathis et al., 2018; Pereira et al., 2019). Examples of a. flies, b. giraffes and c. mice are 

shown from (Pereira et al., 2019 and unpublished).
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