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Abstract

Head and neck squamous cell carcinoma (HNSCC), like many tumors, is characterized by 

significant intra-tumoral heterogeneity, namely transcriptional, genetic, and epigenetic differences 

that define distinct cellular subpopulations. While it has been established that intra-tumoral 

heterogeneity may have prognostic significance in HNSCC, we are only beginning to describe and 

define such heterogeneity at a cellular resolution. Recent advances in single-cell sequencing 

technologies have been critical in this regard, opening new avenues in our understanding of more 

nuanced tumor biology by identifying distinct cellular subpopulations, dissecting signaling within 

the tumor microenvironment, and characterizing cellular genomic mutations and copy number 

aberrations. The combined effect of these insights is likely to be robust and meaningful changes in 

existing diagnostic and treatment algorithms through the application of novel biomarkers as well 

as targeted therapeutics. Here, we review single-cell technological and computational advances at 

the genomic, transcriptomic, and epigenomic levels, and discuss their applications in cancer 

research and clinical practice, with a specific focus on HNSCC.

Introduction

Worldwide, squamous cell carcinoma of the head and neck (HNSCC) accounts for more 

than 650,000 cancer diagnoses and 330,000 deaths annually [1]. Despite its high incidence, 

management and control of this disease remains a challenge, particularly in patients with 

† Corresponding author: sidpuram@wustl.edu, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8115, St. 
Louis, MO 63110, Phone: 314-273-9004.
*These authors contributed equally to this work

Conflicts of Interest
None declared

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Oral Oncol. Author manuscript; available in PMC 2020 December 01.

Published in final edited form as:
Oral Oncol. 2019 December ; 99: 104441. doi:10.1016/j.oraloncology.2019.104441.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human papilloma virus (HPV)-negative disease [2]. Advances in treatment will critically 

depend on an improved understanding of the underlying biology, including characterization 

of HNSCC using high-resolution technologies and techniques.

To date, much of our understanding of the mutational landscape and mechanisms underlying 

HNSCC – its driver mutations, aberrant regulatory programs, and expression subtypes – has 

been derived from genomic and transcriptomic studies utilizing bulk sequencing 

technologies, such as whole exome sequencing (WES) and bulk RNA sequencing (e.g. The 

Cancer Genome Atlas; TCGA) [3,4] (Figure 1). These methodologies, however, fail to 

capture the diversity of individual cells and cellular subpopulations, known as intra-tumoral 

heterogeneity, that characterizes HNSCC. This diversity among malignant, stromal and 

immune cells leads to immune-cancer and stromal-cancer interactions that are further 

affected by spatial dynamics and clonal evolution [5]. Such changes in the HNSCC 

microenvironment can affect the development, progression, and metastasis of cancer [6]. 

Thus, a high-resolution strategy to effectively screen and systematically analyze this 

heterogeneity is critical to advance the field in new and unanticipated directions.

Single-cell sequencing (SCS) technologies have rapidly developed over the last decade, 

including methods to interrogate the single-cell genome, epigenome and transcriptome 

(Figure 1). These quickly evolving methods have and will continue to lead to new 

discoveries in tumor biology, metastasis, immuno-oncology, and therapeutic resistance and 

response. In this review, we will describe the current state of single-cell technology, 

summarize its applications in HNSCC and other human cancers, and propose major avenues 

of future investigation, with a focus on how this technology may impact clinical practice. 

Accordingly, the first portion of this review is directed towards those wishing to implement 

these technologies in their own research and offers a detailed review of current SCS 

methodologies, while the second portion focuses on clinicians who may be interested in how 

SCS could revolutionize head and neck cancer diagnosis and treatment.

Single-cell isolation methods

The first step of all SCS is separation and isolation of viable, individual cells. Currently, 

several approaches are available for isolating single cells (Table 1), including limiting 

dilution [7], micromanipulation [8], laser capture microdissection (LCM) [9], fluorescence-

activated cell sorting (FACS) [10], microfluidics [11], microwell [12,13] and in situ 
barcoding [14,15]. Of these methods, microfluidics has become popular due to its low 

sample consumption, precise fluid control, and low operating costs. Fluidigm C1 is one of 

the major microfluidic commercial platforms, providing automated single-cell lysis, RNA 

extraction, and cDNA synthesis for up to 800 cells in parallel on a single chip [16]. 

However, this approach is limited by its dependence on homogenously sized cells. An 

alternative commercial option is the Chromium system from 10x Genomics, which offers 

high-throughput profiling of single-cell transcriptomes with high capture efficiency, 

arguably enabling discovery of rare cell types in a heterogeneous sample. More recently, a 

novel scalable isolation strategy, known as in situ barcoding, was introduced, which labels 

the cellular origin of RNA through in situ combinatorial barcoding. With this approach, 

more than 10,000 single-cell transcriptomes can be captured without requiring the physical 
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isolation of each cell [14,15]. The high-throughput capacity of these new technologies 

represents a marked departure from the early experience by our group and others with 

individual, well-based separation and amplification of single cells (e.g. Smart-seq2), and it is 

likely these approaches will increase the resolution of single-cell experiments and 

potentially improve the ability to detect rare cell subtypes or transitional states. However, we 

offer the caveat that these new methods may produce lower quality cells that may act as a 

trade-off to the large number of cells detected.

Single-cell genome/DNA sequencing

Whole genome amplification (WGA) of the single-cell genome is always required for 

single-cell DNA sequencing (scDNA-seq). There are three main WGA methods with 

different performance with respect to genome coverage and uniformity (Table 2): (a) PCR 

amplification, (b) isothermal amplification by multiple displacement amplification, and (c) 

hybrid method. The PCR-based method uses degenerate oligonucleotide primers for 

amplification [17]. The isothermal WGA method employs polymerase Phi29 that has a 

lower error rate and better processivity and strand-displacement activity, providing higher 

genome coverage and lower false-positive rates[18]. The limitation of isothermal WGA is 

preferential amplification of the loci amplified first, leading to reduced uniformity and a 

high rate of allelic dropout. The third hybrid method combines advantages of the first two 

methods by using an initial limited isothermal amplification followed by PCR amplification 

and thus reduces associated biases. The most commonly used protocols are PicoPLEX [19] 

and MALBAC [20]. Notably, although WGA increases the sensitivity of the scDNA-seq, 

single-cell DNA studies mostly focus on copy number variations (CNVs) detection as 

accurate identification of single-nucleotide variations (SNVs) requires a reasonably high 

sensitively and is still a challenge in the field. In a recent study [21], MALBAC was used for 

SNV detection in single cells derived from circulating tumor cell (CTC) isolation methods. 

All expected SNVs in control samples were identified as well as two different SNVs in 

several CTCs isolated from peripheral blood of breast cancer patients. Interestingly, the 

newly detected SNVs were associated with acquired resistance to treatment in patients not 

responding to endocrine therapy.

Single-cell transcriptome/RNA sequencing

Single-cell transcriptome sequencing, often referred to as single-cell RNA sequencing 

(scRNA-seq), is used to measure gene expression at the single-cell level. ScRNA-seq has 

been more accessible than single-cell genome/DNA sequencing because each cell contains 

numerous RNA molecules, but just two copies of DNA molecules. It captures cellular 

differences underlying tumor biology at a higher resolution than regular bulk RNA-seq and 

has revolutionized studies of cancer mechanisms and personalized medicine. The workflow 

of scRNA-seq consists of single-cell capture, cDNA synthesis, cDNA amplification, library 

preparation and high-throughput sequencing. There are three major strategies to perform 

cDNA synthesis and amplification, which are essential steps and determine the sensitivity 

and specificity of scRNA-seq (Table 3). One strategy uses poly(A) tailing followed by PCR, 

as in the Tang-seq [22]. Another method uses second-strand synthesis followed by in vitro 

transcription, a linear amplification, as in CEL-seq/seq2 [23,24] and MARS-seq [25]. The 
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drawback of these two methods is the premature termination of reverse transcription which 

significantly reduces transcript coverage at the 5’ end. A third approach uses a template-

switching method, as in STRT-seq/seq2 [26,27] and Smart-seq/seq2 [28,29]. When possible, 

we favor this approach as it reduces 3’ coverage biases from incomplete reverse transcription 

and yields full-length transcript coverage. The cDNA from this method can be amplified at a 

later point to specifically enrich and investigate mutational hot spots, although doing so is 

labor intensive. Regular gene expression analysis can be performed using either 3’ or 5’ 

fragments of genes, while for studies of T cell receptors (TCRs) and B cell receptors 

(BCRs), 5’ end sequencing is critical for tracking immune clones. Investigators must be 

aware of these important differences before committing to a technological approach for their 

studies.

In order to control the technical variances among different cells, External RNA Control 

Consortium (ERCC) [30] and unique molecular identifiers (UMIs) [31] have been used. It is 

worth noting that ERCC and UMIs are not applicable to all scRNA-seq technologies due to 

inherent protocol differences. ERCC is used in approaches like Smart-seq2 but is not 

compatible with droplet-based methods, whereas UMIs are typically applied to 3’-end 

sequencing technologies (Table 3).

Single-cell epigenome sequencing

In addition to single-cell genome and transcriptome sequencing, single-cell epigenome 

sequencing is an emerging area of interest that will enable studies of epigenetic or chromatin 

marks individual cells. Alterations of epigenetic marks and chromatin structure dictate gene 

expression, induce cellular heterogeneity, and are relevant to numerous disease states [32]. 

Thus, single-cell epigenetics will surely have an important role in cancer studies and clinical 

investigations.

Single-cell DNA methylation sequencing

DNA modification such as methylation in CG rich regions has been associated with 

transcriptional silencing. To study DNA methylation at the single-cell level, several 

sequencing technologies have been reported using either bisulfite conversion or methylation-

sensitive restriction enzymes (Table 4). For bisulfite conversion, the first single-cell, multi-

locus method utilized a modified version of reduced representation bisulfite sequencing 

(RRBS-seq), performing all reactions for a single cell in one tube in order to reduce DNA 

loss [33]. scRRBS-seq enabled the detection of around 1.5 million CpG sites (CpGs) within 

the genome of a single cell. Smallwood et al. [34] developed a single-cell genome wide 

bisulfite sequencing method (scBS), covering around 3.7 million CpGs. Several recent 

developments to the basic scRRBSseq and scBS-seq protocols have increased throughput, 

decreased amplification bias, and improved data analysis [35,36]. Alternatively, the 

endonuclease-based sequencing methods avoid random DNA loss from bisulfite treatment 

and thus improve coverage and efficiency. Genome-wide CpG island (CGI) methylation 

sequencing for single cells (scCGI-seq) is one such method that enriches for sequences with 

high CpG content, providing 72.7% CGI coverage per cell [37].
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Single-cell histone modification sequencing

Histone modifications regulate the affinity and accessibility of certain DNA regions. To 

decipher the role of histone modifications in different cellular functions, single-cell 

chromatin immunoprecipitation (ChIP)-seq (scChIP-seq) was firstly developed [38]. Then, 

three new single-cell methods for detecting histone modifications were reported recently 

(Table 4): single-cell chromatin integration labeling followed by sequencing (scChIL-seq) 

[39], single-cell cleavage under targets and tagmentation (scCUT&Tag) [40], and single-cell 

chromatin immune-cleavage followed by sequencing (scChIC-seq) [41]. These three 

methods replace traditional immunoprecipitation and sonication with in situ reactions inside 

nuclei. However, they suffer from issue with sensitivity and technical challenges which limit 

their use for unbiased analysis. It is expected that these advanced single-cell techniques will 

have more applications in cancer genomics and translational research as their feasibility 

matures.

Single-cell chromatin structure sequencing

Chromatin structure and organization play a central role in embryogenesis, differentiation, 

lineage specification, and disease evolution. Several methods have been developed to 

characterize the chromatin features within an individual cell [42–44]. One method is single-

cell assay for transposase accessible chromatin (scATAC-seq), which can be used to 

functionally identify relevant changes in chromatin structure among specific subpopulations 

of cancer cells (Table 4) [42]. Through these single-cell epigenomic studies, information 

about chromatin modifications and their potential regulatory effects can be analyzed at a 

single-cell resolution, thereby complementing data on DNA variation and RNA expression 

gained through single-cell DNA and RNA sequencing, respectively. Interestingly, a recent 

study that built an immune cell atlas has shown that analysis of chromatin accessibility by 

scATAC-seq at distal enhancers results in sharper cell classification than analysis based on 

RNA expression or accessibility of transcription start sites [45].

Single-cell data analysis

Bulk technologies characterize samples via a feature-by-sample matrix whereas SCS 

methods add an orthogonal dimension of cellar layer between feature and sample, resulting 

in a feature-by-cell-by-sample data structure. Due to minimal amount of starting material, 

SCS data tends to be sparse and may have batch effects, amplification biases, and dropout 

events. Therefore, analysis of SCS data requires specific computational tools and expertise.

For single-cell genome/DNA sequencing, most of the analysis methods focus on quantifying 

single-cell CNAs and SNVs. SNV calling needs to manage mutations and the allelic 

imbalances that occur during genome amplification and sequencing. Mutations can be 

corrected by using either a bulk sample as a reference or two or three cells required to have 

the same variant at the same location [20]. The allelic imbalance can be removed by 

requiring that all variant calls be above the level of technical noise in control samples [46]. 

To decrease the sequencing error rate, molecular barcoding [47] and algorithm correction 

[48] can be used. CNA detection relies on algorithms that can normalize noisy coverage data 

after single-cell WGA to identify regions that are over-or under-represented compared with a 
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diploid genome [20,49]. CNA detection algorithms are currently developed to specifically 

address these technical artifacts introduced during specific types of single-cell WGA 

[50,51].

For single-cell RNA sequencing, many bioinformatic tools have been created to generate 

matrix counts and identify real signals from background noise (https://www.scrna-

tools.org/). The basic analytical workflow includes several critical steps (Figure 2). Raw 

sequencing reads in FASTQ format are de-multiplexed by cell barcode and collapsed by 

UMI [52]. Then, a series of quality control (QC) analyses are required to eliminate the low-

quality cells. First, cells that contain fewer reads, low genome mapping ratios, or high 

mitochondrial mapping ratios should be eliminated [53,54]. The number of detected genes 

per cell is then calculated. Although the number of detected genes is highly variable between 

cell types (high in transcriptionally active malignant cells compared to low in naïve T-cells), 

establishing rigorous thresholds is critical to avoid the incorporation of low-quality cells. We 

typically use a threshold of 3,000 genes among malignant and stromal cells and 2,000 genes 

for immune cells in our analyses. Lastly, the batch effects can be mitigated by several 

methods such as MNN (mutual nearest neighbor) [55] and kBET (k-nearest neighbor batch 

effect test) [56]. After low-quality cell elimination and batch effect correction, the gene 

count matrix is generated. To correctly interpret the results, normalization and imputation 

can be performed to obtain the meaningful signal by adjusting biases and missing values 

resulting from capture efficiency, sequencing depth, dropouts, and other technical effects. 

The common computational tools for normalization and imputation include SCnorm [57], 

SAVER [58], MAGIC [59], ScImpute [60], DrImpute [61], and AutoImpute [62]. The 

corrected count matrix can be further analyzed by R packages and python-based tools [63] at 

both cell and gene levels. Cell level analysis includes clustering to identify cell 

subpopulations by dimension reduction algorithms (PCA, t-SNE, UMAP) and cell lineage 

and pseudotime reconstruction by Monocle2 [64] or CellRouter [65]. On the other hand, the 

gene level analysis can be accomplished through differential gene expression algorithms 

such as DEsingle [66], Census[67], BCseq [68] and Expression Variation Analysis [69] as 

well as regulatory network reconstruction tools such as SCENIC [70] and PIDC [71]. Such 

network inference tools facilitate the identification of expression regulatory network from 

single-cell transcriptomic data and provide critical biological insights into the regulatory 

relationships between genes.

Applications in HNSCC and cancer genomics

Single-cell technologies have been critical in beginning to dissect the cellular and biological 

complexities of human cancers, many of which are highly heterogeneous, owing to a variety 

of stromal and immune cell types, in addition to distinct subpopulations of malignant cells 

(Figure 3). Compared to melanoma [72–74], breast [75–80], lung [81–83], and colorectal 

carcinoma [84–86], relatively few studies have utilized single-cell methodologies to 

investigate HNSCC [87].
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Intra-tumoral heterogeneity

Over recent years, our appreciation for the diversity of cells – malignant, stromal, and 

immune– that can exist within a single tumor has grown immensely, but our understanding 

of how this heterogeneity influences tumor behavior and clinical outcomes remains nascent 

[88,89]. In patients with HNSCC, intra-tumoral genetic heterogeneity is associated with 

worse patient outcomes, as has been demonstrated by mutant-allele tumor heterogeneity 

(MATH) scores [90,91].

In the first scRNA-seq study in HNSCC, our group investigated intra-tumoral expression 

heterogeneity in oral cavity squamous cell carcinoma (SCC) tumors. Using this approach, 

we found that malignant cells varied within and between tumors in their expression of 

programs related to cell cycle, hypoxia, stress, epithelial differentiation, and partial 

epithelial-to-mesenchymal transition (p-EMT, see “Metastasis” below) [92]. In addition, we 

utilized our single-cell profiles to deconvolute bulk transcriptional profiles from TCGA, 

thereby refining previously described HNSCC expression subtypes (atypical, mesenchymal, 

basal, and classical) [93]. Strikingly, we discovered that malignant cells exclusively mapped 

to the basal, classical, and atypical subtypes, while only fibroblasts mapped to the 

mesenchymal subtype. Using a computational approach to normalize the expression of non-

malignant cells and develop a malignant cell-specific signature, we found that the averages 

of malignant cells from TCGA mesenchymal tumors were, in fact, indistinguishable from 

those from TCGA basal tumors, suggesting that in oral cavity SCC, the majority of tumors 

(>80%) can be defined as a single ‘malignant-basal’ cohort, with mesenchymal subtype 

tumors defined only by a large fibroblast infiltrate. These observations raise the exciting 

possibility that targeted therapies directed against ‘malignant-basal’ subtype tumors may be 

effective in a large proportion of oral cavity SCC patients.

Interestingly, while HNSCC malignant cells of a given tumor map exclusively to one 

expression subtype, glioblastoma multiforme (GBM) tumors are composed of malignant 

cells mapping to multiple different subtypes. We recently used scRNA-seq to profile 28 

primary GBM tumors and demonstrated that glioblastoma tumors are composed of 

malignant cells in four main cellular states, which are derived from distinct cells of origin 

[94]. Together, these findings suggest that unlike GBM where a tumor has varying 

proportions of multiple malignant subtypes, HNSCC tumors consist of a single malignant 

subtype, potentially enabling clinical trials stratified by tumor subtype. Moving forward, it 

will be critical to expand similar analyses to other tumors to determine the landscape of 

heterogeneity that is present and how well prior TCGA studies across oncology have 

captured tumor subtypes. Given the expanding interest in using TCGA subtypes to guide 

targeted clinical trials, clarifying this point has never been more important.

Characterizing the tumor microenvironment

Single-cell technologies have been utilized to describe the immune and stromal cells of the 

tumor microenvironment (TME) of HNSCC [92], metastatic melanoma [74], GBM [95], 

breast cancer [79], colorectal cancer [85], and lung cancer [81] in a way that was not 

possible with bulk approaches. In our scRNA-seq analysis of oral cavity SCC [92], for 

example, we found that non-malignant cells clustered into eight main clusters by cell type: T 
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cells, B/plasma cells, macrophages, dendritic cells, mast cells, endothelial cells, fibroblasts, 

and myocytes. These non-malignant cells, however, did not cluster by tumor of origin, 

suggesting that the cell types and their expression states are consistent across tumors. In 

contrast, malignant cells clustered by patient, suggesting distinct genetic background of 

these cells drives distinct global transcriptional profiles. These findings suggest that 

therapies targeted toward stromal or immune cells (e.g. immune-checkpoint inhibition) may 

be applicable across tumors (and patients), while directed treatments against malignant cells 

may require a more personalized approach.

We defined four T-cell expression states specific to HNSCC, including regulatory T cells 

(Tregs), CD4+ T-helper cells, and activated and exhausted subsets of cytotoxic CD8+ T cells 

[92]. The cytotoxic subsets expressed varying genes associated with T cell dysfunction and 

exhaustion (e.g. PD1, CTLA4) and could be clustered into CD8+ T and CD8+ Texhausted 

cells. These studies provided the first glimpse of in vivo signatures of exhaustion in HNSCC 

patients, defining a host of novel potentially-targetable markers and raising the possibility 

that immune checkpoint inhibitors (ICIs) that specifically target these exhaustion markers 

may be more efficacious. Outside of HNSCC, attempts to understand cancer-specific states 

of exhaustion have been used in melanoma [72,73,96] and non-small cell lung cancer 

(NSCLC). Guo et al. utilized deep scRNA-seq to identify two novel clusters of T cells 

exhibiting states appearing to precede exhaustion (“pre-exhausted” T cells) [81]. 

Furthermore, they determined that patients with a high ratio of “pre-exhausted” to exhausted 

T cells had an improved prognosis. These findings have important implications not only for 

non-small-cell lung cancer patients, but for other types of cancer being treated with 

immunomodulating agents. Future work must detail these T-cell expression states on the 

single-cell level at pre-treatment, on-treatment, and post-treatment timepoints to better 

identify and predict likely responders versus non-responders.

T cell receptor (TCR) analysis is also of great interest in understanding the dynamics of T 

cell clonality and identifying potential tumor antigens [97,98]. Understanding T cell 

clonality and diversity on a single-cell level will help better elaborate the tumor-immune 

response to ICI. Yost et al. utilized the combination of scRNA-seq and TCR sequencing on 

primarily cutaneous basal cell carcinoma samples before and after anti-PD-1 therapy [99]. 

They demonstrated clonal expansion of CD8+ T cells with treatment, with expanded clones 

being novel clonotypes not detected in the pre-treatment sample. Their findings suggest that 

CD8+ exhausted T cells have a limited capacity for reinvigoration and that ICI response in 

tumors rich in immune cells may be due to recruitment of “new” T cells. Ongoing ICI 

clinical studies should incorporate single-cell data to better understand the mechanisms of 

response and resistance. Furthermore, improved understanding of T cell clonality will 

improve neoantigen prediction, serving as a guide for tumor vaccine development and 

adoptive T cell interventions including chimeric antigen T cell (CAR-T cell) therapy.

In addition to the presence and influence of immune cells in the TME, stromal cells such as 

cancer-associated fibroblasts (CAFs) have a complex and not yet fully understood role in the 

TME. Normal fibroblasts exist in a quiescent state and can be activated – classically, in 

wound healing – to synthesize extracellular matrix (ECM), produce cytokines and 

chemokines, recruit immune cells, and exert physical forces to modify tissue architecture 
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[100]. Indeed, CAFs have been implicated in tumorigenesis, tumor survival, ECM 

remodeling, immune system suppression, and tumor invasion (see “Metastasis” below) 

[100–102]. Li et al. used scRNA-seq to define two populations of CAFs in colorectal 

carcinoma patients [85], termed CAF-A and CAF-B. Similar to CAF clusters we identified 

in HNSCC [92], CAF-A cells expressed ECM-related genes and CAF-B cells expressed 

markers of myofibroblasts (e.g. ACTA2, PDGFA). Future single-cell studies must continue 

to subtype CAFs, define their wide variety of expression states, their influence on 

therapeutic resistance, and their complex intercellular interactions. On a broader scale, 

studies of nearly all stromal cells of the TME including CAFs, endothelial cells, and 

myocytes are needed to comprehensively characterize cross-talk with malignant populations.

Invasion and metastasis

Invasion and metastasis represents a highly complex process that is one of the least well 

understood aspects of cancer biology, yet accounts for the majority of cancer-associated 

deaths [103]. Both locoregional and distant failure are significant problems for patients with 

advanced HNSCC, with more than 50% having recurrence or developing metastases within 

3 years of treatment [104].

In an attempt to understand metastasis in HNSCC, our scRNA-seq analysis characterized 

matched lymph node metastases from five patients [86]. We found that intra-tumoral 

heterogeneity and tumor nest architecture were largely recapitulated within lymph node 

metastases [86]. However, when we assessed the localization of specific malignant 

subpopulations, we found that p-EMT cells were exquisitely localized at the leading edge of 

tumors in close apposition to CAFs. In further studies, we found that TGFβ from 

surrounding CAFs likely induces a p-EMT state in malignant cells, promoting invasion into 

the surrounding tissue. We therefore assessed p-EMT in malignant cell-specific profiles 

based on bulk TCGA data and found that p-EMT was associated with lymph node 

metastases, lymphovascular invasion, and extracapsular extension in malignant-basal 

subtype tumors. Together, these findings indicate a role for p-EMT in locoregional 

metastasis and raise the intriguing possibility of a “collective migration” model of 

metastases, in which malignant and stromal cells move in clusters to spread 

lymphatogenously and form nodal metastases, rather than individual malignant cells 

extravasating and engrafting in the lymph node bed. These findings have implications for 

systemic therapy as metastases that heavily mirror the primary tumor may be amenable to 

therapy targeted at the primary tumor, while analyses of the primary tumor may provide 

insight into distant metastases that may not be readily biopsied or resected. In addition, our 

results raise the tantalizing possibility that analysis of p-EMT markers in primary tumors 

using IHC may improve prediction of occult nodal or distant metastasis [105].

Other proposed models of metastasis include late dissemination (“linear”) and early 

dissemination (“parallel”), and distinguishing between the two may be critical to predicting 

the success of surgical intervention. The linear model postulates that tumor cells acquire 

mutations in a stepwise manner until the tumor eventually gains invasive capacity, whereas 

the parallel model posits that metastases disseminate early in tumor development and 

gradually acquire their own distinct set of mutations divorced from the progression of the 
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primary tumor. The clinical implications are significant: The linear model would support 

early surgical excision of a malignant lesion to prevent metastases, while the parallel model 

suggests that such measures may prove futile in select patients and that both primary and 

metastatic sites may require separate treatment plans. Single-cell DNA sequencing may be 

the key to delineating between these two possibilities through phylogenetic analysis of 

mutations. For example, Leung et al. recently utilized single-cell DNA sequencing, exome 

sequencing, and targeted deep-sequencing to study clonal evolution during metastatic 

dissemination in two colorectal patients in whom primary tumor and liver metastases were 

analyzed [86]. While this study was limited by a very small sample size, one patient 

demonstrated a clear linear progression of acquired mutations prior to metastatic spread, 

while another patient demonstrated a linear acquisition of mutations prior to a first 

metastasis, then developed additional mutations in the primary before seeding a second 

metastasis. Future single-cell analyses that capture clonality will be critical for unraveling 

whether HNSCC consistently adheres to either of these models of metastasis, and HPV (+) 

oropharyngeal carcinoma may represent a particularly interesting cohort, given its 

propensity to present with neck metastases.

Understanding clonality at a single-cell level will be further enhanced through studies that 

can simultaneously capture and maintain spatial information. Casasent et al. developed a 

method called Topographic Single Cell Sequencing (TSCS), which utilizes LCM followed 

by single-cell DNA-sequencing, to measure genomic copy number profiles of single tumor 

cells while preserving their spatial context in breast cancer patients with both ductal 

carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) [76]. Prior studies had 

presented conflicting models for invasion in this disease, with one model suggesting that the 

in situ and invasive malignant cell subpopulations evolved in parallel without sharing 

genomic aberrations (“independent lineage model”) and the other suggesting that multiple 

clones evolve within the ducts until a single clone escapes the basement membrane to form 

the invasive tumor mass (“bottleneck model”). Using TSCS, they demonstrated that genome 

evolution occurred within the ducts, all subclones arose from a single initiating cell (as 

evidenced by truncal mutations and copy number aberrations), and one or more clones were 

able to invade through the basement membrane (“multiclonal invasion model”). Applying 

similar single-cell spatial transcriptomics and genomics to HNSCC is likely to provide 

further insights into invasion and metastasis (see “Outlook” below).

Therapeutic response and resistance

Despite aggressive multi-modality therapy, a significant proportion of patients with HNSCC 

will develop disease recurrence, with up to 60% of patients experiencing locoregional failure 

and up to 30% of patients with distant failure [106]. Despite promising therapeutic responses 

to ICI in a subset of patients with persistent or recurrent disease, the prognosis for remainder 

of these patients remains poor [104,107]. Our understanding of the molecular and genetic 

underpinnings for treatment failure and the ability to predict patient response to therapy 

remains crude at best [87].

For treatment-resistant tumors, the question arises whether malignant cells acquired 

mutations that enabled survival, or whether there always existed a subpopulation of cells that 
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survived through the selective pressure of therapy. Outside of HNSCC, such efforts are just 

beginning. Kim et al. applied single-cell DNA and RNA sequencing with bulk exome 

sequencing to profile longitudinal triple-negative breast cancer (TNBC) samples from 

patients undergoing neoadjuvant therapy [75]. Among their 20 patients, ten had a complete 

response to therapy, while the remaining patients failed treatment. Eight samples – four from 

the clonal-extinction and four from the clonal-persistence groups – were analyzed at the 

single-cell level. Among the treatment resistant patients, they found that treatment resistant 

genotypes were present, though rare, in the pre-treatment samples and were selected for by 

the evolutionary pressure of neoadjuvant therapy. Interestingly, the transcriptional profiles of 

these samples changed throughout the course of treatment, suggesting that both adaptive and 

acquired mechanisms of therapeutic resistance occurred concurrently. Similar studies would 

be of great value in HNSCC but would require the optimization of single-nuclei RNA 

sequencing (sNuc-seq) to enable matched analyses of archived, frozen tissue.

Understanding the biology of ICI is another area of particular interest in head and neck 

oncology because responses to ICI are durable but highly variable and difficult to predict 

[106,107]. Recent data from melanoma suggests that there may be unique malignant cell 

signatures that define response to ICI [72], a provocative possibility if extended to HNSCC. 

In advanced melanoma, Sade-Feldman et al. used scRNA-seq to analyze sub-populations of 

T-cells [73]. Two main clusters of T-cells were seen in all 48 patient samples: One cluster 

linked to memory, activation, and cell survival (“CD8_G”), and the other with genes linked 

to cell exhaustion (“CD8_B”). Tumors with higher proportions of CD8_G cells were linked 

with treatment response, while those enriched in CD8_B cells often did not respond. The 

transcription factor TCF7 was among the chief markers predictive of a good clinical 

response. Using immunofluorescence, they stained an independent cohort of melanoma 

tissue samples treated with anti-PD-1 therapy and found significantly higher expression of 

TCF7 in treatment responders versus non-responders.

To date, no similar multi-omics study has been performed for patients with HNSCC. Such 

studies could help optimize patient selection for systemic chemotherapy or immunotherapy. 

An important component of these analyses will be analyzing changes in intra-tumoral 

heterogeneity with exogenous agents such as various forms of chemotherapy (e.g. cisplatin), 

biologic therapies (e.g. cetuximab), radiation, and ICI, which will require the use of samples 

from ongoing clinical trials as well as a broad array of model systems. The improved ability 

to multiplex samples for single-cell analyses [104,108–111] has opened new, affordable 

avenues for high throughput single-cell analyses of a range of conditions, with some 

techniques now optimized for 96 conditions in a singular sequencing lane. Applying these 

treatment-related perturbations to models such as HNSCC cell lines, cell line orospheres, 

patient-derived xenografts (PDX), and PDX-derived organoids (PDX-O) will be essential to 

help define a baseline and investigate its changes with treatment.

Outlook

A single-cell head and neck tumor atlas

TCGA was an unprecedented endeavor, managing to collect thousands of tumor and normal 

tissue samples from patients with 33 types of malignancies at multiple collaborating 
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institutions as well as providing publicly available libraries of genomic, transcriptomic, and 

epigenomic data to the research community [112]. These efforts vastly expanded our 

collective understanding on a number of human malignancies and have helped to move 

research forward on basic, translational, and clinical fronts. To date, our study represents the 

only published single-cell dataset in head and neck cancer research [92]. Ongoing and future 

single-cell studies must explore HNSCC at subsites other than the oral cavity, as well as 

other primary tumor types, including salivary gland and endocrine malignancies. 

Preliminary observations from single-cell analyses of adenoid cystic and mucopeidermoid 

carcinoma are likely to represent the forefront of these efforts and will contribute to a single-

cell atlas of head and neck malignancies that should rapidly accelerate major lines of 

investigation.

Spatial single-cell sequencing

Although SCS methods have begun to define genetic and transcriptional heterogeneity in 

cancers, commonly utilized methods notably suffer from the loss of spatial information. 

Recent single-cell sequencing studies have described malignant, stromal, and immune 

subpopulations with distinct spatial localization, such as p-EMT cells localized at the tumor-

stromal interface in HNSCC [92] and subpopulations of perivascular, mammary fat pad, and 

epithelial CAFs with variable prognostic significance in breast cancer [113]. Studies have 

also hypothesized that intercellular interactions may drive invasion, metastasis, and immune 

exhaustion, such as interactions between CAFs and cancer cells in HNSCC and pancreatic 

ductal adenocarcinoma [114], and relationships between T cells and cancer cells in breast 

cancer [115]. These findings highlight the need to utilize SCS methods with preserved 

spatial information, as we develop a more nuanced understanding of the role of intercellular 

interactions in cancer biology.

In this vein, a few techniques have been developed but remain nascent for single-cell 

profiling of human tumor specimens. Fluorescent in situ sequencing (FISSEQ) utilizes 30-

base reads from more than 8,000 genes to detect in situ expression patterns [116], though it 

may suffer from low read counts per cell and is predominantly useful for characterizing cell 

types. LCM coupled with Smart-seq2 has also been described [9] but is low throughput and 

labor intensive. Further optimization of these methods would be useful in utilizing spatial 

SCS in a hypothesis-generating manner.

Conversely, techniques for validating sequencing data using highly multiplexed in situ 
detection of markers have been much more widely utilized and, for the moment, may 

represent more practical approaches to translating single-cell sequencing data into clinically 

meaningful information. Highly multiplexed IHC-and immunofluorescence (IF)-based 

assays with image analysis that offers cellular resolution have been described for up to 61 

markers in FFPE tissue [117]. Perkin Elmer’s commercially available Vectra multispectral 

imaging system with the Opal staining kit offers a more accessible approach to seven-marker 

staining in FFPE sections, with the ability to computationally merge serial sections and 

quantify of up to 14 markers [118]. The latter approach has been utilized to explore 

subpopulations of tumor infiltrating immune cells [119–122] and delineate tumor-immune 

cell interactions [123,124] in multiple tumor types, including ongoing work in HNSCC in 
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our group. An alternative to staining-based approaches is the use of mass cytometry at the 

cellular level (CyTOF), allowing the simultaneous quantification of more than 30 analytes at 

subcellular resolution [7]. In solid tumors, CyTOF has been used for immune cell profiling 

in colon cancer [125] and tumor cell profiling in pancreatic and prostate cancers [114,126]. 

Regardless of approach, these validation techniques have the advantage of being extremely 

high throughput, as compared with existing single-cell sequencing techniques, with the 

ability to profile hundreds of thousands of cells at a time.

Temporal single-cell sequencing

Understanding the temporal progression of tumor heterogeneity, particularly with tumor 

recurrence or in response to systemic therapy, will provide another critical layer of insights 

into cancer biology and is increasingly accessible with decreasing sequencing costs and 

increasing throughput. True serial sequencing of individual patient samples has not been 

reported in any solid tumors beyond cutaneous malignancies. This approach is particularly 

powerful as biologic corollaries of clinical trials become more standardized. In particular, 

serial sequencing of individual patients pre-and post-therapy should be an expected correlate 

in all interventional clinical trials, providing important insights into predictors of treatment 

response and mechanisms of resistance. Current work is ongoing in HNSCC to investigate 

the immune landscape of tumors pre-and post-ICI therapy, but extending this approach to 

additional biologic and systemic agents will be important.

Single-cell multi-omics

Despite the development of individual single-cell genomic, epigenomic, and transcriptomic 

profiling technologies, the ability to simultaneously assess single-cell DNA, RNA, and 

epigenetic changes remains limited due to challenges with separation and unbiased 

amplification of small quantities of individual genetic material in a cell. A number of single-

cell multi-omic techniques have been described, including those that simultaneously 

sequence the genome and transcriptome [19,127], those that sequence the transcriptome and 

the epigenome [128–130], and those that attempt to do all three [131]. However, the large-

scale application of these techniques to human tumor specimens has been limited and would 

provide an important layer of insight into the genomic and epigenomic contributions to 

expression heterogeneity. To date, most studies have been limited to analyses of inferred 

CNVs based on scRNA-seq data [74,92,132]. Moudgil et al. recently described the use of 

self-reporting transposons in single-cell “calling cards” as an assay for simultaneously 

capturing expression profiles and mapping transcription factor binding sites in single-cells 

[133], and this approach will certainly be of interest in HNSCC and oncology more broadly.

Models of tumor heterogeneity

As in vivo tumor heterogeneity is better understood at a cellular level, it is increasingly 

important that tumor models accurately capture and reflect this heterogeneity. Accordingly, 

comprehensive SCS of cell lines may help to better delineate which cell lines recapitulate 

aspects of in vivo tumor heterogeneity. In our experience with oral cavity HNSCC cell lines, 

some reflect in vivo heterogeneity, while many are transcriptionally homogeneous, and yet 

others have heterogeneity but do not meaningfully mimic in vivo expression states [92]. 

Novel techniques such as cell hashing with barcoded antibodies [111] may enable 
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multiplexing for high throughput approaches to accomplishing these goals. Similarly, 

although PDX and PDX-O models exist in HNSCC, it remains to be seen whether these 

models faithfully recapitulate in vivo heterogeneity and particularly whether, after multiple 

passages, this heterogeneity is maintained. More comprehensively characterizing these 

models will be critical to determining which models are useful in future studies of intra-

tumoral heterogeneity. If these models maintain tumor heterogeneity, then PDX or PDXO 

may provide a patient-specific “reactor” to test the efficacy of systemic therapies before they 

are utilized in a patient, eliminating the need for a trial-and-error approach in salvage cases.

Conclusions

Since the role of tumor heterogeneity in prognosis and treatment resistance has become clear 

[90], there has been a flurry of work to better define heterogeneity at a cellular resolution. Of 

the variety of SCS technologies now available, single-cell transcriptomics is the best 

developed and most widely used to study human tumors, with novel insights to date into 

malignant, immune, and stromal cell subpopulations, as well as intercellular interactions that 

promote invasion and metastasis. Novel technologies in scRNA-seq have focused on higher 

throughput, lower cost methods that will enable more widespread use of these technologies, 

particularly as biological corollaries of clinical trials. Indeed, as the cost and accessibility of 

SCS further improves, it is not hard to imagine biopsy specimens being “scored” for a panel 

of genetic states or transcriptional programs (e.g. p-EMT), providing a detailed, 

molecularly-based predictor of adverse biologic features that drives clinical decision-

making.

Conceptually, the widespread use of scRNA-seq has been hypothesis-generating, and a 

variety of approaches will be necessary to develop a better mechanistic understanding of the 

phenotypes that have been defined. This includes further development of single-cell 

genomic, epigenomic, and multi-omic sequencing technologies, as well as SCS technologies 

that retain spatial information. It also involves the better characterization of existing tumor 

models, including cell lines and PDX models, potentially by SCS, in order to determine 

which models truly capture the heterogeneity seen in vivo. While single-cell studies have 

uncovered many new layers and hypotheses in cancer biology, these findings also highlight 

the complexity and nuance of the tumor ecosystem and emphasize the significant work to be 

done.
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Highlights

Head and neck squamous cell carcinoma (HNSCC) is characterized by significant intra-

tumoral heterogeneity.

Single-cell sequencing (SCC) technologies provide valuable insights into tumor 

heterogeneity.

SCS reveals genetic, transcriptional, and epigenetic diversity among malignant, stromal, 

and immune cells

SCS is likely to alter the management of HNSCC as it improves diagnosis and facilitates 

novel therapeutic design

Advances in SCS should allow this technology to be integrated into clinical decision-

making
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Figure 1. Overview of the technologies applied at different clinical sample collections.
WGS: whole genome sequencing; WES: whole exome sequencing; CTC: circulating tumor 

cell; sc: single cell; PDX: patient-derived xenograft.
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Figure 2. A schematic overview of scRNA-seq analysis workflow.
scRNA-seq data is noisy due to technical and biological factors. The analysis workflow 

involves (a) demultiplexing the sequencing reads by cell barcode and collapsing on UMI, (b) 
removing low quality cells (doublets, multiplets or dead cells), (c) aligning trimmed reads 

and generating count matrix, (d) normalization by scaling factors and imputation for sparse 

counts, (e) cell level analysis including clustering and trajectory inference and (f) gene level 

analysis including differential gene expression and regulatory network.
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Figure 3. Schematic illustration of applications of single-cell sequencing to malignant cells.
The applications of single-cell sequencing are numbered as: 1) Identifying cancer stem cell; 

2) Charactering Intra-tumor heterogeneity; 3) Charactering tumor microenvironment; 4) 

Deciphering clonal evolution; 5) Monitoring cancer progress via circulating tumor cells 

(CTCs); 6) Dissecting cancer metastasis; 7) Interrogating therapy resistance.
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Table 1.

Summary of single-cell isolation methods

Isolation method Throughput (cells/run) Applied sequencing technology Commercial Platform Ref

Limiting dilution Low (10–200) None None [7]

Micromanipulation Low (10–200) Smart-seq2 None [8]

Laser capture microdissection 
(LCM)

Low (10–200) Smart-seq2 None [9]

Flow-activated cell sorting (FACS) Medium (100–1000) Smart-seq2
CEL-seq2
STRT-seq
MARS-seq

None [10]

Circuit microfluidics Medium (100–1000) Smart-seq2
CEL-seq2
STRT-seq

Fluidigm C1 system 
(Fluidigm)

[16]

Microdroplet microfluidics High( 1000–9000) Drop-Seq
InDrop-seq

Chromium system 
(10xGenomics)
InDrop system (1cellBio)
Nadia (Dolomite Bio)

[134]

Microwell platform High (1000–9000) Cyto-seq
SEQ-well

None [12,13]

In-situ barcoding Very high (>10000) SPLiT-seq
Sci-RNA-seq

None [14,15]
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Table 2.

Summary of single-cell DNA sequencing technologies

scDNA-Seq technology Genome coverage Amplification method Application Ref

GenomePlex PCR low DOP-PCR CNA [17]

MDA high MDA SNV [18]

PicoPLEX high DOP-PCR and MDA SNV and CNA [19]

MALBAC high DOP-PCR and MDA SNV and CNA [20]

DOP: degenerate oligonucleotide primers; MDA: multiple displacement amplification; SNV: single-nucleotide variation; CNA: copy number 
alternations.
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Table 3.

Summary of single-cell RNA sequencing technologies

scRNA-Seq technology Transcript coverage Amplification method UMI ERCC Ref

Tang method Full length PCR No Yes [22]

Smart-seq / seq2 Full length TS-PCR No Yes [28,29]

CEL-seq /seq2 3’-end IVT Yes Yes [23,24]

STRT-seq / seq2 5’-end TS-PCR Yes Yes [26,27]

MARS-seq 3’-end IVT Yes Yes [25]

Cyto-seq 3’-end GS-PCR Yes No [12]

Drop-seq 3’-end TS-PCR Yes No [134]

InDrop-seq 3’-end IVT Yes No [135]

SPLiT-seq 3’-end TS-PCR Yes No [14]

sci-RNA-seq 3’-end TS-PCR Yes No [15]

SEQ-well 3’-end TS-PCR Yes Yes [13]

Quartz-seq1 / seq2 3’-end PCR No Yes [136]

TS: template switch; IVT: vitro transcription; ERCC: External RNA Control Consortium; UMI: unique molecular identifier. ERCC controls are 
RNA transcripts with known sequences and quantity that are applied to calibrate the measurements of RNA expression. UMIs are DNA sequences 
used to label each individual transcript within a cell during reverse transcription in order to estimate absolute molecular counts.
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Table 4.

Summary of single-cell epigenome technologies

scEpi-Seq technology Throughput (cells/run) Feature Coverage Application Ref

scRRBS-seq Low (10–100) Low (10 %) DNA methylation [33]

scBS-seq Low (10–100) Low (18 %) DNA methylation [34]

scCGI-seq Low (10–100) High (70 %) DNA methylation [37]

scChIL-seq Very low (5) Very High (80 %) Histone modification [39]

scCUT&tag High (1000) Medium (50 %) Histone modification [40]

scChIC-seq Medium (100–300) Medium (50 %) Histone modification [41]

scATAC-seq High (1000) High (60 %) Chromatin structure [42]
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