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Abstract

Soil-transmitted helminth (STH) infections propagate poverty and slow economic growth in low-

income countries. As with many other neglected tropical diseases, environmental conditions are 

important determinants of STH transmission. Hence, remotely sensed (RS) data are commonly 

utilized in spatial risk models intended to inform control strategies. In the present study, we build 

upon the existing modelling approaches by utilizing fine spatial resolution Landsat 8 RS data in 

combination with topographic variables to predict hookworm prevalence in a hilly tribal area in 

southern India. Hookworm prevalence data collected from two field surveys were used in a 

random forest model to investigate the predictive capacity of 15 environmental variables derived 

from two RS images acquired during dry and rainy seasons. A variable buffer radius (100–1,000 

m) was applied to the point-prevalence locations in order to integrate environmental conditions 

around the village centroids into the modelling approach and understand where transmission is 

more likely. Elevation and slope were the most important variables in the models, with lower 
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elevation and higher slope correlating with higher transmission risk. A modified normalized 

difference water index was among other recurring important variables, likely responsible for some 

seasonal differences in model performance. The 300 m buffer distance produced the best model 

performance in this setting, with another spike at 700 m, and a marked drop-off in R2 values at 

1,000 m. In addition to assessing a large number of environmental correlates with hookworm 

transmission, the study contributes to the development of standardized methods of spatial linkage 

of continuous environmental data with point-based disease prevalence measures for the purpose of 

spatially explicit risk profiling.
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1. Introduction

Soil-transmitted helminth (STH) infections cause a significant health burden in low-income 

countries (Montresor et al., 2002; Pullan et al., 2014). Of particular importance are 

roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms 

(Necator americanus or Ancylostoma duodenale) (Bethony et al., 2006). These infections are 

associated with anaemia, malnutrition, stunting and impaired cognitive development 

(Montresor et al., 2002; Bethony et al., 2006), propagating poverty and slowing economic 

growth in the affected countries. Interactions with other infectious diseases such as malaria, 

tuberculosis and HIV have also been documented (Thigpen et al., 2011; Webb et al., 2012; 

Salgame et al., 2013).

Humans acquire STH infections by ingesting parasite eggs (A. lumbricoides and T. trichiura) 

or having parasite larvae found in soil penetrate through the skin (hookworm) (Bethony et 

al., 2006). Because parts of the parasite lifecycle occur in the environment (i.e. soil), 

environmental conditions are important determinants of transmission for all STH species. 

For example, temperatures in the range of 20–30 °C, adequate soil moisture and relative 

atmospheric humidity provide the most suitable conditions for STH larval survival and 

development (Brooker and Michael, 2000; Brooker et al., 2006a). Among other 

environmental factors contributing to STH transmission are soil type, rainfall and altitude 

(Brooker and Michael, 2000). Poverty and inadequate water, sanitation and hygiene (WASH) 

conditions also play an important role in environmental contamination with parasite eggs 

through unsafe faecal management (de Silva et al., 2003; Bethony et al., 2006).

STH infections are neglected tropical diseases (NTDs) that tend to affect the poorest 

populations and lack funding priority (Morel, 2003; Bethony et al., 2006; King, 2015). Many 

of the NTDs present with primarily non-fatal chronic symptoms, which have historically 

caused underestimation of their effects on economic development. In 2001, the World Health 

Assembly put several NTDs on the global priority agenda which has enabled many low-

income countries to deploy large-scale preventive chemotherapy campaigns (WHO, 2001). 

Although treatment with albendazole has shown to be effective in reducing STH prevalence 

and worm burden in the short term (Sunish et al., 2015), rapid reinfection calls into question 

Kulinkina et al. Page 2

Int J Parasitol. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the long-term sustainability of the approach. Hookworm prevalence of 30% and 55% of the 

pre-treatment levels three and 6 months post-treatment, respectively, have been documented 

(Jia et al., 2012). Hence, elimination of these infections is unlikely through preventive 

chemotherapy alone, without complementary vaccine development (Loukas et al., 2006), 

information, education and communication (IEC) and improvements in WASH conditions 

(Ziegelbauer et al., 2012; Freeman et al., 2013; Campbell et al., 2014; Strunz et al., 2014; 

Coffeng et al., 2015).

Control efforts for STH and other NTDs are hindered by a lack of accurate prevalence data. 

Hence, spatial predictive models play an important role in identifying transmission hotspots 

and high-risk communities in order to allocate limited resources (Utzinger et al., 2003). 

Because many NTDs are environmentally mediated, increasing use of remotely sensed (RS) 

data to characterize environmental conditions of transmission hotspots has also helped 

achieve better understanding of the spatial distribution of these diseases (Reiss et al., 2013). 

In a brief review of modelling studies that utilized RS data to predict STH transmission risk 

(Table 1), most were conducted at large spatial extents (e.g. national), utilized coarse spatial 

resolution RS data (e.g. 1 km, 8 km and 50 km), and included relatively few RS 

environmental predictors (e.g. normalized difference vegetation index (NDVI), land surface 

temperature (LST) and elevation).

The present study builds upon the existing sub-national predictive modelling approaches 

using geocoded community level hookworm prevalence data from two surveys (Kaliappan et 

al., 2013; Sarkar et al., 2017) conducted in tribal areas of Tamil Nadu, India. We utilized fine 

resolution Landsat 8 RS data in combination with topographic variables, expanded the 

number of RS environmental predictors to 15, and tested a variable radius (100–1,000 m) for 

aggregating continuous RS data for point-prevalence locations (Reiss et al., 2013; Walz et 

al., 2015).

The use of buffer distances around point-prevalence locations for extraction of 

environmental variables is rare in the literature, although highly relevant when using fine 

resolution RS data for small spatial extent modelling. In just three prior studies, a buffer 

radius of 1,000 m has been found relevant for hookworm modelling (Reiss et al., 2013) and 

1,000 m (Kulinkina et al., 2018) or 5,000 m (Walz et al., 2015) for schistosomiasis 

modelling. The justification of this approach lies in that point locations where infection 

status is measured or to which prevalence values are aggregated, are not necessarily 

representative of where transmission occurs. Hookworm is most likely to be transmitted in 

areas that are contaminated by faeces (e.g. open defecation fields), have suitable 

environmental conditions, and where people walk barefoot. Although these areas most likely 

represent the immediate surroundings of the households (Brooker et al., 2006b; Pullan et al., 

2010), this phenomenon is highly dependent on cultural habits. We investigated this 

phenomenon in the present study, using a variable buffer radius that encompasses a wider 

area where community members live, work and play.
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2. Materials and methods

2.1. Study area

The study was conducted in Jawadhu Hills, a tribal area located in the northern part of Tamil 

Nadu, India (Fig. 1). Approximately 80,000 people live in these hills, organized into ~250 

agrarian communities of 15–100 households. The area has poor access to roads and WASH 

facilities (Kaliappan et al., 2013). Most households have no access to a toilet (>99%), obtain 

drinking water from a communal tap stand (89%) and keep animals in or near the home 

(84%) (Kaliappan et al., 2013; Sarkar et al., 2017). The area is endemic for STH, with 

predominantly hookworm infections. According to a baseline survey conducted in 2011–

2012, average STH prevalence among children in the 6–15 years age group was >30% in 

Jawadhu Hills (Kaliappan et al., 2013) and was significantly higher than the regional average 

of 7.8% measured among school children of similar ages in 2008–2009 (Kattula et al., 

2014).

2.2. Ethical approval

This manuscript presents the results of secondary data analysis that did not require any 

additional field data collection. Both field studies from which data were obtained for the 

models conducted in this manuscript were approved by the Christian Medical College 

(CMC) Institutional Review Board (IRB), India. Written informed consent was obtained 

from adult participants (aged ≥18 years). For children <18 years of age, a parent/legal 

guardian provided written consent; additionally, children aged 8–17 years provided oral 

assent (Kaliappan et al., 2013; Sarkar et al., 2017).

2.3. Data sources

Data for this study were obtained from satellite RS sources and field studies. Surface 

reflectance, thermal and elevation data were obtained from RS sources. From these, 

vegetation- and moisture-related indices, LST and topographic predictor variables were 

derived. The outcome variable, aggregated community-level hookworm prevalence (%), was 

obtained from previously published field studies. Methods used to derive the analysis 

variables are described below.

2.3.1. Outcome: hookworm prevalence data—Hookworm prevalence data were 

obtained from two studies carried out by the CMC. Survey 1 was a prevalence survey and 

survey 2 was a baseline survey for a cluster randomised community intervention trial. 

Survey 1 was conducted between November 2011 and April 2012 in 37 geocoded villages. 

A total of 1,237 individuals participated, with a median (inter-quartile range (IQR)) of 30 

(20–41) participants per village. Average hookworm prevalence in this survey, determined 

by analysing five stool samples per participant, was 37.9% and ranged between 16.7% and 

77.5% (Kaliappan et al., 2013). Survey 2 was conducted between October 2013 and 

November 2014 in 45 villages (with an overlap of 13 villages that were included in both 

studies). A total of 2,082 individuals participated, with a median (IQR) of 46 (44–48) 

participants per village. Average hookworm prevalence in this survey, determined by 

analysing three stool samples per participant, was lower at 18.7% and ranged between 2.1% 

and 44.2% (Sarkar et al., 2017). Community-level prevalence (inclusive of adults and 
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children) from these surveys (Fig. 1) was used as the outcome variable in the present 

modelling analysis.

2.3.2. Predictors: environmental RS data—Landsat 8 data were obtained from 

United States Geological Survey (USGS) Earth Explorer (http://earthexplorer.usgs.gov/) as 

level 2 data products, which had been atmospherically corrected. These products contained 

spectral bands (1–9) as surface reflectance values with spatial resolution of 30 m from the 

Operational Land Imager (OLI) and thermal bands (10 and 11) with spatial resolution of 100 

m from the Thermal InfraRed Sensor (TIRS). All available images that encompassed the 

study area (path 143 row 51) from April 2013 through December 2014 were screened for 

quality. A total of five images that were minimally affected by clouds (<10% of the pixels) 

with the following acquisition dates that coincided with field data collection of survey 2 

were downloaded: 14 Feb 2014; 24 Mar 2014; 27 May 2014; 15 Aug 2014 and 02 Oct 2014 

(Supplementary Table S1).

Although images were not available for the time period of survey 1, the 2014 images were 

used for analysis with both surveys, based on the assumption that climate patterns were 

similar for the 2011–2014 time period. This assumption was validated using publicly 

available meteorological data for the nearest city of Chennai, India (Supplementary Fig. S1). 

Of the five available images, two images were used in the analysis in order to test the 

potential effect of different environmental conditions on model performance: the image 

acquired on 27 May 2014 represented dry and hot conditions and the image acquired on 02 

Oct 2014 represented cooler and more humid/rainy conditions (Supplementary Fig. S1).

ASTER Global Digital Elevation Model (GDEM v2) data were obtained from USGS Global 

Data Explorer (gdex.cr.usgs.gov) with a spatial resolution of 30 m. A moving window (3×3) 

majority filter was applied to the elevation data to eliminate image artefacts (Walz, Y., 2014. 

Remote sensing for disease risk profiling: a spatial analysis of schistosomiasis in West 

Africa. PhD Thesis, University of Würzburg, Germany) using the Spatial Analyst extension 

in ArcGIS software (version 10.2.2).

2.4. Data processing

RS data pixels affected by clouds or cloud shadows were masked using the quality assurance 

band. Spectral bands were used to compute five vegetation indices (normalized difference 

vegetation index (NDVI), enhanced vegetation index (EVI), soil-adjusted vegetation index 

(SAVI), modified soil-adjusted vegetation index (MSAVI) and normalized difference 

moisture index (NDMI)) and two water indices (normalized difference water index (NDWI) 

and modified normalized difference water index (MNDWI)) (Supplementary Table S2). 

Thermal bands were used to derive LST in R software (version 3.4.3). Elevation data were 

used to derive slope in ArcGIS software (version 10.2.2). Data processing steps are further 

described in Supplementary Fig. S2 and the distribution of RS parameter values over the 

study area are shown in Supplementary Fig. S3.
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2.5. Variable extraction and aggregation

Aggregated community-level point-prevalence of hookworm (% positive samples) was used 

as the outcome variable. A total of 15 environmental predictor variables were derived from 

RS data and resampled to a matching 30 m spatial resolution for analysis (Table 2). While 

the environmental predictors were represented by continuous raster data, prevalence was 

represented by point data, necessitating extraction and aggregation of the raster data. A 

variable buffer radius (100–1,000 m) around each point-prevalence location was used by 

extracting the median pixel value from the buffer area to be matched to each prevalence 

measure.

2.6. Data analysis

Exploratory analyses included graphical variable summaries conducted in R and ArcGIS 

software. The final analysis consisted of non-parametric random forest models conducted 

with all 15 environmental predictor variables (Table 2). The random forest approach was 

chosen because it can deal with continuous outcome data, multicollinear predictor variables 

and low numbers of training samples. It is the recommended machine learning method for 

generating predictions (Kampichler et al., 2010) that has been successfully applied in similar 

studies (Walz et al., 2015; Kulinkina et al., 2018).

The goal of this analysis was to compare the performance of RS data acquired in dry and 

wet conditions and extracted using different buffer distances. Furthermore, three versions of 

the outcome were tested: model 1 (M1) used survey 1 data only; model 2 (M2) used survey 

2 data only; and combined model (CM) used a combination of the two surveys. In total, 60 

variants of the random forest model were conducted: 10 buffer distances over which RS 

variables were extracted (100–1,000 m) * two RS images (representing dry and wet 

conditions) * three sets of prevalence data (M1, M2 and CM).

The explanatory power of random forest models was compared using root-mean-square error 

(RMSE) and R2 values (Li et al., 2017). The relative importance of predictor variables was 

assessed using the increasing node purity (“IncNodePurity”) metric (Grömping, 2009; 

Hastie et al., 2009). Subsequently, random forest models were applied back to the data cube 

of predictor variables to derive continuous predicted prevalence surfaces. Lastly, the median 

predicted values were plotted against observed prevalence values as scatter plots. The quality 

of the prediction was assessed using Spearman’s rank correlation (r value) between model 

predicted and observed values, compared with the line of equality, as well as plotting the 

average of the observed and predicted values against their difference and assessing the 

proportion of predicted observations within the 95% limits of agreement (q value) (Bland 

and Altman, 2003).

3. Results

3.1. Exploratory analyses

As part of exploratory analyses, distributions of median RS parameter values from two 

images and 10 buffer distances were compared using boxplots (Supplementary Fig. S4). 

This analysis showed significant variability in parameter values across the two images. 
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Individual band values (blue, green, red, NIR and SWIR) and vegetation indices (NDVI, 

EVI, SAVI, MSAVI and NDMI) were significantly lower in the image acquired in hot and 

dry conditions (27 May 2014) compared with cooler and more humid conditions (02 Oct 

2014). There were no apparent differences between the two images in NDWI values; 

whereas the MNDWI values were significantly higher in October than May. LST values 

were slightly lower in May (26–28 °C) than in October (28–29 °C). Median variable values 

varied little across the 10 buffer distances; however, RS variables tended to exhibit slightly 

more variability over shorter than longer buffer distances.

Hookworm prevalence values in the subset of 13 villages that were sampled in both surveys 

were also explored. In this subset, average prevalence values in survey 1 were approximately 

two times higher than in survey 2 (35.6% versus 17.4%). Only four villages exhibited 

similar prevalence values during both survey rounds. No notable spatial trends were detected 

by mapping these villages (Supplementary Fig. S5).

3.2. Random forest models

Results of the random forest models showed better fit for locations in survey 1 compared 

with survey 2, as shown by higher R2 values (Fig. 2). The model fit for survey 1 models 

(M1) applied to both RS images was similar. Spikes in R2 values at 300 m and 700 m and a 

marked drop off at 1,000 m indicated that the fit depended on buffer distance. Similar trends 

were observed in RMSE values (Figu.2), with an increase in RMSE at 900 m and 1,000 m 

buffer distances. The trends in model fit exhibited by survey 2 models (M2) were slightly 

different, with only one peak per image. The best data fit was achieved at 300 m using the 02 

Oct 2014 image and at 700 m using the 27 May 2014 image according to R2 values. In the 

combined models (CM), R2 values generally peaked at 300–400 m and declined with 

increasing buffer distance.

To explore the best performing models further, variable importance was extracted from a 

total of six models (two RS images * one buffer distance (300 m) * three prevalence 

datasets). In survey 1 models (M1), the most important variables were elevation and slope, 

regardless of RS image used (Supplementary Fig. S6, ). In survey 2 models (M2), near 

infrared band and MNDWI were the only visibly more important variables when the 27 May 

2014 RS image was used. When using the 02 Oct 2014 RS image, all variables had low 

IncNodePurity values. In the combined models (CM), elevation and slope re-gained their 

importance (Supplementary Fig. S6). Of the seasonal RS variables, the most important 

across all models were near infrared band, LST, NDMI and MNDWI.

As expected, M1 predicted prevalence (median pixel value extracted over the 300 m buffer 

distance) had the highest Spearman’s rank correlation coefficient compared with survey 1 

results: r = 0.66 (P < 0.05) with the 27 May 2014 image and r = 0.55 (P<0.05) with the 02 

Oct 2014 image. M2 and CM models produced lower correlation coefficients, which 

remained consistently significant when compared with survey 1 results but were largely non-

significant when compared with survey 2 results (Supplementary Fig. S9). Bland-Altman 

plots illustrated similar trends in q values, with higher r values generally corresponding to 

higher q values.
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Predicted surfaces were also derived for the same six models described above. Elevation was 

negatively associated and slope was positively associated with hookworm risk in M1 and 

CM models conducted with both RS images, as represented by low risk areas in the middle 

of the image (high elevation and low slope) and high risk along the edges of the hills 

(moderate elevation and high slope) (Fig. 3; Supplementary Fig. S5). No clear associations 

were produced by the M2 models.

4. Discussion

In this study, we utilized publicly available environmental data from the Landsat 8 satellite, 

in combination with topographic variables, to predict hookworm prevalence at a sub-national 

spatial extent (an area of approximately 50 km2). Furthermore, we used a larger number of 

RS environmental predictors than previous modelling studies and conducted 60 iterations of 

the model with three prevalence datasets, two RS images acquired under different climatic 

conditions and 10 buffer distances used for environmental variable extraction.

Survey 1 models achieved consistently higher R2 values than survey 2 models. This is not 

surprising, considering a smaller sample size, higher average prevalence and a wider 

prevalence range. There are several potential contributing factors to survey 1 exhibiting 

higher prevalence values than survey 2. First, survey 1 was conducted earlier, when 

preventive chemotherapy was less prevalent. The effects of treatment are shown by generally 

lower prevalence values in the subset of 13 villages that participated in both surveys. 

Second, survey 1 was conducted in a different subset of villages, which were more remote 

than those used in survey 2 and were therefore less likely to receive treatment. Third, fewer 

stool samples were collected during survey 2, meaning that fewer chances to detect less 

severe infections were available, likely underestimating the true prevalence (Knopp et al., 

2008; Kaliappan et al., 2013).

Elevation was by far the most important variable in survey 1 models, and was negatively 

associated with hookworm risk, consistent with the findings of many but not all of the 

reviewed studies (Mabaso et al., 2003; Brooker and Clements, 2009; Reiss et al., 2013; 

Scholte et al., 2013). Some found no association between elevation and hookworm risk 

(Chammartin et al., 2013; Lai et al., 2013), while one study found a positive association, 

where high prevalence communities were situated at elevations ≥ 400 m (Raso et al., 2006). 

Slope was consistently positively associated with hookworm risk, a variable that has not 

been explored in many other studies. NDMI and MNDWI were among other recurring 

important variables in dry conditions. Similar to the findings of another study that utilized 

Landsat 8 data for schistosomiasis risk modelling in Ghana (Kulinkina et al., 2018), we 

found that NDWI was less sensitive in detecting waterbodies compared with MNDWI, 

frequently misclassifying developed surfaces (i.e. roads and settlements) as waterbodies 

(Supplementary Fig. S3).

The buffer distance of 300 m produced the best model performance. In the present study, 

>99% of the households did not have access to a toilet and practiced open defecation, 

suggesting defecation fields as a likely source of environmental contamination within the 

300 m radius of the village centroid. In fact, during survey 2, a total of 133 defecation fields 
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were mapped in the vicinity of the 45 study villages. Of these, 43 (32%) were within 100 m, 

104 (78%) within 200 m and 127 (95%) within 300 m of the village centroids. There was 

another notable spike in model R2 values at around 700 m from the village centroids, 

indicating that perhaps a secondary source of contamination may be present (e.g. 

agricultural areas or defecation fields of neighbouring villages).

Overall, even in survey 1 models, predicted prevalence values deviated substantially from 

the observed values, signifying some overprediction in the low prevalence range and 

underprediction in the high prevalence range. The high Spearman’s rank correlation value is 

driven by the two clusters visible in the scatter plot (Supplementary Fig. S6). The cluster 

with high observed values and higher predicted values consists of villages located in the 

high risk (low elevation and high slope) area that forms a diagonal canyon in the top right 

corner of the study area. The cluster of lower predicted and observed prevalence values 

consists of villages located in the lower risk (high elevation and low slope) area in the centre 

of the study area (Fig. 3).

Cloud cover presented a substantial challenge in RS data acquisition. In a prior study 

(Kulinkina et al., 2018), RS images were available only in the dry season. In this study, we 

were able to locate one rainy season image to use for comparison. However, only five good 

quality images were available over the entire duration of field data collection, with some still 

substantially affected by cloud cover (up to 10% of the pixels). Fortunately, the locations of 

the study villages were largely unaffected by pixels with unacceptable data quality according 

to the quality assurance information, but we cannot say with certainty that other, less 

significant, problems with data quality were not present.

Despite the stated limitations, our study makes important contributions to the modelling 

approaches of hookworm transmission at small spatial extents. First, we found that villages 

that are located on steeper slopes at moderate elevations are at higher risk of hookworm 

transmission than villages located in higher but flatter locations. Second, it justifies the use 

of a buffer radius for extracting environmental variables to link with point-prevalence data. 

In the Jawadhu Hills, the radius of 300 m was most appropriate, and consistent with most 

(95%) of the defecation fields being located within 300 m of the village centroids. However, 

it is a unique tribal setting and these findings should be validated in a more generic location 

and for other STH species. The importance of elevation, slope and MNDWI variables in the 

models suggests that the dynamic between elevation, slope and runoff in hilly areas with 

poor sanitation and high STH transmission warrants further study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Environmental conditions are important determinants of hookworm 

transmission

• Remotely sensed data are commonly used for disease risk profiling

• Elevation and slope were the most important predictors of hookworm 

transmission

• A small buffer radius around village centroids (300 m) produced the best 

model performance

• Remotely sensed data acquired in dry and rainy seasons had similar model 

performance
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Fig. 1. 
Map of Jawadhu Hills in southern India and spatial distribution of hookworm prevalence 

from two surveys created using the following data sources: hillshade relief was derived from 

the ASTER Global Digital Elevation Model (v2); stool samples for estimating hookworm 

prevalence were collected by Christian Medical College study teams. The histogram shows 

the distribution of prevalence values with mean values denoted by dashed vertical lines. 

Survey 1 was conducted between November 2011 and April 2012; survey 2 was conducted 

between October 2013 and November 2014.
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Fig. 2. 
Random forest model R2 and root-mean-square error (RMSE) values (Y-axis) for 10 buffer 

distances (X-axis), two Landsat 8 images (line color) and three versions of the model, using 

data from survey 1, survey 2 and both surveys combined (line type).
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Fig. 3. 
Predicted hookworm prevalence from six random forest models using two Landsat 8 remote 

sensing images and three datasets (model 1 used survey 1 data, model 2 used survey 2 data, 

and combined model used data from both surveys). White areas represent pixels in the 

remote sensing image affected by clouds that were excluded from analysis.
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Table 1.

Summary of environmental modelling of soil-transmitted helminth prevalence

Infections Spatial extent Environmental predictors Reference

Hookworm Sub-national (South Africa)
Prevalence data obtained from various 
types of surveys

Elevation, temperature, rainfall, soil type Mabaso et al., 2003

Hookworm Sub-national (South Africa)
Prevalence aggregated at household level

NDVI, soil properties, population density Saathoff et al., 2005

Hookworm
Schistosoma mansoni

Sub-national (Côte d’Ivoire)
Prevalence aggregated at school level

Elevation, slope, rainfall, LST, NDVI, land 
cover, soil type, distance to water bodies

Raso et al., 2006

Hookworm Sub-national (Brazil)
Prevalence aggregated at household level

Watershed, NDVI, population density Pullan et al., 2008

Hookworm Regional (Kenya/Tanzania)
Prevalence aggregated at school level

Elevation, LST, NDVI, distance to 
waterbodies

Brooker and Clements, 
2009

Hookworm National (Ghana)
Prevalence aggregated at school level

LST, NDVI, distance to waterbodies Soares Magalhães et al., 
2011

Ascaris lumbricoides
Trichuris trichiura
Hookworm

National (Bolivia)
Prevalence data obtained from various 
types of surveys

Climate variables, elevation, LST, NDVI, 
EVI, land cover, soil properties, population 
density

Chammartin et al., 2013

A. lumbricoides
T. trichiura
Hookworm

National (China)
Prevalence data obtained from various 
types of surveys

Rainfall, climate zones, elevation, LST, 
NDVI, rainfall, land cover, soil type, soil 
properties, distance to waterbodies, 
population density

Lai et al., 2013

Hookworm Sub-national (Tanzania)
Prevalence aggregated at household level

Elevation, slope, EVI, LST, rainfall, 
population density, sanitation coverage

Reiss et al., 2013

A. lumbricoides
T. trichiura
Hookworm

National (Brazil)
Prevalence aggregated at municipality 
level

Climate variables, elevation, LST, NDVI, 
EVI, potable water and sanitation coverage, 
population density

Scholte et al., 2013

A. lumbricoides
T. trichiura
Hookworm

National (Philippines)
Prevalence data aggregated at sub-district 
(barangay) level

Rainfall, LST, NDVI, distance to 
waterbodies

Soares Magalhães et al., 
2015

A. lumbricoides
T. trichiura
Hookworm

Regional (Bangladesh/India/Nepal/
Pakistan)
Prevalence data obtained from various 
types of surveys

LST, NDVI, land cover, elevation, climate 
zones and variables, socioeconomic data, 
waterbodies, soil and water properties, 
population density

Lai et al., 2019

NVDI, normalized difference vegetation index; LST, land surface temperature EVI, enhanced vegetation index..
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Table 2.

Summary of 15 continuous environmental predictor variables

Data source Variable Spatial resolution (m)

Landsat 8 (OLI) Blue band reflectance 30

Landsat 8 (OLI) Green band reflectance 30

Landsat 8 (OLI) Red band reflectance 30

Landsat 8 (OLI) Near infrared band reflectance 30

Landsat 8 (OLI) Short-wave infrared band reflectance 30

Landsat 8 (TIRS) Land surface temperature (LST) (°C) 100

Landsat 8 (OLI) Normalized difference vegetation index (NDVI) 30

Landsat 8 (OLI) Enhanced vegetation index (EVI) 30

Landsat 8 (OLI) Soil-adjusted vegetation index (SAVI) 30

Landsat 8 (OLI) Modified soil-adjusted vegetation index (MSAVI) 30

Landsat 8 (OLI) Normalized difference moisture index (NDMI) 30

Landsat 8 (OLI) Normalized difference water index (NDWI) 30

Landsat 8 (OLI) Modified normalized difference water index (MNDWI) 30

GDEM v2 Elevation (m) 30

GDEM v2 Slope (°) 30

OLI, Operational Land Imager; TIRS, Thermal InfraRed Sensor; GDEM, Global Digital Elevation Model.
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