
Image processing and analysis methods for the Adolescent 
Brain Cognitive Development Study

A full list of authors and affiliations appears at the end of the article.

Abstract

The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of 

the effects of environmental influences on behavioral and brain development in adolescents. The 

main objective of the study is to recruit and assess over eleven thousand 9–10-year-olds and follow 

them over the course of 10 years to characterize normative brain and cognitive development, the 

many factors that influence brain development, and the effects of those factors on mental health 

and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and 

clinical assessments, bioassays, and careful assessment of substance use, environment, 

psychopathological symptoms, and social functioning. The data is a resource of unprecedented 

scale and depth for studying typical and atypical development. The aim of this manuscript is to 

describe the baseline neuroimaging processing and subject-level analysis methods used by ABCD. 

Processing and analyses include modality-specific corrections for distortions and motion, brain 

segmentation and cortical surface reconstruction derived from structural magnetic resonance 

imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related 

analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI. 

This manuscript serves as a methodological reference for users of publicly shared neuroimaging 

data from the ABCD Study.
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Introduction

The Adolescent Brain Cognitive Development (ABCD) Study offers an unprecedented 

opportunity to comprehensively characterize the emergence of pivotal behaviors and 

predispositions in adolescence that serve as risk or mitigating factors in physical and mental 

health outcomes (Jernigan et al., 2018; Volkow et al., 2018). Data collection was launched in 

September 2016, with the primary objective of recruiting over 11,000 participants - 

including more than 800 twin pairs - across the United States over a two-year period. These 

9–10-year-olds will be followed over a period of ten years. This age window encompasses a 

critical developmental period, during which exposure to substances and onset of many 

mental health disorders occur. The ABCD Study is the largest project of its kind to 

investigate brain development and peri-adolescent health, and includes multimodal brain 

imaging (Casey et al., 2018), bioassay data collection (Uban et al., 2018), and a 

comprehensive battery of behavioral (Luciana et al., 2018) and other assessments (Bagot et 

al., 2018; Barch et al., 2018; Lisdahl et al., 2018; Zucker et al., 2018). The longitudinal 

design of the study, large diverse sample (Garavan et al., 2018), and open data access 

policies will allow researchers to address many significant and unanswered questions.

Large Scale Multimodal Image Acquisition

The past few decades have seen increasing interest in the development and use of non-

invasive in vivo imaging techniques to study the brain. Rapid progress in MRI methods has 

allowed researchers to acquire high-resolution anatomical and functional brain images in a 

reasonable amount of time, which is particularly appealing for pediatric and adolescent 

populations. The ABCD Study builds upon existing state-of-the-art imaging protocols from 

the Pediatric Imaging, Neurocognition Genetics (PING) study (Jernigan et al., 2016) and the 

Human Connectome Project (HCP) (Van Essen et al., 2012) for the collection of multimodal 

data: T1-weighted (T1w) and T2-weighted (T2w) structural MRI (sMRI), diffusion MRI 

(dMRI), and functional MRI (fMRI), including both resting-state fMRI (rs-fMRI) and task-

fMRI (Casey et al., 2018). The fMRI behavioral tasks include a modified monetary incentive 

delay task (MID) (Knutson et al., 2000), stop signal task (SST) (Logan, 1994) and emotional 

n-back task (EN-back) (Cohen et al., 2016). These tasks were selected to probe reward 

processing, executive control, and working memory, respectively (Casey et al., 2018). The 

ABCD imaging protocol was designed to extend the benefits of high temporal and spatial 

resolution of HCP-style imaging (Glasser et al., 2016) to multiple scanner systems and 

vendors. Through close collaboration with three major MRI system manufacturers (Siemens, 

General Electric and Philips), the ABCD imaging protocol achieves HCP-style temporal and 

spatial resolution on all three manufacturers’ 3 Tesla systems (Siemens Prisma and Prisma 

Fit, GE MR 750, and Philips Achieva dStream and Ingenia) without the use of non-

commercially available system upgrades.
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To help address the challenges of MRI data acquisition with children, real-time motion 

correction and motion monitoring is used when available to maximize the amount of usable 

subject data. The prospective motion correction approach, first applied in PING, uses very 

brief “navigator” images embedded within the sMRI data acquisition, efficient image-based 

tracking of head position, and compensation for head motion (White et al., 2010). 

Significant reduction of motion-related image degradation is possible with this method 

(Brown et al., 2010; Kuperman et al., 2011; Tisdall et al., 2016). Prospective motion 

correction is currently included in the ABCD imaging protocol for the sMRI acquisitions 

(T1w and T2w) on Siemens (using navigator-enabled sequences (Tisdall et al., 2012)) and 

General Electric (GE; using prospective motion (PROMO) sequences (White et al., 2010)) 

and will soon be implemented on the Philips platform.

Real-time motion monitoring of fMRI acquisitions has been introduced at the Siemens sites 

using the Frame-wise Integrated Real-time Motion Monitoring (FIRMM) software 

(Dosenbach et al., 2017). This software assesses head motion in real-time and provides an 

estimate of the amount of data collected under pre-specified movement thresholds. 

Operators are provided a display that shows whether our movement criterion (>12.5 minutes 

of data with framewise displacement (FD (Power et al., 2014)) < 0.2 mm) has been 

achieved. FIRMM allows operators to provide feedback to participants or adjust scanning 

procedures (i.e., skip the final rs-fMRI run) based on whether the criterion has been reached. 

Future deployment of FIRMM for GE and Philips sites is planned.

Challenges of Multimodal Image Processing

A variety of challenges accompany efforts to process multimodal imaging data, particularly 

with large numbers of subjects, multiple sites, and multiple scanner manufacturers. Head 

motion is a significant issue, particularly with children, as it degrades image quality, and 

potentially biases derived measures for each modality (Fair et al., 2012; Power et al., 2012; 

Reuter et al., 2015; Satterthwaite et al., 2012; Van Dijk et al., 2012; Yendiki et al., 2013). 

Censoring of individual degraded frames and/or slices is one approach used in the literature 

to minimize contamination of dMRI and fMRI measures (Hagler et al., 2009; Power et al., 

2014; Siegel et al., 2014). Correcting image distortions is important because anatomically 

accurate, undistorted images are essential for precise integration of dMRI and fMRI images 

with anatomical sMRI images. Furthermore, correcting distortions reduces variance in 

longitudinal change estimates caused by differences in the precise position of the subject in 

the scanner (Holland and Dale, 2011). Because the ABCD MRI acquisition protocol relies 

on high density, phased array head coils, image intensity inhomogeneity can be dramatic and 

can, if not properly corrected in sMRI images, lead to inaccurate brain segmentation or 

cortical surface reconstruction. As described in Methods, the ABCD image processing 

pipeline includes general and modality-specific corrections to addresses these known 

challenges of head motion, distortion, and intensity inhomogeneity. The image processing 

pipeline is expected to evolve over time to incorporate improvements and extensions in order 

to better address the challenges of large-scale multimodal image processing and analysis and 

to respond to future challenges specific to longitudinal analyses, such as the possibility of 

scanner and head coil upgrade or replacement during the period of study.

Hagler et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data as a Public Resource

The advent of large-scale data sharing efforts and genomics consortia has created exciting 

opportunities for biomedical research. The availability of datasets drawn from large numbers 

of subjects enables researchers to address questions not feasible with smaller sample sizes. 

Public sharing of processing pipelines and tools, in addition to raw and processed data, 

facilitates replication studies, reproducibility, and meta-analyses with standardized methods, 

and encourages the application of cross-disciplinary expertise to develop new analytic 

methods and test new hypotheses. To this end, data and methods sharing is an integral 

component of the ongoing ABCD Study. Processed data and tabulated region of interest 

(ROI) based analysis results are made publicly available via the National Institute for Mental 

Health (NIMH) Data Archive (NDA). Processing pipelines themselves are shared as 

platform-independent data processing tools.

Aims and Scope

This manuscript is intended to serve as a reference for users of neuroimaging data from 

ABCD Data Release 2.0, made publicly available in March 2019 and amendment ABCD Fix 

Release 2.0.1, made publicly available in July 2019. Our focus is to provide a detailed 

overview of the image processing and analysis methods used to prepare imaging and 

imaging-derived data for public release. Other imaging-related aspects of the ABCD Study, 

including image acquisition, data curation, and data sharing are briefly described. Some 

preliminary characterizations of the baseline data are included in this report; more in-depth 

elaborations on baseline participant characterization, neuroimaging descriptive statistics, and 

quality control optimization are planned for separate reports. We anticipate that this material 

will be useful to ABCD collaborators and the broader scientific community for accelerating 

neuroimaging research into adolescent brain and cognitive development.

Methods

Overview

The ABCD Data Analysis and Informatics Center (DAIC) performs centralized processing 

and analysis of MRI data from each modality, leveraging validated methods used in other 

large-scale studies, including the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(Mueller et al., 2005), Vietnam Era Twin Study of Aging (VETSA) (Kremen et al., 2010), 

and PING (Jernigan et al., 2016). We used a collection of processing steps contained within 

the Multi-Modal Processing Stream (MMPS), a software package developed and maintained 

in-house at the Center for Multimodal Imaging and Genetics (CMIG) at the University of 

California, San Diego (UCSD) that provides large-scale, standardized processing and 

analysis of multimodality neuroimaging data on Linux workstations and compute clusters. 

This toolbox contains primarily MATLAB functions, as well as python, sh, and csh scripts, 

and C++ compiled executables and relies upon a number of publicly available neuroimaging 

software packages, including FreeSurfer (Fischl, 2012), Analysis of Functional 

NeuroImages (AFNI) (Cox, 1996), and FMRIB Software Library (FSL) (Jenkinson et al., 

2012; Smith et al., 2004). The processing pipeline described in this manuscript was used for 

the ABCD Data Release 2.0, available in March 2019, and a beta testing version has been 

made publicly available as a self-contained, platform-independent executable (https://
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www.nitrc.org/projects/abcd_study). Imaging statistics shown here include the amended 

ABCD Fix Release 2.0.1 data published in July 2019.

As described above, the ABCD image acquisition protocol includes sMRI, dMRI, and fMRI 

data. While there are many modality-specific details of the processing and analysis pipeline 

that will be discussed below, we conceptualize five general stages of processing and 

analysis. 1. Unpacking and conversion: DICOM files are sorted by series and classified 

into types based on metadata extracted from the DICOM headers, and then converted into 

compressed volume files with one or more frames (time points). DICOM files are also 

automatically checked for protocol compliance and confirmation that the expected number 

of files per series was received. 2. Processing: Images are corrected for distortions and head 

motion, and cross-modality registrations are performed (Fig. 1A). 3. Brain segmentation: 
The cortical surface is reconstructed and subcortical and white matter regions of the brain 

are segmented. 4. Analysis: We carry out modality-specific, single-subject level analyses 

and extract imaging-derived measures using a variety of regions of interest (ROIs). 5. 
Summarization: ROI analysis results are compiled across subjects and summarized in 

tabulated form. To provide context for how the centralized image processing is performed in 

preparation for the public release of data, we will also briefly describe MRI data acquisition, 

quality control, and data and methods sharing. A diagram documenting the various outputs 

of the processing pipeline can be found in Figure 1B.

Image Acquisition

A standard scan session includes sMRI series (T1w and T2w), one dMRI series, four rs-

fMRI series, and two task-fMRI series for each of three tasks (MID, SST, and EN-back). 

Minimal details of the imaging protocol are provided here to contextualize the following 

description of the processing pipeline; additional details have been published previously 

(Casey et al., 2018). The scan order is fixed as follows: localizer, 3D T1-weighted images, 2 

runs of resting state fMRI, diffusion weighted images, 3D T2-weighted images, 2 runs of 

resting state fMRI and then 3 fMRI tasks (MID, SST and EN-back). The fMRI tasks are 

randomized across subjects, except siblings receive the same order of tasks. Task order is 

held constant across longitudinal waves of the study for each subject (see Casey et al 2018). 

Scan sessions typically require ~2 hours to complete, including a mid-session rest break if 

the child requests one; they are sometimes split into two separate sessions that take place 

within one week of each other (3.5% of participants included in ABCD Data Release 2.0/Fix 

Release 2.0.1). Over 79% of the participants included in ABCD Data Release 2.0/2.0.1 

successfully completed the entire image acquisition protocol. Some participants who are 

unable to complete one or more of the fMRI behavioral tasks (MID, SST, or EN-back), 

instead perform the missing task or tasks outside the scanner on a laptop computer1.

The T1w acquisition (1 mm isotropic) is a 3D T1w inversion prepared RF-spoiled gradient 

echo scan using prospective motion correction, when available (currently only on Siemens 

and GE scanners) (Tisdall et al., 2012; White et al., 2010). The T2w acquisition (1 mm 

1Whether a participant performed the MID, SST, or EN-back task in the scanner or on a laptop is indicated respectively by the 
following variables: ra_scan_cl_mid_scan_lap, ra_scan_cl_nbac_scan_lap, ra_scan_cl_sst_scan_lap. For more details, see “ABCD RA 
Scanning Checklist and Notes” available at https://ndar.nih.gov (instrument ‘abcd_ra’).
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isotropic) is a 3D T2w variable flip angle fast spin echo scan, also using prospective motion 

correction when available. Prospective motion correction has not been implemented for 

dMRI or fMRI acquisition. The dMRI acquisition (1.7 mm isotropic) uses multiband EPI 

(Moeller et al., 2010; Setsompop et al., 2012) with slice acceleration factor 3 and includes 

96 diffusion directions, seven b=0 frames, and four b-values (6 directions with b=500 s/

mm2, 15 directions with b=1000 s/mm2, 15 directions with b=2000 s/mm2, and 60 directions 

with b=3000 s/mm2). The fMRI acquisitions (2.4 mm isotropic, TR=800 ms) also use 

multiband EPI with slice acceleration factor 6. Each of the dMRI and fMRI acquisition 

blocks include fieldmap scans for B0 distortion correction. The imaging protocol was 

developed in collaboration with each scanner manufacturer using commercially available 

system upgrades, and where possible, product sequences. Imaging parameters were made as 

similar as possible across scanner manufacturers, although some hardware and software 

constraints were unavoidable (for details, see Appendix).

Unpacking and Conversion

After encrypted data is electronically sent from participating sites to the DAIC, data are 

automatically copied to a network attached, high capacity storage device (Synology, Taiwan) 

using a nightly scheduled rsync operation. The contents of this device are automatically 

inventoried using the metadata-containing JSON files to categorize series into the different 

types of imaging series: T1w, T2w, dMRI, rs-fMRI, MID-task-fMRI, SST-task-fMRI, and 

EN-back-task-fMRI. Missing data are identified by comparing the number of series received 

of each type to the number of series collected for a given subject, as entered into a REDCap 

database entry form by the site scan operators. The numbers of received and missing series 

of each type for each subject are added to the ABCD REDCap database. Using web-based 

REDCap reports, DAIC staff identify participants with missing data, and either request the 

data to be re-sent by acquisition sites or address technical problems preventing the data 

transfer. After receiving imaging data at the DAIC, the tgz files are extracted. For dMRI and 

fMRI exams collected on the GE platform prior to a software upgrade2, this step includes 

the offline reconstruction of multiband EPI data from raw k-space files into DICOM files, 

using software supplied by GE.

Protocol Compliance and Initial Quality Control

Using a combination of automated and manual methods, we review datasets for problems 

such as incorrect acquisition parameters, imaging artifacts, or corrupted data files. 

Automated protocol compliance checks providing information about the completeness of the 

imaging series and the adherence to the intended imaging parameters. Out-of-compliance 

series are reviewed by DAIC staff, and sites are contacted if corrective action is required. 

Protocol compliance criteria include whether key imaging parameters, such as voxel size or 

repetition time, match the expected values for a given scanner. For dMRI and fMRI series, 

the presence or absence of corresponding B0 distortion field map series is checked. Each 

imaging series is also checked for completeness to confirm that the number of files matches 

2Offline reconstruction of multiband data is required for GE scanners with software version DV25. Starting in September 2017, GE 
scanners at three ABCD sites were upgraded to software version DV26, supporting online reconstruction of multiband data and 
providing DICOM files. The remaining GE scanners at ABCD sites were upgraded to DV26 in September 2018.
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what was expected for each series on each scanner. Missing files are typically indicative of 

either an aborted scan or incomplete data transfer, of which the latter can usually be resolved 

through re-initiating the data transfer. Errors in the unpacking and processing of the imaging 

data at various stages are tracked, allowing for an assessment of the number of failures at 

each stage and prioritization of efforts to resolve problems and prevent future errors.

Automated quality control procedures include the calculation of metrics such as signal-to-

noise ratio (SNR) and head motion statistics. For sMRI series, metrics include mean and SD 

of brain values. For dMRI series, head motion is estimated by registering each frame to a 

corresponding image synthesized from a tensor fit, accounting for variation in image 

contrast across diffusion orientations (Hagler et al., 2009). Overall head motion is quantified 

as the average of estimated frame-to-frame head motion, or FD. Dark slices, an artifact 

indicative of abrupt head motion, are identified as outliers in the root mean squared (RMS) 

difference between the original data and data synthesized from tensor fitting. The total 

numbers of the slices and frames affected by these motion artifacts are calculated for each 

dMRI series. For fMRI series, measures include mean FD, the number of seconds with FD 

less than 0.2, 0.3, or 0.4 mm (Power et al., 2012), and temporal SNR (tSNR) (Triantafyllou 

et al., 2005) computed after motion correction.

Trained technicians visually review image series as part of our manual QC procedures, 

including T1w, T2w, dMRI, dMRI field maps, fMRI, and fMRI field maps. Reviewers 

inspect images for poor image quality, noting various imaging artifacts and flagging 

unacceptable data, typically those with the most severe artifacts or irregularities. For 

example, despite the use of prospective motion correction for sMRI scans, which greatly 

reduces motion-related image degradation (Brown et al., 2010; Kuperman et al., 2011; 

Tisdall et al., 2016), images of participants with excessive head motion may exhibit severe 

ghosting, blurring, and/or ringing that makes accurate brain segmentation impossible. 

Reviewers are shown several pre-rendered montages for each series, showing multiple slices 

and views of the first frame, and multiple frames of individual slices if applicable. For multi-

frame images, linearly spaced subsets of frames are shown as a 9×9 matrix of 81 frames. For 

dMRI and fMRI, derived images are also shown. For dMRI series, derived images include 

the average b=0 image, FA, MD, tensor fit residual error, and DEC FA map. For fMRI 

series, derived images include the average across time and the temporal SD (computed 

following motion correction). All series are consensus rated by two or more reviewers. In the 

case of a rejection, the reviewer is required to provide notes indicating the types of artifacts 

observed using a standard set of abbreviations for commonly encountered artifacts. Series 

rejected based on data quality criteria are excluded from subsequent processing and analysis.

sMRI Processing and Analysis

sMRI Preprocessing—T1w and T2w structural images are corrected for gradient 

nonlinearity distortions using scanner-specific, nonlinear transformations provided by MRI 

scanner manufacturers (Jovicich et al., 2006; Wald et al., 2001). T2w images are registered 

to T1w images using mutual information (Wells et al., 1996) after coarse, rigid-body pre-

alignment via within-modality registration to atlas brains. MR images are typically degraded 

by a smooth, spatially varying artifact (receive coil bias) that results in inconsistent intensity 
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variations (Fig. 2). Standard correction methods, such as those used by FreeSurfer (Dale et 

al., 1999; Fischl, 2012; Sled et al., 1998) are limited when compensating for steep spatial 

intensity variation, leading to inaccurate brain segmentation or cortical surface 

reconstruction. For example, brain tissue farther from the coils, such as the temporal and 

frontal poles, typically has lower intensity values, causing focal underestimation of the white 

matter surface, or even resulting in elimination of large pieces of cortex from the cortical 

surface reconstruction. Furthermore, brain tissue close to coils with extremely high intensity 

values may be mistaken for non-brain tissue (e.g., scalp).

Intensity inhomogeneity correction is performed by applying smoothly varying, estimated 

B1-bias fields, using a novel implementation that is similar in purpose to commonly used 

bias field correction methods (Ashburner and Friston, 2000; Sled et al., 1998). Specifically, 

B1-bias fields are estimated using sparse spatial smoothing and white matter segmentation, 

with the assumption of uniform T1w (or T2w) intensity values within white matter. To 

normalize T1w and T2w intensities across participants, a target white matter intensity value 

of 110 is used so that after bias correction, white matter voxel intensities are centered on that 

target value and all other voxels are scaled relatively. The value of 110 was chosen to match 

the white matter value assigned by the standard bias correction used by FreeSurfer. The 

white matter mask, defined using a fast, atlas-based, brain segmentation algorithm, is refined 

based on a neighborhood filter, in which outliers in intensity -- relative to their neighbors 

within the mask -- are excluded from the mask. A regularized linear inverse, implemented 

with an efficient sparse solver, is used to estimate the smoothly varying bias field. The 

stiffness of the smoothing constraint was optimized to be loose enough to accommodate the 

extreme variation in intensity that occurs due to proximity to the imaging coils, without 

overfitting local intensity variations in white matter. The bias field is estimated within a 

smoothed brain mask that is linearly interpolated to the edge of the volume in both 

directions along the inferior-superior axis, avoiding discontinuities in intensity between 

brain and neck.

Images are rigidly registered and resampled into alignment with an averaged reference brain 

in standard space, facilitating standardized viewing and analysis of brain structure. This pre-

existing, in-house, averaged, reference brain has 1.0 mm isotropic voxels and is roughly 

aligned with the anterior commissure / posterior commissure (AC/PC) axis. This standard 

reference brain was created by averaging T1w brain images from 500 adults after they had 

been nonlinearly registered to an initial template brain image using discrete cosine 

transforms (DCT) (Friston et al., 1995). For most ABCD participants, a single scan of each 

type (T1w or T2w) is collected. If multiple scans of a given type are obtained, only one is 

used for processing and analysis. Results of manual quality control (QC) performed prior to 

the full image processing are used to exclude poor-quality structural scans (refer to the 

Protocol Compliance and Initial Quality Control section). If there is more than one 

acceptable scan of a given type, the scan with the fewest issues noted is used. In case of a 

tie, the final acceptable scan of the session is used.

Brain Segmentation—Cortical surface reconstruction and subcortical segmentation are 

performed using FreeSurfer v5.3, which includes tools for estimation of various measures of 

brain morphometry and uses routinely acquired T1w MRI volumes (Dale et al., 1999; Dale 
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and Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al., 2002; Fischl et al., 

1999a; Fischl et al., 1999b; Fischl et al., 2004; Segonne et al., 2004; Segonne et al., 2007). 

The FreeSurfer package has been validated for use in children (Ghosh et al., 2010) and used 

successfully in large pediatric studies (Jernigan et al., 2016; Levman et al., 2017). Because 

intensity scaling and inhomogeneity correction are previously applied (see sMRI 

Preprocessing), the standard FreeSurfer pipeline was modified to bypass the initial intensity 

scaling and N3 intensity inhomogeneity correction (Sled et al., 1998). As of ABCD Data 

Release 2.0.1, the T2w MRI volumes are not used in the cortical surface reconstruction and 

subcortical segmentation, but this may be incorporated in future releases. Because 

FreeSurfer 6.0 was formally released after the start of ABCD testing and data acquisition 

(January 23, 2017), there was not an adequate opportunity to test this new version. 

Accordingly, ABCD Data Releases 1.0 – 2.0.1 used FreeSurfer version 5.3, and we expect to 

use FreeSurfer version 6.0 or higher in future ABCD Data Releases.

Subcortical structures are labeled using an automated, atlas-based, volumetric segmentation 

procedure (Fischl et al., 2002) (Supp. Table 1). Labels for cortical gray matter and 

underlying white matter voxels are assigned based on surface-based nonlinear registration to 

the atlas based on cortical folding patterns (Fischl et al., 1999b) and Bayesian classification 

rules (Desikan et al., 2006; Destrieux et al., 2010; Fischl et al., 2004) (Supp. Tables 2 & 3). 

Fuzzy-cluster parcellations based on genetic correlation of surface area are used to calculate 

averages of cortical surface measures for each parcel (Chen et al., 2012) (Supp. Table 4). 

Functionally-defined parcels, based on resting-state correlations in fMRI (Gordon et al., 

2016), are resampled from atlas-space to individual subject-space, and used for resting-state 

fMRI analysis (Supp. Table 5).

sMRI Morphometric and Image Intensity Analysis—Morphometric measures 

include cortical thickness (Fischl and Dale, 2000; Rimol et al., 2010), area (Chen et al., 

2012; Joyner et al., 2009), volume, and sulcal depth (Fischl et al., 1999a). Image intensity 

measures include T1w, T2w, and T1w and T2w cortical contrast (normalized difference 

between gray and white matter intensity values) (Westlye et al., 2009). Cortical contrast 

measures are included because they reflect factors that impact placement of the gray-white 

matter boundary, such as pericortical myelin content, that can significantly influence cortical 

thickness measures. Cortical contrast has also been shown to have unique genetic influences 

(Panizzon et al., 2012), and may be a more sensitive cortical marker when examining 

questions related to brain development (Lewis et al., 2018) and psychopathology (Norbom et 

al., 2018). We sample intensity values at a distance of ±0.2 mm -- relative to the gray-white 

boundary -- along the normal vector at each surface location and calculate cortical contrast 

from gray and white matter values ( [white - gray] / [white + gray] / 2). We calculate 

averages for each cortical parcel in the two standard FreeSurfer parcellation schemes 

(Desikan et al., 2006; Destrieux et al., 2010) using unsmoothed, surface-based maps of 

morphometric and image intensity measures. For each of the fuzzy-cluster parcels (Chen et 

al., 2012), we calculate weighted averages (weighted by fuzzy cluster membership values 

ranging from 0 to 1) for each measure using smoothed surface maps (~66 mm FWHM, 

matching the level of smoothing used for derivation of the fuzzy cluster parcels). We also 
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calculate averages of the unsmoothed intensity measures for the volumetric subcortical 

ROIs, in addition to the volume of each structure.

Post-processed sMRI Quality Control—To ensure the quality of derived measures, 

trained technicians review the accuracy of cortical surface reconstruction. For each cortical 

surface reconstruction, reviewers gauge the severity of five categories of image artifact or 

reconstruction inaccuracy: motion, intensity inhomogeneity, white matter underestimation, 

pial overestimation, and magnetic susceptibility artifact. Numeric values are assigned on a 

scale of 0–3, indicating absent, mild, moderate, and severe levels of each type of artifact, 

respectively. The reviewers assign an overall QC score indicating whether the cortical 

surface reconstruction is recommended for use (1) or recommended for exclusion (0). 

Exclusion is recommended if any of the five categories are rated as severe (a value of 3).

dMRI Processing and Analysis

dMRI Preprocessing—Eddy current correction (ECC) uses a model-based approach, 

predicting the pattern of distortions across the entire set of diffusion weighted volumes, 

based on diffusion gradient orientations and amplitudes (Zhuang et al., 2006), with 

corrections limited to displacement along the phase-encode direction (Andersson and 

Sotiropoulos, 2016; Barnett et al., 2014; Rohde et al., 2004; Zhuang et al., 2006). With a 

total of 12 free parameters across the entire set of volumes, we model displacements in the 

phase encode direction as functions of spatial location, gradient orientation, and gradient 

strength. Because abrupt head motion often results in severe signal loss in individual slices 

for a particular frame, we use a robust tensor fit to exclude these dark slices so that they do 

not influence the estimation of eddy current distortions. To identity these dark slices, we first 

use standard linear estimation of tensor model parameters from log transformed images 

(Basser et al., 1994a). The RMS of the residual error for each frame of each slice is 

calculated across brain voxels and then normalized by the median RMS value across frames 

within a given slice. For a given slice, frames with normalized RMS greater than 3.2 are 

censored from subsequent tensor fits, resulting in a tighter fit for the non-censored frames. A 

total of three iterations are sufficient to settle upon a stable tensor fit excluding dark frames 

for a given slice (frame-slices). To prevent dark frame-slices from influencing the estimation 

of eddy current distortions, such frames are replaced (for a given slice) with the 

corresponding image synthesized from the censored tensor fit. ECC is optimized using 

Newton’s method through minimization of RMS error between each eddy-current-corrected 

image and the corresponding image synthesized from the censored tensor fit, accounting for 

image contrast variation between frames. After applying corrections for the estimated 

distortions, we re-estimate the tensor, again excluding the dark frame-slices identified 

earlier, to produce a more accurate template for subsequent iterations of ECC, with five 

iterations in total.

To correct images for head motion, we rigid-body-register each frame to the corresponding 

volume synthesized from the post-ECC censored tensor fit. We remove the influence of dark 

frame-slices from motion correction and future analysis by replacing those images with 

values interpolated from the tensor fit calculated without their contribution. The diffusion 

gradient matrix is adjusted for head rotation, important for accurate model fitting and 
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tractography (Hagler et al., 2009; Leemans and Jones, 2009). Mean head motion values 

(average FD) are calculated and made available for possible use as covariates in group-level 

statistical analyses to account for residual effects (Yendiki et al., 2013).

Spatial and intensity distortions caused by B0 field inhomogeneity are minimized using a 

robust and accurate procedure for reducing spatial and intensity distortions in EPI images 

that relies on reversing phase-encode polarities (Andersson et al., 2003; Chang and 

Fitzpatrick, 1992; Holland et al., 2010; Morgan et al., 2004). Pairs of b=0 (i.e., non-diffusion 

weighted) images with opposite phase encoding polarities (and thus opposite spatial and 

intensity distortion patterns) are aligned using a fast, nonlinear registration procedure, and 

the estimated displacement field volume is used to correct distortions in each frame 

(successive diffusion-weighted volumes) (Holland et al., 2010). Gradient nonlinearity 

distortions are then corrected for each frame (Jovicich et al., 2006). The b=0 dMRI images 

are registered to T1w structural images using mutual information (Wells et al., 1996) after 

coarse pre-alignment via within-modality registration to atlas brains. dMRI images are then 

resampled with 1.7 mm isotropic resolution (equal to the dMRI acquisition resolution), with 

a fixed rotation and translation relative to the corresponding T1w image that has been rigidly 

resampled into alignment with an atlas brain. This provides a standard orientation for the 

resulting dMRI images, fitting the brain within the set of axial dMRI slices and producing 

more consistent diffusion orientations across participants, as viewed with diffusion encoded 

color (DEC) fractional anisotropy (FA) map images. The diffusion gradient matrix is again 

adjusted for head rotation. Cubic interpolation is used for each of these resampling steps. A 

registration matrix is provided to specify the rigid-body transformation between dMRI and 

T1w images.

Fiber Tract Segmentation—Major white matter tracts are labelled using AtlasTrack, a 

probabilistic atlas-based method for automated segmentation of white matter fiber tracts 

(Hagler et al., 2009). The fiber atlas contains prior probabilities and orientation information 

for specific long-range projection fibers, including some additional fiber tracts not included 

in the original description (Hagler et al., 2009), such as cortico-striate connections and 

inferior to superior frontal cortico-cortical connections (Supp. Table 6). sMRI images for 

each subject are nonlinearly registered to the atlas using discrete cosine transforms (DCT) 

(Friston et al., 1995), and diffusion tensor imaging (DTI)-derived diffusion orientations for 

each subject are compared to the atlas fiber orientations, refining the a priori tract location 

probabilities, individualizing the fiber tract ROIs, and minimizing the contribution from 

regions inconsistent with the atlas. Voxels containing primarily gray matter or cerebral spinal 

fluid, identified using FreeSurfer’s automated brain segmentation (Fischl et al., 2002), are 

excluded from analysis.

dMRI Microstructural Analysis—We calculate several standard measures related to 

microstructural tissue properties using DTI (Basser et al., 1994b; Basser and Pierpaoli, 

1996), including FA and mean, longitudinal (or axial), and transverse (or radial) diffusivity 

(MD, LD, and TD) (Alexander et al., 2007). Diffusion tensor parameters are calculated 

using a standard, linear estimation approach with log-transformed diffusion-weighted (DW) 

signals (Basser et al., 1994a). We calculate two different tensor model fits. In the first DTI 
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model fit (DTI inner shell, or DTIIS), frames with b>1000 s/mm2 are excluded from tensor 

fitting (leaving 6 directions at b=500 s/mm2 and 15 directions at b=1000 s/mm2) so that the 

derived diffusivity measures better correspond to those from traditional, single-b-value 

acquisitions. In the second DTI model fit (DTI full shell, or DTIFS), we include all gradient 

strengths/shells (6 directions at b=500 s/mm2, 15 directions at b=1000 s/mm2, 15 directions 

at b=2000 s/mm2, and 60 directions at b=3000 s/mm2).

Taking advantage of the multiple b-value acquisition, we also fit a Restriction Spectrum 

Imaging (RSI) model (White et al., 2013a; White et al., 2014; White et al., 2013b), a linear 

estimation approach that allows for mixtures of “restricted” and “hindered” diffusion within 

individual voxels. We use RSI to model two volume fractions, representing intracellular 

(restricted) and extracellular (hindered) diffusion, with separate fiber orientation density 

(FOD) functions, modeled as fourth order spherical harmonic functions, allowing for 

multiple diffusion orientations within a single voxel. For both fractions, LD is held constant, 

with a value of 1×10−3 mm2/s. For the restricted fraction, TD is modelled as 0. For the 

hindered fraction, TD is modelled as 0.9 × 10−3 mm2/s. Measures derived from this RSI 

model fit (summarized in Supp. Table 7) include the following: restricted normalized 

isotropic (N0), restricted normalized directional (ND), restricted normalized total (NT), 

hindered normalized isotropic (N0_s2), hindered normalized directional (ND_s2), and 

hindered normalized total (NT_s2). Each of these measures is defined as the Euclidean norm 

(square root of the sum of squares) of the corresponding model coefficients divided by the 

norm of all model coefficients. These normalized RSI measures are unitless and range from 

0 to 1. The square of each of these measures is equivalent to the signal fraction for their 

respective model components. N0 and NT_s2 are derived from the 0th order spherical 

harmonic coefficients of the restricted and hindered fractions, respectively, and reflect 

varying contributions of intracellular and extracellular spaces to isotropic diffusion-related 

signal decreases in a given voxel. ND and ND_s2 are calculated from norm of the 2nd and 

4th order spherical harmonic coefficients of the restricted and hindered fractions, 

respectively. These higher order components reflect oriented diffusion; diffusion that is 

greater in one orientation than others. Qualitatively, ND is very similar to FA, except that, by 

design, it is unaffected by crossing fibers. NT and NT_s2 reflect the overall contribution to 

diffusion signals of intracellular and extracellular spaces, and are calculated from the norm 

of the 0th, 2nd, and 4th order coefficients of the restricted and hindered fractions, 

respectively, again divided by the norm of all model coefficients.

Mean DTI and RSI measures are calculated for white matter fiber tract ROIs created with 

AtlasTrack (Hagler et al., 2009) and for ROIs derived from FreeSurfer’s automated 

subcortical segmentation (Fischl et al., 2002). With fiber tracts represented as thresholded 

probability maps, probability estimates are used to calculate weighted averages of DTI and 

RSI measures. DTI and RSI measures are also sampled onto the FreeSurfer-derived cortical 

surface mesh to make maps of diffusion properties for cortical gray matter and white matter 

adjacent to the cortex (Govindan et al., 2013; Kang et al., 2012) and calculate surface-based 

ROI averages for the anatomical, cortical parcellations (Desikan et al., 2006; Destrieux et al., 

2010). Values are sampled with linear interpolation perpendicular to the gray/white 

boundary (“white” surface) in 0.2 mm increments, ranging from 0.8–2 mm in both 

directions. White and gray matter values are calculated by combining samples within tissue 
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type using a weighted average based on the proportion of white or gray matter in each voxel 

(Elman et al., 2017). For subcortical ROIs, contamination due to partial voluming in the ROI 

with CSF is suppressed by calculating weighted averages. Specifically, weighting factors for 

each voxel in the ROI are calculated based on the difference of MD values relative to the 

median within each ROI. The typical dispersion of MD values is defined for each ROI as the 

median absolute deviation from the median (MAD), averaged across subjects. Weighting 

factors are calculated using Tukey’s bisquare function such that lower weights are assigned 

to voxels with MD values farther from the median value, relative to the dispersion values 

multiplied by 4.7 (Tukey, 1960).

Post-processed dMRI Quality Control—For the subset of participants included in 

ABCD Data Release 1.1, dMRI data were visually inspected after processing. Time 

permitting, dMRI data for the remaining participants may be similarly reviewed and their 

results included in a future patch release. Reviewers compare RSI-derived ND images (see 

dMRI Microstructural Analysis) to corresponding, co-registered T1w images, and rate each 

dMRI series along five dimensions of quality: residual B0 distortion, registration to the T1w 

image, image quality, segmentation integrity, and field of view (FOV) cutoff. For each, 

numeric values of 0–3 are assigned, indicating absent, mild, moderate, and severe. Residual 

distortion is assessed by looking for stretching or compression of white matter tracts in the 

ND image relative to the rigid-body co-registered T1w image, focusing on the corpus 

callosum and frontal lobe. Poor registration is rated on the basis of visible rotation or 

translation between the T1w and RSI-ND images. The image quality rating is based on the 

presence of banding, graininess, motion, artifacts, or poor gray/white contrast in the ND 

image. The automatic white matter tract segmentation is assessed for incompleteness, 

absence, or gross mis-location. FOV cutoff indicates clipping of the dorsal or ventral aspect 

of the cortex. Each dMRI series is then assigned an overall QC score of recommended for 

use (1) or recommended for exclusion (0). A series will be recommended for exclusion (QC 

score of 0) if B0 warp, registration, image quality, or segmentation are rated as severe (a 

value of 3). While FOV cutoff is assessed, it is not used as a factor in deciding the overall 

QC score.

fMRI Processing and Analysis

fMRI Preprocessing—Head motion is corrected by registering each frame to the first 

using AFNI’s 3dvolreg (Cox, 1996), which also provides estimates of head motion time 

courses that are incorporated into task-fMRI and resting-state-fMRI single-subject analyses 

(see below). B0 distortions are corrected using the same reversing polarity method used for 

the dMRI (Holland et al., 2010). To avoid signal “drop-out” due to within-voxel field 

gradients in gradient-echo acquisitions, the displacement field is estimated from separate 

spin-echo calibration scans, then adjusted for estimated between-scan head motion, and 

finally applied to the series of gradient-echo images. Images are next corrected for 

distortions due to gradient nonlinearities (Jovicich et al., 2006). To correct for between-scan 

motion, each scan is resampled with cubic interpolation into alignment with a reference scan 

that is chosen as the one nearest to the middle of the set of fMRI scans for a given 

participant. The alignment is based on rigidly-registering the first frame of each scan to the 

first frame of the reference scan. Automated registration between the spin-echo, B0 
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calibration scans (i.e., field maps) and T1w structural images is performed using mutual 

information (Wells et al., 1996) with coarse pre-alignment based on within-modality 

registration to atlas brains. A registration matrix is provided to specify the rigid-body 

transformation between fMRI and T1w images. The resulting fMRI images remain in 

“native-space” and have 2.4 mm isotropic resolution.

Task-fMRI Behavioral Measures—Behavioral measures specific to each task are 

calculated to assess performance and identify participants with poor accuracy or slow 

reaction times (Casey et al., 2018). MID: With three types of trials, participants have a 

chance to either win money, lose money, or earn nothing. Wins and losses are further 

subdivided into small and large magnitudes. After a short response time window, positive or 

negative feedback informs the participant about performance in each trial. Behavioral 

metrics for each trial type include: number of trials, mean and standard deviation (SD) of 

reaction times to the different incentive magnitudes, and total monetary earning. Poor 

performance is indicated by a behavioral performance flag variable if any trial type across 

both runs yields less than 4 events in either the positive or negative feedback. SST: On “Go” 

trials, participants indicate by button press, during a short response time window, whether an 

arrow presented points leftward or rightward. On less frequent “Stop” trials, a delayed stop 

signal is presented, instructing the participant to withhold the motor response. The primary 

categories of trial-response combinations are “Correct Go”, “Incorrect Go”, “Correct Stop”, 

and “Incorrect Stop”3. For each category, behavioral metrics include: number of trials, mean 

and SD of reaction times, mean stop signal delay, and mean stop signal reaction time. Poor 

performance is indicated if: number of Go trials <50, Correct Go percentage <60%, 

Incorrect Go >30%, Late Go (both correct and incorrect) >30%, No Response Go >30%, 

number of Stop trials <30, Stop trial accuracy <20% or >80%, or Correct Go Reaction Time 

(RT) < Incorrect Stop RT. EN-Back: With a block design of 0-back and 2-back working 

memory tasks, participants indicate by button press the repeated presentation of images. 

Image types include emotionally positive, negative, or neutral faces or pictures of places. 

Behavioral metrics include: total number of trials presented, number of correct responses, 

and accuracy (correct responses divided by total trials), and mean and SD of reaction times 

for correct responses. Following the imaging session, the EN-Back Recognition Memory 

task asks the participant to decide if pictures presented were seen previously in the EN-Back 

task. For each stimulus type (old and new), hit rates and false alarm rates are calculated. 

Additional metrics include corrected accuracy (hit rate from working memory task minus 

false alarm rate from recall task), response bias, and d-prime. Poor performance is indicated 

if the overall response accuracy for the 0-back or 2-back blocks is less than 60%.

Task-fMRI Analysis—Estimates of task-related activation strength are computed at the 

individual subject level using a general linear model (GLM) and an ROI-based approach. 

Pre-analysis processing: Processing steps subsequent to fMRI preprocessing include the 

removal of initial frames4 to ensure equilibration of the T1w signal and normalization of 

voxel time series by dividing by the mean across time of each voxel. Surface sampling: 

3Additional, typically rare, categories are “Correct Late Go”, “Incorrect Late Go”, “Stop Signal Delay”, and “No Response”. A “Late 
Go” response is defined as >1000 ms after arrow presentation. A “Stop Signal Delay” response is defined as occurring during the 
interval between arrow presentation and stop signal onset.
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Preprocessed time courses are sampled onto the cortical surface for each individual subject. 

Voxels containing cortical gray matter are projected onto the surface by sampling values 1 

mm from the gray/white boundary, into cortical gray matter, along the surface normal vector 

at each vertex (using FreeSurfer’s mri_vol2surf with “white” surface, “-projdist 1” option, 

and default “nearest” interpolation). ROI values extraction: Average time courses are 

calculated for cortical surface-based ROIs using FreeSurfer’s anatomically-defined 

parcellations (Desikan et al., 2006; Destrieux et al., 2010) and subcortical ROIs (Fischl et 

al., 2002).

Nuisance regressors:  Baseline and quadratic trends in the time-series data are included in 

the analysis. Motion estimates and their derivatives are also included as regressors (Power et 

al., 2014). Time points with FD greater than 0.9 mm are censored (Siegel et al., 2014). 

Estimated motion time courses used for regression and censoring are temporally filtered 

using an infinite impulse response (IIR) notch filter to attenuate signals in the range of 0.31 

– 0.43 Hz. This frequency range corresponds to empirically observed oscillatory signals in 

motion estimates linked to respiration and the dynamic changes in magnetic susceptibility 

due to lung movement in the range of 18.6 – 25.7 respirations / minute. With the removal of 

these fast oscillations linked to respiration, the filtered motion estimates and FD values more 

accurately reflect actual head motion (Fair et al., 2018).

General linear model:  Estimates of task-related activation strength are computed at the 

individual subject level using a general linear model (GLM) implemented in AFNI’s 

3dDeconvolve (Cox, 1996). Hemodynamic response functions are modelled with two 

parameters using a gamma variate basis function plus its temporal derivative (using AFNI’s 

‘SPMG’ option within 3dDeconvolve). Task models include stimulus timing for each 

condition and linear contrasts of conditions (see Supp. Tables 8–10). For MID and SST 

analyses, events are modeled as instantaneous; for EN-back, the duration of cues (~3 s) and 

trial blocks (~24 s) are modeled as square waves convolved with the two parameter gamma 

basis function (i.e., block duration specified when using AFNI’s ‘SPMG’ option). Outputs 

include GLM beta coefficients and standard errors of the mean (SEM; calculated from the 

ratio of the beta and t-statistic) calculated for each voxel, vertex, or ROI time series. 

Averaging across runs: ROI average beta coefficients and standard errors are computed for 

each of two runs. We compute the average across runs for each participant weighted by the 

nominal degrees of freedom (number of frames remaining after motion censoring minus 

number of model parameters, but not accounting for temporal autocorrelation), which differs 

between runs due to motion censoring. Runs with fewer than 50 degrees of freedom are 

excluded from the average between runs.

Censoring invalid contrasts:  The frequency and magnitude of head movements varies 

widely in children. Some participants exhibit frequent periods of motion resulting in greatly 

4A total of 16 initial frames (12.8 seconds) are discarded. On Siemens and Philips scanners, the first eight frames make up the pre-
scan reference, and are not saved as DICOMS. An additional eight frames are discarded as part of the pre-analysis processing, for a 
total of 16 initial frames. On GE scanners with software version DV25, the first 12 frames make up the pre-scan reference. Instead of 
being discarded, those 12 reference scans are combined into one, and saved as the first frame, for a total of five initial frames to be 
discarded as part of the pre-analysis processing for GE DV25 series. On GE scanners with software version DV26, the pre-scan 
reference is not retained at all, and a total of 16 initial frames are discarded for GE DV26 scans as part of the pre-analysis processing.
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reduced numbers of time points used to estimate model parameters. Depending on when 

supra-threshold head movements (FD>0.9 mm) occur relative to instances of a given event 

type, rare conditions may be under-represented in some participants, or lack representation 

entirely. For unrepresented conditions, beta and SEM values are undefined and shared as 

empty cells in the tabulated data. If conditions are under-represented, the design matrix of 

the GLM analysis becomes ill-conditioned, making estimated beta weights unreliable for 

those conditions and the contrasts that include them. In rare cases, this results in extreme 

values for the beta and SEM estimates, as much as several orders of magnitude different 

from typical values for a given contrast. The presence of extreme outliers violates standard 

parametric assumptions, so group-level statistical analyses can produce invalid and 

nonsensical results. To prevent this, we censor the beta and SEM values if they are identified 

as having extremely high SEM values and therefore low reliability beta estimates. For a 

given subject with an extreme value for a particular contrast and ROI, there are typically 

outliers in other brain regions for the same subject and contrast and generally greater 

variation across brain regions. We censor the beta and SEM values for all ROIs for those 

contrasts that have RMS of SEM values across the cortical surface greater than 5% signal 

change. This represents less than 0.5% of all subject-task-contrast-run combinations. The 

censored values are replaced with empty cells.

Resting-State fMRI Analysis—Measures of functional connectivity are computed using 

a seed-based, correlational approach (Van Dijk et al., 2010), adapted for cortical surface-

based analysis (Seibert and Brewer, 2011). Pre-analysis processing: Pre-analysis 

processing steps, which are not part of the fMRI preprocessing, include the removal of initial 

frames, normalization, regression, temporal filtering, and calculation of ROI-average time 

courses. After removing the initial frames4, we normalize voxel time series by dividing by 

the mean across time of each voxel and then use linear regression to remove quadratic 

trends, signals correlated with estimated motion time courses, and the mean time courses of 

cerebral white matter, ventricles, and whole brain, as well as their first derivatives (Power et 

al., 2014; Satterthwaite et al., 2012). The white matter, ventricle, and whole brain ROIs used 

to calculate mean time courses were derived from FreeSurfer’s automated brain 

segmentation (aseg), resampled into voxel-wise alignment with the fMRI data, and then 

eroded by a single fMRI-resolution voxel. Motion regression includes six parameters plus 

their derivatives and squares. As described above for task fMRI analysis, estimated motion 

time courses are temporally filtered to attenuate signals linked to respiration. Frames with 

displacement (FD) greater than 0.3 mm are excluded from the regression (Power et al., 

2014). After regression, time courses are band-pass filtered between 0.009 and 0.08 Hz 

(Hallquist et al., 2013).

Surface sampling and ROI averaging:  Preprocessed time courses are sampled onto the 

cortical surface for each individual subject in the same manner as the task-fMRI data. 

Average time courses are calculated for cortical surface-based ROIs using FreeSurfer’s 

anatomically-defined parcellations (Desikan et al., 2006; Destrieux et al., 2010) and a 

functionally-defined parcellation based on resting-state functional connectivity patterns 

(Gordon et al., 2016) that are resampled from atlas-space to individual subject-space. 

Average time courses are also calculated for subcortical ROIs (Fischl et al., 2002). Variance 
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across time is calculated for each ROI, a measure that reflects the magnitude of low 

frequency oscillations.

Network correlation analysis:  We calculate correlation values for each pair of ROIs, 

which are Fisher transformed to z-statistics and averaged within or between networks to 

provide summary measures of network correlation strength (Van Dijk et al., 2010). Within 

the Gordon parcellation, ROIs are grouped together into several networks (e.g., default, 

fronto-parietal, dorsal attention, etc.) (Gordon et al., 2016) (Supp. Table 5). Average 

correlation within a network is calculated as the average of the Fisher-transformed 

correlations for each unique, pairwise combination of ROIs belonging to that network. 

Average correlation between one network and another is calculated similarly by averaging 

the correlations for each unique, pairwise combination of ROIs in the first network with the 

ROIs in the second. In addition, we calculate the correlation between each network and each 

subcortical gray matter ROI by averaging the correlations between each ROI in the network 

and a given subcortical ROI.

Motion censoring:  Motion censoring is used to reduce residual effects of head motion that 

may survive the regression (Power et al., 2012; Power et al., 2014). Time points with FD 

greater than 0.2 mm are excluded from the variance and correlation calculations. Note that 

this is a slightly more conservative threshold than that used for the regression step. Time 

periods with fewer than five contiguous, sub-threshold time points are also excluded. The 

effects of head motion can potentially linger for several seconds after an abrupt head motion, 

for example due to spin-history or T1 relaxation effects (Friston et al., 1996), so an 

additional round of censoring is applied based on detecting time points that are outliers with 

respect to spatial variation across the brain. SD across ROIs is calculated for each time point, 

and outlier time points, defined as having an SD value more than three times the median 

absolute deviation (MAD) below or above the median SD value, are excluded from variance 

and correlation calculations. Averaging across runs: ROI variance and network correlation 

values are averaged across rs-fMRI runs, weighted by the number of frames per run 

remaining after motion censoring. Runs with fewer than 100 usable time points (out of 375 

acquired) are excluded from the average. Participants with no usable runs receive empty 

values in the tabulated results.

Post-processed fMRI Quality Control—For ABCD Data Release 2.0.1, only 

automated and manual QC of fMRI data was performed as detailed above. The DAIC and 

partners are currently investigating optimal post-processed fMRI reviews, which would 

resemble in part the post-processed dMRI QC procedure.

Data and Methods Sharing

Public sharing of unprocessed, preprocessed, and derived imaging data is undertaken in 

partnership with the NDA (https://data-archive.nimh.nih.gov/abcd). DICOM files are made 

publicly available via a “Fast Track” mechanism on a continual basis within approximately 

one month of data collection. Preprocessed NIfTI files and tabulated results of ROI-based 

analyses are shared in annual data releases. This manuscript documents the methods shared 

as part of the second annual release, ABCD Data Release 2.0, which was made available in 
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March 2019 and includes results for the complete 2016–2018 baseline sample. The data 

presented here combines the ABCD Data Release 2.0 with the amended ABCD Fix Release 

2.0.1 data release July 2019. We have packaged the processing pipeline described here 

within a portable container format (Docker container), which includes a lightweight, 

virtualized Linux environment and the complete execution environment, including all 

required software dependencies. Users may currently download a beta-testing version of the 

executable Docker container from NITRC (https://www.nitrc.org/projects/abcd_study). For 

additional details on data and methods sharing, see Supplementary Information.

Results

The imaging-derived, tabulated data included in ABCD Release 2.0.1 is a rich set of 

measures sampled from multiple imaging modalities and anatomical regionalization 

schemes from a large, diverse sample of children aged 9–10 (n = 11759 underwent an MRI 

exam). For individual participants, some scans may have been omitted from the standard 

imaging protocol due to fatigue and/or time constraints. The identification of severe imaging 

artifacts during our initial QC leads to the exclusion of additional series. In Figures 3 and 4, 

flow charts illustrate sources of data loss that reduce the numbers of participants available 

for analyses using the tabulated data from each modality. Red boxes show the primary 

exclusions that prevent us from running either the required processing or analysis steps. 

White boxes represent the tabulated data for each modality. Additional data loss at this stage 

reflects participants for whom results were excluded from the curated dataset for various 

reasons. In rare cases, this was due to miscellaneous processing failures that may be 

recoverable with additional investigation and intervention. For task fMRI, missing results are 

related to the exclusion of participants for whom stimulus/response timing files were 

corrupted, had time stamps inconsistent with the fMRI data acquisition, or had other 

irregularities in data acquisition, and the censoring of results with high RMS SEM values. 

For rs-fMRI, missing results reflect the lack of usable scans with an adequate number of 

valid time points after motion censoring. Through future modification of processing or 

analysis software and parameters, results for some of the currently excluded participants 

may be recoverable for future data releases. Finally, the blue boxes represent the optional 

filtering steps specified in our recommended inclusion criteria (Supp. Table 11).

We anticipate that future reports from investigators both within the ABCD consortium and 

among the greater scientific community will provide comprehensive and detailed 

characterizations of the baseline dataset included in ABCD Release 2.0.1. Here, we will 

show preliminary results of a technical survey of this data, focusing on a small set of 

selected measures from each modality and how they differ among scanner manufacturers 

(see Supplementary Information for description of analysis methods). Despite efforts to 

standardize the imaging protocols across platforms, we find between-manufacturer 

differences that vary in magnitude across modalities and measures. Mean cortical thickness, 

total cortical area, and T1w gray/white contrast are among the sMRI measures whose group 

means differ between scanner manufacturers (Fig. 5A–C). dMRI-derived measures from 

DTI and RSI analyses also vary between manufacturers (Fig. 5D–F). The voxelwise 

smoothness and tSNR of fMRI data varies by manufacturer, as do task-related activations 

measured with the EN-back task (Fig. 5G–I). For rs-fMRI, mean motion varies slightly by 
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manufacturer, resulting in varying numbers of usable time points after censoring; within-

network correlation strengths also vary (Fig. 5J–L). Because of these differences in each 

modality, and because of potential differences between individual scanners from a given 

manufacturer, we recommend that group analyses use the unique identifier for each scanner 

(i.e., DeviceSerialNumber, mri_info_deviceserialnumber) as a categorical covariate to 

account for between-scanner variations (Brown et al., 2012), or that similar, statistical 

harmonization procedures be used.

Discussion

The ABCD Study will provide the most comprehensive longitudinal investigation to date of 

the neurobiological trajectories of brain and behavior development from late childhood 

through adolescence to early adulthood. There are many risk processes during adolescence 

that lead to chronic diseases in later life, including tobacco use, alcohol and illicit substance 

use, unsafe sex, obesity, sports injury and lack of physical activity (Patton et al., 2017). 

Furthermore, this developmental period can give rise to many common psychiatric 

conditions including anxiety disorders, bipolar disorder, depression, eating disorders, 

psychosis, and substance abuse (Hafner et al., 1989; Kessler et al., 2005). The ABCD Study 

is well-positioned to capture the behavioral and neurobiological changes taking place during 

healthy development, prodromal behavioral issues, experimentation with drugs and alcohol, 

and antecedent neuroanatomical changes. Identifying neuropsychological, structural and 

functional measures as potential biomarkers of psychiatric, neurological and substance abuse 

disorders may better inform the diagnosis and treatment of youth who present with early 

mental and physical health concerns.

Rigorous acquisition monitoring and uniform image processing of a large cohort of 

ethnically diverse young people regularly over adolescence is necessary to characterize 

subtle neuroanatomical and functional changes during such a plastic developmental period. 

Curated ABCD Data Releases providing canonical neuroimaging measures for this large 

dataset will enable the scientific community to test innumerable hypotheses related to brain 

and cognitive development. Meanwhile, the DAIC and ABCD collaborators will continue 

working to improve and extend the image processing pipeline, resulting in new and evolving 

imaging metrics to be evaluated for potential inclusion in future, curated ABCD Data 

Releases. Considering these novel metrics alongside canonical measurements provides the 

ability to compare and contrast new and existing analytical techniques. The capability to 

regularly reprocess all data for new analytic pipelines is made possible by the framework 

described in this manuscript. The intent is for the methods developed here to be shareable 

and deployable for other large-scale neuroimaging studies.

Limitations and Caveats

On an ongoing basis, the Fast Track data sharing mechanism occurs shortly after data 

collection, without processing, quality control, or curation, and includes all ABCD imaging 

data available and permitted to be shared. Imaging series with the most severe artifacts or 

those with missing or corrupted DICOM files are excluded from subsequent processing, and 

so are not included in the minimally processed or tabulated data sharing. For a given 
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modality, additional participants may be missing from the tabulated data due to failures in 

brain segmentation or modality-specific processing and analysis. However, successfully 

processed data with moderate imaging artifacts are included in the minimally processed and 

tabulated data sharing. This is necessary to enable certain studies, such as methodological 

investigations of the effect of imaging artifacts on derived measures. For most group 

analyses, we recommend excluding cases with significant incidental findings, excessive 

motion, or other artifacts, and we provide a variety of QC-related metrics for use in applying 

sets of modality-specific, inclusion criteria (Supp. Table 11; see NDA Annual Release 2.0.1 
Notes ABCD Imaging Instruments for additional details). Some researchers may wish to use 

this as a template for customized inclusion criteria that could include additional QC metrics 

or apply more conservative thresholds.

While Fast Track provides early access to DICOM data, this comes with the caveat that 

users may process the data inappropriately, resulting in inaccurate or spurious findings. The 

purpose of the ABCD processing pipeline is to provide images and derived measures for 

curated ABCD Data Releases using consensus-derived approaches for processing and 

analysis. Since the processing pipeline is expected to change over time, we suggest that 

authors clearly state the version of the release used (e.g., Adolescent Brain Cognitive 

Development Study (ABCD) - Annual Release 2.0, DOI: 10.15154/1503209). Each new 

release documents changes and includes data provided in previous releases, reprocessed as 

necessary to maintain consistency within a particular release. Combining data between 

curated Data Releases is not recommended, but Fix Releases partially replace some of the 

previous Data Release that was found to be erroneous (ABCD Fix Release 2.0.1, DOI: 

10.15154/1504041).

Future Directions

Mirroring the general progression of neuroimaging processing tools and analysis methods in 

the field, the processing pipeline used for future ABCD Data Releases is expected to evolve 

over time. We must consider future challenges specific to longitudinal analyses, such as the 

possibility of scanner and head coil upgrade or replacement during the period of study. Also, 

other image analysis methods, either recently developed or soon to be developed, may better 

address particular issues, perhaps by providing superior correction of imaging artifacts, more 

accurate brain segmentation, or additional types of biologically relevant, imaging-derived 

measures. For example, FreeSurfer’s subcortical segmentation pipeline in its current 

implementation exhibits some bias, both with under- and over-estimation of particular 

structures, compared to the gold standard of manual segmentation (Makowski et al., 2018; 

Schoemaker et al., 2016). Furthermore, there are a variety of excellent neuroimaging 

toolboxes available for preprocessing of dMRI data, such as FSL (Smith et al., 2004), 

TORTOISE (Irfanoglu et al., 2017; Pierpaoli et al., 2010), and DTIprep (Oguz et al., 2014), 

that use similar approaches but varied implementations to address the major challenges. 

Within the ABCD consortium, efforts are underway to process ABCD data using alternative 

approaches for various stages of processing or analysis to compare methods using 

quantitative metrics of the reliability of the derived results. In addition, results of processing 

ABCD data with a modified version of the HCP pipeline (Glasser et al., 2013) are planned 

for future public release. In general, we seek to enhance and augment ABCD image analysis 
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over time by incorporating new methods and approaches as they are implemented and 

validated.

To enable researchers to more easily take advantage of this data resource, the DAIC provides 

a web-based tool called the ABCD Data Exploration and Analysis Portal (DEAP, updated 

shortly after Data Releases). This tool provides convenient access to the complete battery of 

ROI-based, multimodal imaging-derived measures as well as sophisticated statistical 

routines using generalized additive mixed models to analyze repeated measures and 

appropriately model the effects of site, scanner, family relatedness, and a range of 

demographic variables. Future releases will also support voxel-wise (volumetric) and vertex-

wise (surface-based) analyses.

As a ten-year longitudinal study with participants returning every two years for successive 

waves of imaging, future ABCD Data Releases will include multiple time points for each 

participant. All imaging-derived measures provided for the baseline time point will also be 

generated independently for each successive time point. In addition, within-subject, 

longitudinal analyses will provide more sensitive estimates of longitudinal change for some 

imaging measures. For example, the FreeSurfer longitudinal processing stream reduces 

variability and increases sensitivity in the measurement of changes in cortical thickness and 

the volumes of subcortical structures (Reuter and Fischl, 2011; Reuter et al., 2010; Reuter et 

al., 2012). Analyses of cortical and subcortical changes in volume with even greater 

sensitivity is available through Quantitative Analysis of Regional Change (QUARC) 

(Holland et al., 2009; Holland and Dale, 2011; Holland et al., 2012; Thompson and Holland, 

2011). A variant of QUARC is also available for longitudinal analysis of dMRI data with 

improved sensitivity (McDonald et al., 2010). The goal of future development and testing 

will be to provide a collection of longitudinal change estimates for a variety of imaging-

derived measures that are maximally sensitive to small changes, are unbiased with respect to 

the ordering of time points, and have a slope of one with respect to change estimated from 

time points processed independently.

An important factor when analyzing multi-site and longitudinal imaging data is ensuring the 

comparability of images between scanners, referred to as data harmonization. Statistical 

harmonization procedures are presently available to correct for variations between scanners. 

For example, the unique identifier for each scanner (i.e., DeviceSerialNumber) can be used 

as a categorical covariate to account for potential differences between individual scanners in 

the mean value of a given measure (Brown et al., 2012). Recently, a genomic batch-effect 

correction tool has been proposed as a tool for data harmonization across multiple scanners 

for measures of cortical thickness (Fortin et al., 2017a) and diffusivity (Fortin et al., 2017b). 

This procedure can be applied to curated data releases by individual researchers or 

incorporated into the statistical manipulation front-end tool (DEAP, https://scicrunch.org/

resolver/SCR_016158) if considered reliable and robust. Another harmonization approach 

attempts to retain site-specific features by generating study-specific atlases per scanner, 

which was shown to yield modest improvements in a longitudinal aging investigation (Erus 

et al., 2018). For diffusion imaging, one promising approach uses rotation invariant spherical 

harmonics within a multimodal image registration framework (Mirzaalian et al., 2018). The 

DAIC is actively testing new approaches for harmonization of images prior to segmentation, 
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parcellation, and DTI/RSI fitting to improve compatibility across sites and time. Over the 

coming years, the ABCD Study will incorporate refinements to these harmonization 

techniques and reprocess data from prior releases to reduce between-scanner differences.

Conclusion

We have described the processing pipeline being used to generate the preprocessed imaging 

data and derived measures that were included in the ABCD Data Release 2.0 (DOI: 

10.15154/1503209, March 2019) and ABCD Fix Release 2.0.1 (DOI: 10.15154/1504041, 

July 2019) made available through NDA (see https://data-archive.nimh.nih.gov/abcd). This 

resource includes multimodal imaging data, a comprehensive battery of behavioral 

assessments, and demographic information, on a group of 11,873 typically developing 

children between the ages of 9 and 10. Neuroimaging-derived measures include 

morphometry, microstructure, functional associations, and task-related functional 

activations. When complete, the ABCD dataset will provide a remarkable opportunity to 

comprehensively study the relationships between brain and cognitive development, 

substance use and other experiences, and social, genetic, and environmental factors. It will 

allow the scientific community to address many important questions about brain and 

behavioral development and about the genetic architecture of neural and other behaviorally 

relevant phenotypes. The processing pipeline we have described provides a comprehensive 

battery of multimodal imaging-derived measures. The processing methods include 

corrections for various distortions, head motion in dMRI and fMRI images, and intensity 

inhomogeneity in structural images. Collectively, these corrections are designed to reduce 

variance of estimated change (Holland et al., 2010), increase the accuracy of registration 

between modalities, and improve the accuracy of brain segmentation and cortical surface 

reconstruction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Image acquisition parameters.

Scanner models: Siemens Prisma VE11B-C. Philips Achieva dStream or Ingenia, GE 

MR750 DV25–26. ABCD acquisition sites use either 32 channel head or 64 channel head/

neck coils, depending on availability. For dMRI acquisition, number of diffusion directions 

for each b-value: 500 (6-dirs), 1000 (15-dirs) 2000 (15-dirs), 3000 (60-dirs). For fMRI, 

acquisition time varies by scan type: rsfMRI (5’0”), MID (5’22”), nBack (4’50”), SST 

(5’50”).
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Highlights

• An overview of the MRI processing pipeline for the ABCD Study

• A discussion on the challenges of large, multisite population studies

• A methodological reference for users of publicly shared data from the ABCD 

Study

• Preliminary results from technical survey of baseline dataset
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Figure 1. Processing pipeline diagrams.
A. Modality-specific processing steps for bias field, distortion, and/or motion correction. B. 

Processing pipeline input and outputs.
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Figure 2. Bias field correction for sMRI.
Sagittal, T1w images for an example ABCD Study participant from a GE scanner, with and 

without bias field correction. A. Uncorrected image showing bright occipital cortex. B. N3 

corrected image with white matter and pial surfaces overlayed in yellow and red, 

respectively. C. White matter bias corrected (wmbc) image.
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Figure 3. sMRI and dMRI data flow chart.
Initial stages (green) have no filtering. All scanning sessions receive a radiological review; 

users may optionally exclude participants with incidental findings. Available MRI events 

pass through mandatory filtering (red) that excludes incomplete or very poor-quality data 

from the creation of minimally processed data. ROI-based analyses result in the tabulated 

data (white). The DAIC recommends (blue) that these data should be further filtered to 

exclude subjects with unacceptable FreeSurfer reconstruction.
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Figure 4. fMRI data flow chart.
Available MRI events (green) pass through mandatory filtering (red) that excludes 

incomplete or very poor-quality data from the creation of minimally processed data. ROI-

based timeseries analyses result in the tabulated data (white). The DAIC recommend (blue) 

that data should be further filtered to exclude subjects with poor behavioral performance, 

excessive head motion, or unacceptable FreeSurfer reconstruction.
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Figure 5. Differences between scanners.
A–C. sMRI-derived measures. A. T1w gray/white contrast averaged across bilateral cortical 

surface. B. Cortical thickness averaged across bilateral cortical surface. C. Total cortical 

area. D–F. dMRI-derived measures averaged within AllFibers AtlasTrack ROI. D. DTIIS FA. 

E. DTIIS MD. F. RSI ND. G–I. EN-back task fMRI differences between scanners. G. Voxel-

wise smoothness (mm FWHM) for EN-back task fMRI data. H. tSNR for EN-back task 

fMRI data. I. GLM-derived t-statistics calculated for middle frontal gyrus Destrieux parcel, 

2-back vs fixation contrast. J–L. rs-fMRI derived measures. J. Mean motion: average FD for 

rs-fMRI scans. K. Number of time points remaining for analysis after motion-censoring for 
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rs-fMRI scans. L. Within-network correlation for default network. Tukey boxplots represent 

medians, quartiles, and outliers (for additional details, see Statistical Analysis section within 

Supplementary Information). The numbers of participants included in the analysis for each 

plot are shown in gray.
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