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Abstract Non-alcoholic fatty liver disease (NAFLD) is the

hepatic manifestation of dysregulated lipid and glucose

metabolism, which is often associated with obesity, dys-

lipidemia and insulin resistance. In view of the high mor-

bidity and health risks of NAFLD, the lack of effective

cure has drawn great attention. In recent years, a line of

evidence has suggested a close linkage between the intes-

tine and liver diseases such as NAFLD. We summarized

the composition and characteristics of intestinal microbes

and reviewed molecular insights into the intestinal micro-

biome in development and progression of NAFLD.

Intestinal microbes mainly include bacteria, archaea,

viruses and fungi, and the crosstalk between non-bacterial

intestinal microbes and human liver diseases should be

paid more attention. Intestinal microbiota imbalance may

not only increase the intestinal permeability to gut

microbes but also lead to liver exposure to harmful sub-

stances that promote hepatic lipogenesis and fibrosis. Fur-

thermore, we focused on reviewing the latest ‘‘gut–liver

axis’’-targeting treatment, including the application of

antibiotics, probiotics, prebiotics, synbiotics, farnesoid X

receptor agonists, bile acid sequestrants, gut-derived hor-

mones, adsorbents and fecal microbiota transplantation for

NAFLD. In this review, we also discussed the potential

mechanisms of ‘‘gut–liver axis’’ manipulation and efficacy

of these therapeutic strategies for NAFLD treatment.

Keywords Intestinal microbiome � Non-alcoholic fatty

liver disease (NAFLD) � Gut–liver axis � Bile acids �
Farnesoid X receptor

Abbreviations

ALT Alanine aminotransferase

AST Aspartate aminotransferase

BMI Body mass index

FMT Fecal microbiota transplantation

GLP-1 Glucagon-like peptide-1

NAFLD Nonalcoholic fatty liver disease

NASH Nonalcoholic steatohepatitis

PAMPs Pathogen-associated molecular patterns

PYY Peptide YY

ROS Reactive oxygen species

SCFAs Short chain fatty acids

SIBO Small intestine bacterial overgrowth

TLRs Toll-like receptors

LPS Lipopolysaccharide

LDL Low-density lipoprotein

Introduction

Non-alcoholic fatty liver disease (NAFLD), the liver

manifestation of metabolic syndrome, is a spectrum of liver

disorders ranging from simple steatosis (non-alcoholic fatty

liver) to non-alcoholic steatohepatitis (NASH) and even

liver cirrhosis [1]. Recently, NAFLD has become the most
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common liver disease worldwide, and the global preva-

lence was estimated to be from 25 to 45% [2]. Noticeably,

NASH is now the second leading etiology for liver trans-

plantation, and a certain proportion of patients with

NAFLD can potentially progress to hepatocellular carci-

noma [3]. Since the progression of NAFLD is closely

related to obesity and insulin resistance, the NAFLD

incidence is expected to rise in parallel with the increased

glucolipid metabolism disorder [4].

NAFLD is characterized by a diffused fat accumulation

in vesicles that displace the cytoplasm of hepatocytes, i.e.,

steatosis. So far, the underlying mechanism behind the

development and progression of NAFLD has not been fully

elucidated. Historically, ‘‘two-hit’’ hypothesis was used to

explain the pathogenesis of NAFLD [5]. However, this

view was considered to be too simplistic to summarize the

synergy of multiple stimulating factors in the occurrence of

NAFLD. Currently, NAFLD is inclined to be a ‘‘multiple-

hit’’ disease [6]. Such hits involve genetic, metabolic and

environmental factors including epigenetic modifications,

dietary intake, hormones (leptin, adiponectin) secreted

from adipose tissue, crosstalk between different organs or

tissues and so on [6]. Among these risk factors, a growing

body of evidence indicates that gut–liver axis is implicated

in the onset and progression of NAFLD. And the modifi-

cation of gut–liver axis has been considered as a novel

therapeutic approach for the management of NAFLD

[7, 8].

This review summarized the role of intestinal microbiota

in the occurrence of NAFLD. In addition, we assessed the

therapeutic potential of intestinal microbiome manipulation

for treating NAFLD and discussed the efficacy of these

treatments.

Intestinal microbiome

A variety of microbial communities are distributed on the

surface of the human body as well as in the lumens of

intestine, vagina and stomach [9]. The vast majority of

these microbes live in our intestinal tract, which carries

about 1.5 kg of symbiotic bacteria, above thousands of

different species [10]. The human intestinal microbiota

mainly includes bacteria, archaea, viruses and fungi [11].

Among these microbial groups, studies are mainly focused

on bacteria, and the six dominant bacterial phyla of healthy

adults are Firmicutes, Bacteroides, Proteobacteria, Acti-

nobacteria, Fusobacteria and Verrucomicrobia [12].

Noticeably, nonbacterial microbes are also important for

human health such as archaeal, fungal and viral popula-

tions, the species and quantities of which interact with each

other [11]. Beyond bacteria, the non-bacterial intestinal

microorganisms have been proved to be closely related to

human diseases. For instance, fungi might play a role in the

pathogenesis of inflammatory bowel disease (IBD) [13].

Thus, the crosstalk between non-bacterial gut microbes and

human diseases should be paid more attention in the future.

The intestinal microbiota provides various benefits for

host health, including the maintenance of mucosal barrier

integrity, bile acid metabolism, nutrient acquisition and

prevention from the invasion of pathogens [14, 15]. For

example, the gut bacteria express carbohydrate-active

enzymes, which enable them to ferment unabsorbed and

non-digestible carbohydrates producing metabolites such

as short-chain fatty acids (SCFAs) [16]. These SCFAs,

absorbed by intestinal epithelial cells, are involved in the

regulation of inflammation, cell proliferation and mucus

secretion [17]. With the gradual revealing of types and

functions of gut microbes, their important roles in human

health were proved by increasing studies. Since 2009, a

high attention from researchers has been paid to intestinal

microbiome, accompanied by the blowout of published

articles (Fig. 1a). Since the intestinal microbiome popula-

tions are dynamic, their composition and distribution will

change under different nutritional, immune and environ-

mental conditions. The imbalanced intestinal flora may

have profound impact on the physiological activities of

host and even lead to the occurrence of a series of human

diseases [14, 18].

Gut–liver axis

The intestinal barrier is a complex system consisting of gut

microbiota, intestinal mucosa, epithelial cell layer and

blood vessels. This barrier is critical to retard harmful

substances (toxins, microbes and bacterial metabolites) and

maintain the normal environment of intestinal tract [19].

Under pathological conditions, the stimuli (e.g., toxins or

intestinal inflammation) can change barrier permeability.

And the impaired intestinal barrier will fail to prevent

translocation of intestinal microorganisms and/or their

products (also called pathogen-associated molecular pat-

terns, PAMPs) into the mesenteric portal blood flow [20].

The precise mechanism by which gut microbes interact

with intestinal barrier remains unclear. In addition to

intestinal epithelial barrier (IEB), Spadoni and colleagues

proposed a second intestinal barrier (gut-vascular barrier,

GVB) below IEB in mice and humans [21]. The GVB,

composed of endothelial cells, enteric glial cells and peri-

cytes, prevents intestinal microbes from entering the body

circulation [21, 22]. Further, Mouries et al. demonstrated

that high-fat diet (HFD) induced dysbiosis that in turn

disrupted GVB and drove the translocation of bacteria or

their products into liver [23]. GVB-related research not

only helps to understand the interaction between gut
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microbiota and intestinal barrier but also provides new

insights into the prevention of NAFLD by regulation of

gut–liver axis.

About 70% of the blood supply to liver comes from gut

through the portal vein. The blood circulation enables liver

to interact with intestinal bacterial products such as bac-

terial DNA, lipopolysaccharide (LPS) or intact bacteria due

to the increased intestinal barrier permeability [24, 25].

Some of the translocated bacterial products can induce

liver inflammation by binding to the specific pathogen

recognition receptors (e.g., Toll-like receptors, TLRs) and

promote the progression of liver disease [26]. Therefore,

intestinal microbiome may be a crucial actor in the main-

tenance of gut–liver axis homeostasis and in the patho-

genesis of liver diseases.

Based on statistical analysis of published articles in the

past ten years, the studies on intestinal microbiome were

mainly focused on gastroenterology hepatology, biochem-

istry molecular biology and other related life science fields.

Of note, the investigations about gastroenterology hepa-

tology ranked first, indicating the close relationship of

intestinal microbiome to liver diseases such as NAFLD

(Fig. 1b).

Intestinal microbiota dysbiosis and NAFLD

Intestinal microbiota dysbiosis is defined as the loss of

fragile equilibrium within various microbial entities in

intestinal ecosystem [27]. Multiple researches show that

the pathogenesis of human NAFLD is closely associated

with the imbalance of intestinal microflora (Fig. 2)

[11, 28]. So far, there have been a series of studies on the

relationship between intestinal flora and NAFLD based on

animal models or clinical trials. Next, we will give a brief

summary of the role of intestinal microbiota dysbiosis in

occurrence of NAFLD.

Fig. 1 Statistical analysis of

published articles about

intestinal microbiome on Web

of Science search engine

(referencing the terms

‘‘intestinal microbiome’’, ‘‘gut

microbiota’’, ‘‘intestinal flora’’,

‘‘gut microorganisms’’ or ‘‘gut

microbes’’). a Annual

publication of intestinal

microbiome within the past

50 years. b Distribution of

research fields based on the

intestinal microbiome-related

papers from 2010 to 2019
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Animal model studies

Anumber of studies have shown that the intestinal microbiota

is a new environmental factor leading to obesity and NAFLD.

First, Bäckhed and colleagues reported that the germ-free

(GF) mice are protected against obesity produced by a Wes-

tern-style, high-fat and high-sugar diet [29]. Moreover, the

conventionalization of GF mice with a normal intestinal flora

from conventionally raised animals increased the body fat

content and insulin resistance within 14 days [30].

A direct involvement of gut microbes in the develop-

ment of NAFLD was suggested by the finding that NAFLD

could be delivered to GF mice by fecal microbiota

transplantation (FMT) [31]. In this study, C57BL/6J mice

fed with HFD usually showed hepatic steatosis and sys-

temic inflammation (responders), but there were some

other mice which were non-responders and failed to exhibit

the symptom of metabolic disorders after HFD treatment.

To explore the potential reasons for these inconsistent

responses, the mouse gut microbes from responders or non-

responders were transplanted to GF mice. Compared with

the non-responder receiver group, the responder receiver

group had a significant increase in fasting insulinemia and

plasma aspartate aminotransferase (AST). Also, the

responder receiver mice accumulated more hepatic

triglycerides and subsequent liver steatosis [31].

Fig. 2 Schematic summary of intestinal microbiota dysbiosis

responsible for the pathogenesis of NAFLD. The role of gut

microbiota in occurrence of NAFLD is as followed: (1) microbial

dysbiosis leads to the increased production of intestinal ethanol,

which is toxic to liver and can damage the gut permeability by

destroying tight junctions; (2) gut-derived pathogen-associated

molecular patterns (PAMPs) such as LPS can bind to specific TLRs

in liver and thus activates the proinflammatory pathways which result

in hepatic inflammation and fibrosis; (3) gut microbiota hydrolyze

choline to form dimethylamine and trimethylamine. Increased choline

metabolism may cause choline deficiency, which prevents the

excretion of very low-density lipoprotein (VLDL) and initiates the

accumulation of triglycerides in liver; (4) an altered gut microbiota

might inhibit the secretion of fasting-induced adipocyte factor (FIAF,

also known as angiopoietin-related protein 4, ANGPTL4), a specific

inhibitor of endothelial lipoprotein lipase (LPL), which releases

triglycerides from VLDL particles into the liver. The net effects are

inhibition of lipid b-oxidation and increased storage of hepatic

triglyceride; (5) excessive short-chain fatty acids (SCFAs), substrates

for gluconeogenesis and fat synthesis in liver, promote the accumu-

lation of hepatic free fatty acids (FFAs) by inhibiting the activity of

adenosine monophosphate activated protein kinase (AMPK)
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Further studies suggest that the harmful metabolites

produced by altered intestinal microbiome should be

responsible for the development of NAFLD [32]. For

example, Yamada and co-workers have reported the rela-

tionship between saturated fatty acids generated by

intestinal microbiota and pathogenesis of NASH [33]. The

authors found that feeding with STHD-01, a new class of

HFD, led to the development of NASH in mice, accom-

panied by the dysbiosis and alterations in luminal meta-

bolic profiles. This study revealed that the accumulation of

saturated fatty acids, transformed from unsaturated fatty

acids by gut microbiota, elicited inflammation by activat-

ing the migratory macrophages in liver [33]. More recently,

Yuan et al. reported that the high alcohol-producing

Klebsiella pneumoniae (HiAlc Kpn) was detected in 61%

of individuals with NAFLD in a Chinese cohort [34]. To

investigate the relationship between HiAlc bacteria and

fatty liver disease, they fed specific-pathogen-free (SPF)

mice with HiAlc Kpn. Strikingly, HiAlc Kpn feeding

induced the chronic hepatic steatosis. Furthermore, the

transfer of a HiAlc-Kpn-strain-containing microbiota from

NASH patients by FMT into mice resulted in the occur-

rence of NAFLD. However, after selective depletion of the

HiAlc Kpn strain by phage, there were no significant

NAFLD symptoms in recipient mice. These results illus-

trated the contribution of a high level of alcohol-producing

gut bacterial strain to pathogenesis of NAFLD [34].

Overall, the gut microbiota and their detrimental metabo-

lites (ethanol, saturated fatty acids, polyamines, hydrogen

sulfide, and so on) likely drive the damage to liver. And

more studies are required to discover which intestinal

microbes and/or their metabolites can promote the initia-

tion and progression of NAFLD.

Clinical research

Excessive gut-derived endotoxin will induce the produc-

tion of ROS in liver, while ROS can damage vulnerable

hepatic cells and thus lead to the occurrence of NASH [35].

In 2001, Wigg et al. reported a higher prevalence of small

intestinal bacterial overgrowth (SIBO) in NASH patients

compared with healthy subjects [36]. In 2009, Miele et al.

examined the incidence and potential mechanism of

increased intestinal permeability in NAFLD patients [37].

They found that NAFLD patients had significantly

increased intestinal permeability in comparison with heal-

thy volunteers. And this abnormality was associated with

an increased prevalence of SIBO. It was supported by

Harte et al. who reported that a higher circulating level of

endotoxin was detected in patients with NAFLD and

NASH compared with healthy controls [38].

In addition to gut-derived endotoxin, multiple studies

have been performed to examine the difference of gut

bacterial compositions between healthy subjects and

NAFLD patients. Boursier and co-workers investigated the

association of disbalanced intestinal bacterial community

with severe NAFLD lesions (i.e., NASH and fibrosis) [28].

Multivariate analysis shows that the enrichment of Bac-

teroides genus was independently associated with NASH,

and the increased abundance in Ruminococcus was posi-

tively related to the deteriorated fibrosis [28]. In a pediatric

study, Zhu et al. described the alteration of gut micro-

biomes in patients with NASH, suggesting that children

with obesity or NAFLD featured higher abundances of

Prevotella and Bacteroidetes as compared to healthy con-

trols [39]. More recently, Loomba et al. provided a novel

method based on gut microbiome for non-invasive detec-

tion of advanced fibrosis in NAFLD patients [40]. Given

the association between specific microbiota and NASH, it

is possible to develop a panel of gut microbiome-derived

biomarkers to predict advanced fibrosis.

Taken together, the above studies support the view that

intestinal microbiota dysbiosis is a key environmental

factor contributing to the NAFLD development and its

progression into NASH.

Targeting the gut–liver axis to treat NAFLD

The gut microbiota can induce liver inflammation by pro-

viding toll-like receptor ligands (e.g., LPS, peptidoglycan,

bacterial flagella and DNA), which promote down-stream

signaling events and thus lead to the secretion of proin-

flammatory cytokines [41]. Accumulating evidences have

demonstrated that targeting the gut–liver axis might be a

new approach to prevent or treat NAFLD, including the

application of antibiotics, pre-/pro-/synbiotics and farne-

soid X receptor (FXR) agonists.

Antibiotics application to NAFLD treatment

To diminish the effects of microbial components and their

metabolites on host health, antibiotics are usually used to

reduce the number of intestinal flora. There are two types

of antibiotics: absorbable antibiotics and non-absorbable

ones. The former can effectively pass through the intestinal

barrier to achieve therapeutic serum concentration, while

the latter remains mainly within the gut milieu. Starting in

the 1950s, antibiotics such as rifaximin, metronidazole and

neomycin had been reported to treat patients with cirrhosis

and hepatic encephalopathy [42, 43]. Also, the combined

use of antibiotics (neomycin and polymyxin B) was proved

to prevent fructose-induced hepatic lipid accumulation by

decreasing the translocation of gut toxins [44].

Besides the suppression against local or systemic

infection, antibiotics have regulatory effects on intestinal
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microbiota and are of benefit to NAFLD. For example, the

treatment with cidomycin orally was found to promote

small intestine transit rate and reduce serum levels of

alanine aminotransferase (ALT), AST and TNF-a in NASH

mouse model, indicating a potential of cidomycin in alle-

viating the severity of NASH by intestinal microbiota

modulation [45]. Rifaximin, a largely water-insoluble and

nonabsorbable (\ 0.4%) drug, has been shown to exert

antimicrobial activity against enteric bacteria such as

Streptococcus, Bacteroides and Citrobacter [46]. Gan-

garapu et al. have demonstrated that a short-term admin-

istration of rifaximin (1200 mg/day for 28 days) improved

the clinical status of patients with NAFLD/NASH, which

was associated with reduced serum transaminases and

circulating endotoxins [47]. Abdel-Razik et al. reported

that after rifaximin therapy (1100 mg/day for 6 months),

patients with NASH showed an evidently reduced levels of

proinflammatory cytokines, ALT and NAFLD-liver fat

score [48]. However, in an open-label clinical trial, rifax-

imin administration (800 mg/day for 6 weeks) was not

effective for humans with NASH. The inconsistency may

be due to the small sample size, the relatively low treat-

ment dose or short duration in clinical study.

Specific antibiotics can act positively on intestinal

microbiota and provided a so-called ‘eubiotic’ effect by

promoting the growth of beneficial gut bacteria (e.g., Bi-

fidobacteria and Lactobacilli), and this property may rep-

resent a therapeutic advantage in particular clinical

practices [49]. On the other hand, although short-term

treatment with antibiotics significantly improved NALFD,

the long-term use of antibiotics should be careful in con-

sideration of the possible side effects [50]. For example,

antibiotics affect not only the harmful bacteria but also the

healthy ones due to their wide ranges of action. Addi-

tionally, the use of antibiotics in immunocompromised or

critically ill patients should be carefully evaluated to

reduce the risk of infective endocarditis and bacteremia

[51]. Besides, antibiotics may select for antibiotic-resistant

strains in the human gut [52]. Collectively, the depletion or

alteration of intestinal microbiota by antibiotics seems to

alleviate the severity of NAFLD. However, considering the

risk of antibiotics (side effects, resistance, etc.,), their

clinical use must be cautious in treatment of NAFLD.

Probiotics application to NAFLD treatment

Probiotics are preparations or products containing viable,

defined microorganisms in adequate amounts. Probiotics

exert beneficial effects in host by altering the composition

of microbial flora [53]. So far, the main commercialized

probiotics in market include Lactobacilli, Streptococci,

Bifidobacterial and Fungi [54]. Although most probiotics

are from bacteria, the yeast strain such as Saccharomyces

boulardii has also been proven to be an effective probiotic

[55].

Probiotics as a type of attractive therapeutic agents have

been applied for the treatment of human NAFLD (Table 1).

For example, VSL#3 is a probiotic mixture used for

NAFLD in both animal experiments and clinical studies.

The VSL#3 product has 450 billion bacteria per bag, which

is a mixture of eight different bacteria (Bifidobacterium

longum, Bifidobacterium infantis, Bifidobacterium breve,

Lactobacillus acidophilus, Lactobacillus bulgaricus Lac-

tobacillus plantarum, Lactobacillus casei and Streptococ-

cus thermophilus) [56]. In a randomized controlled trial,

the 4-month supplement of VSL#3 has been demonstrated

to improve fatty liver and body mass index (BMI) in obese

children with NAFLD. And the increase of total and active

form of glucagon-like peptide 1 (GLP-1) could be

responsible for the beneficial effects of VSL#3 [57]. In

another clinical study, VSL#3 treatment significantly

decreased the plasma levels of malondialdehyde (MDA),

S-nitrosothiols and 4-hydroxynonenal in adult NAFLD

patients [56]. A double-blind, randomized clinical trial was

conducted using a probiotic mixture (containing 200 mil-

lion of seven bacteria strains such as Lactobacillus rham-

nosus, Lactobacillus acidophilus, Streptococcus

thermophilus and Bifidobacterium breve) for 28 weeks on

patients with NAFLD [58]. In this study, the probiotic

consumption resulted in significant reductions in fibrosis

score, hepatic inflammation and liver aminotransferases

[58]. The result was further proved by Aller et al. who

reported that the application of Lactobacillus bulgaricus

and Streptococcus thermophilus significantly reduced the

blood levels of ALT, AST and c-glutamyltransferase (c-
GT) in patients with NAFLD, indicating the improved liver

function [59].

Probiotic treatment can protect the gut barrier from

being damaged. The work by Karczewski et al. demon-

strated that administration with L. plantarum strain WCFS1

enhanced the expression of Zonula occludens-1 (ZO-1) and

Occludin close to the tight-junction structures [60].

MIYAIRI 588, a specific phenotype of the strain C.

butyricum, has been used as a probiotic for treating colitis

and antimicrobial-associated diarrhea [61, 62]. A recent

study suggested that MIYAIRI 588 prevented the pro-

gression of steatosis to liver carcinogenesis in a rat NAFLD

model [63]. Parallel studies from another group confirmed

the same result, in which MIYAIRI 588 improved HFD-

induced fatty liver in rats [64].

Collectively, these studies indicate that probiotics play a

therapeutic role in NAFLD treatment. It seems that dif-

ferent probiotics may act on different target organs by

changing the composition of intestinal microflora, pro-

ducing antimicrobial peptides, reducing intestinal perme-

ability or preventing the translocation of bacterial products
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[53]. Due to the multiple pathologic mechanisms of

NAFLD, the combined administration of several probiotic

strains may be more effective than a single one [65, 66].

Additionally, there are still some questions to be elucidated

for the role of probiotics against NAFLD. For example, it is

not clear how probiotics act on their specific target organs,

and studies are required to clarify the crosstalk between

probiotics and original bacterial inhabitants in the gut.

Noticeably, though probiotics have been recognized as a

potential therapeutic tool for NAFLD, their beneficial

effect should be further demonstrated by large randomized

and controlled studies [67]. Until now, most of the studies

that demonstrate the therapeutic effects of probiotics were

mainly from Middle East countries. It is well known that

the composition of gut microbiota is highly heterogeneous

among the populations from different regions. Hence, the

beneficial effects of probiotics on NAFLD/NASH need to

be verified among people with ethnic difference, and the

optimal formulations and dosages are also required to be

determined in the development of commercialized probi-

otic products.

Application of prebiotics and synbiotics to NAFLD

treatment

Prebiotics, which contain no living microorganisms, are

nondigestible food ingredients that can selectively promote

the proliferation and/or activity of one or several gut

microbes [68]. Synbiotics are combination of prebiotics

and probiotics [69]. It is estimated that the average intake

of prebiotic fiber is 1–4 g/d in United States and

3–11 g/days in Europe, which is related to the dietary

habits of local residents [70]. In animal models, prebiotics

are usually used at doses of 5–20% by weight.

There are numerous in vitro and clinical studies

demonstrating that prebiotics and synbiotics can be used to

treat NAFLD (Table 1). Common prebiotics include

oligofructose (OFS), lactulose, inulin and Synergy1� [71].

The de novo lipogenesis pathway was found to be threefold

higher in patients with NAFLD, indicating that the

increased de novo lipogenesis is a key feature of this dis-

ease [72]. Prebiotic supplementation may improve NAFLD

by reducing the fatty acid synthesis pathway as has been

shown in animal experiments [71, 73]. Kok et al. reported

that feeding with 10% of oligofructose, a nondigestible but

fermentable oligomer of b-D-fructose, significantly allevi-

ated fructose-induced hepatic triglyceride (TG) accumula-

tion in rats [74]. The decreased lipogenic capacity was due

to the reduced gene expression of enzymes which regulated

hepatic lipogenesis, such as acetyl co-A carboxylase and

fatty acid synthase (FAS) [75, 76]. Cani et al. proved that

dietary supplementation with oligofructose improved body

weight gain, reduced adipose development, and controlled

HFD-induced inflammation [77]. The study also suggests

that oligofructose might control the occurrence of meta-

bolic diseases by modifying gut microbiota in favor of

Bifidobacterial, which has been shown to improve mucosal

barrier function and reduce the level of gut endotoxin

[77–79]. In recent years, our group focused on the

improvement of prebiotic supplement on metabolic syn-

drome in obese or HFD-fed mice [80, 81]. The results

indicate that chitosan oligosaccharides (COS), oligomers of

b-(1–4)-linked D-glucosamine, displayed dramatically

suppressive effect on glucolipid metabolism disorder,

including alleviation of insulin intolerance, and prevention

of intestinal barrier damage [80]. COS treatment also

reshaped the unbalanced gut microbiota in NAFLD mice

by upregulating populations of Lach-

nospiraceae_UCG_001 and Akkermansia, and reducing

abundances of Lachnospiraceae NK4A136 group, Alistipes,

Helicobacter and Odoribacter [80]. In parallel studies,

treatment with N-acetylated chitooligosaccharides

(NACOS) prevented the occurrence of NAFLD in HFD-fed

mice by suppressing hepatic inflammation and lipid accu-

mulation and promoting the growth of beneficial gut bac-

teria [81].

Other preclinical and clinical trials to test the potential

benefits of prebiotics on NAFLD patients are underway

(Table 1). More recently, in a pilot clinical trial, 14 NASH

patients were allocated to oligofructose or placebo inter-

vention for 9 months [82]. Despite no changes in body

mass index (BMI), oligofructose treatment significantly

improved hepatic steatosis and NAS score. In addition,

oligofructose supplementation increased the abundance of

Bifidobacterium spp, which was inversely associated with

obesity and plasma LPS [83, 84].

In the previous study, Eslamparast et al. found that the

synbiotic plus lifestyle modification was superior to life-

style modification alone for NAFLD treatment [58]. Sim-

ilar result was reported by Mofidi et al. who provided

evidence that synbiotic supplementation improved the

main features of NAFLD in patients with normal and low

BMI through reduction in inflammatory indices [85]. In

both clinical trials, patients were assigned to consume the

same synbiotic capsules, containing seven strains of bac-

teria and fructo-oligosaccharide. Although the data from

trials have shown that synbiotics may alter the progression

of NAFLD (Table 1), the exact mechanism of their thera-

peutic effects remains to be determined, and the future

work should focus on the elucidation of host energy bal-

ance, regulators of metabolism, as well as reshaping of gut

microbiota in NAFLD.

Based on the results from animal experiments and

clinical trials, both prebiotics and synbiotics have been

recognized as a potential therapeutic tool for NAFLD.

However, given the limited investigation in this field, the
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generalization of prebiotics/synbiotics for treatment of

NAFLD needs to be confirmed by high-quality clinical

trials. Additionally, though prebiotics are constituents of

natural foods, there were still studies showing that the

consumption of prebiotics in excess of 30 g/days would

cause adverse gastrointestinal effects such as flatulence

[86]. In considering the vast differences in intestinal

microbiota, dietary habits and host health status, the doses

of therapeutic prebiotics/synbiotics should be individually

customized in clinical application.

Targeting bile acid-related signaling pathways

for NAFLD treatment

Bile acids are synthesized in hepatocytes via the oxidation

of cholesterol and further converted to secondary bile acids

by gut microbes [87]. After the transformation, about 95%

of intestinal bile acids are reabsorbed across apical brush

border membrane mediated by the apical sodium-depen-

dent bile acid transporter (ASBT) in terminal ileum and

then transported to liver via the portal vein, where they are

absorbed by hepatocytes and resecreted into the bile [88].

In the intestinal tract, bile acids bind to receptors such as

farnesoid X receptor (FXR) and Takeda G-protein-coupled

receptor 5 (TGR5) to activate bile acid-related signaling

pathways (Fig. 3) [89, 90], which will be involved in the

development and progression of NAFLD/NASH [8]. And

the exact mechanism is related to microbial enzymes,

which are secreted by intestinal microorganisms and have

various activities such as deconjugation, dehydroxylation

and oxidation [91]. Emerging evidences suggest that gut

microbes can regulate the pool size and composition of bile

acids. For example, a small populations of Clostridium at

genus level, including C. hiranonis, C. sordelli and C.

hylemonae, are capable of producing secondary bile acids

[92]; Bacteroides are the predominant intestinal bacteria

responsible for conversion of CDCA to LCA by 7a-dehy-
droxylase activity [93]. On the other hand, the composition

of gut microbiota can be altered by bile acids, FXR ago-

nists and inhibitors against the bile acid absorption. It was

demonstrated that cholic acid intake promoted the growth

of several intestinal bacteria such as Clostridia and Erysi-

pelotrichi in a rat model [94]. In a recent study, Pathak

et al. investigated the effect of fexaramine (an intestine-

restricted FXR agonist) on gut microbiome, hepatic glu-

cose and insulin sensitivity. This study revealed that fex-

aramine treatment increased the abundances of

Acetatifactor, Bacteroides, Shewanella, Alistipes, Heli-

cobacter and Flavonifractor, but suppressed the growth of

Barnesiella, Prevolella, Clostridium sensu stricto, Turi-

cibacter, unclassified Prevotellaceae, unclassified Desul-

fovibrionaceae and unclassified Turicibacter [95]. Further

studies indicate that bile acids can change the composition

of gut microbes through direct antimicrobial action or

FXR-induced antimicrobial peptides such as cathelicidin

[94, 96]. As a major regulator of bile acid homeostasis, the

expression of FXR was significantly decreased in livers of

obese mice and patients with NAFLD [97, 98]. Moreover,

the mice with FXR gene knockout exhibited liver steatosis

and hyperlipidemia, which could be ameliorated by acti-

vation or overexpression of FXR [99, 100]. Bile acids and

their related signaling pathways, mainly through activation

of FXR and TGR5, play the key role in improving glucose/

lipid metabolism as well as intestinal barrier function

[8, 101].

Considering the effect of FXR and TGR5 signaling on

glucose and lipid metabolism, it is believable that the

molecules which can modulate both receptors (i.e., FXR

agonists) or regulate endogenous levels of bile acids might

have therapeutic effects on NAFLD/NASH (summarized in

Fig. 3).

FXR agonists

It has been proved that FXR activation reduced the syn-

thesis of bile acids and promoted their conjugation, trans-

portation and efflux, thus protected liver from adverse

effects triggered by excessive bile accumulation

[102, 103]. So far, the frequently used FXR agonists are

mainly as follows: natural FXR ligands (ursodeoxycholic

acid, UDCA), nonsteroidal molecules (WAY-362450, PX-

102 and GW4064) and derivatives of bile acids (obeti-

cholic acid) [104].

UDCA, a naturally occurring hydrophilic bile acid, has

been used to treat cholestatic liver diseases [105]. Recently,

UDCA is considered as a potential therapeutic agent for

NAFLD, and a small pilot trial shows that UDCA treatment

significantly improved the liver enzymes and hepatic

steatosis in NASH patients, but large-scale studies suggest

that UDCA was not effective for patients with NASH

[106–108]. Therefore, the efficacy of UDCA for NAFLD/

NASH treatment is required to be further confirmed.

WAY-362450 (also known as XL335 or FXR-450)

developed by Flatt et al. is a highly potent and selective

FXR agonist [109]. In the study using a mouse NASH

model, WAY-362450 administration for 4 weeks signifi-

cantly attenuated the inflammation and fibrosis in liver and

reduced the levels of serum ALT and AST [110].

Px-102 (also known as Px20606), a synthetic FXR

agonist, could potently lower the serum cholesterol level

and significantly reduce the size of atherosclerotic plaques

in animal models [111]. Oral treatment with Px-102 also

reduced liver fibrosis development. Moreover, Px-102

reduced intestinal inflammation and bacterial migration

from gut [112]. GW4064 is another selective nonsteroidal

FXR agonist. As early as in 2006, Zhang et al.
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demonstrated that treatment with GW4064 significantly

alleviated hyperglycemia and hyperlipidemia in diabetic

db/db mice [99]. The FXR activation by GW4064 also

alleviated diet-induced obesity and suppressed hepatic

steatosis and insulin resistance [113]. Moreover, Yao and

colleagues confirmed that GW4064 attenuated hepatic

inflammation in a murine NAFLD model by suppressing

the levels of proinflammatory cytokines and decreasing

macrophage infiltration [114]. Collectively, these findings

suggest that FXR activation by GW4064 may be a potential

therapeutic option for NAFLD patients.

Among the reported FXR agonists, Obeticholic acid

(also known as INT-747) was the most investigated one.

Obeticholic acid, a 6a-ethyl derivative of CDCA, is a

clinical-stage FXR agonist [115]. Len et al. reported that

the treatment of Obeticholic acid exerted protective effect

on cholestatic liver injury of rats [116]. The effect of

Obeticholic acid on hepatic steatosis was studied in a

NAFLD rat model, and the result shows that Obeticholic

acid effectively improved the insulin resistance and lipid

abnormalities, leading to a robust decrease in liver fibrosis

[100]. Until now, the clinical studies using Obeticholic acid

are still under way. In 2013, Mudaliar et al. first reported

that Obeticholic acid treatment led to improved insulin

sensitivity, suppressed hepatic inflammation and reduced

fibrosis in patients with NAFLD [117]. Recently, a

Fig. 3 Schematic summary of bile acid (BA) biosynthesis, transport

and metabolism. BAs are synthesized in hepatocytes via cytochrome

P450 (CYP)-mediated oxidation of cholesterol to the primary bile

acids through ‘‘classical’’ and ‘‘alternative’’ pathways, in which

cholesterol 7-a-monooxygenase (CYP7A1) and sterol 27-hydroxylase

(CYP27A1) are the major limited enzymes, respectively. BAs are

transported into the bile canaliculus by bile salt export pump (BSEP).

In ileum, bile salts are reabsorbed via apical sodium-dependent bile

salt transporter (ASBT) in terminal ileum enterocytes. Activation of

farnesoid X receptor (FXR) by bile salts releases fibroblast growth

factor 19 (FGF19) into the portal circulation. FGF19 binds to its

receptor fibroblast growth factor receptor 4 (FGFR4), and inhibits

CYP7A1, thus repressing bile acid synthesis in hepatocytes. BAs in

ileum enterocytes can also be secreted into the portal vein by organic

solute transporter a/b (OST a/b), and then transported to hepatocytes

via Na?-taurocholate cotransporting polypeptide (NTCP). In liver,

BAs from the portal circulation bind to FXR, which activates small

heterodimer partner (SHP) to repress CYP7A1. Primary bile acids

(CA, CDCA) from the host are ligands for FXR, while secondary bile

acids (LCA, DCA) from the microbiota are preferential ligands for

Takeda-G-protein-receptor 5 (TGR5, also known as GPBAR1). In the

ileal endocrine cells (L cells), activation of TGR5 stimulates the

release of glucagon-like peptide-1 (GLP-1), which induces insulin

secretion from the pancreas, and suppresses appetite and slows down

gastric emptying. In addition, GLP-1 can inhibit liver fat accumula-

tion via the cAMP/AMPK signaling pathway. CA cholic acid, CDCA

chenodeoxycholic acid, LCA lithocholic acids, DCA deoxycholic

acid, FFA free fatty acid, SREBP-1 sterol regulatory element-binding

protein 1
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placebo-controlled clinical trial has been conducted to

evaluate the effect of Obeticholic acid in adults with NASH

[118]. In this study, patients were randomly assigned to

receive Obeticholic acid or placebo for 72 weeks. Com-

pared with the placebo group, treatment with Obeticholic

acid was associated with the improvement in histological

features of NASH, including hepatic steatosis, inflamma-

tion and hepatocellular ballooning. However, there were

also adverse events observed in this clinical study such as

abnormal cholesterol metabolism and the occurrence of

pruritus. Hence, further studies should be conducted to

confirm the long-term safety by Obeticholic acid

administration.

Besides Obeticholic acid, some other FXR agonists are

being tested in ongoing clinical trials (Table 2). For

instance, the non-bile acid FXR agonist Tropifexor

(LJN452) is being investigated in a double-blind, phase II,

clinical trial in NASH patients (ClinicalTrials.gov identi-

fier: NCT02855164). In addition, another clinical trial is

being conducted to test the safety, tolerability and phar-

macodynamics of a synthetic FXR agonist EYP001a in

patients with NASH and to evaluate the influence of

EYP001a on bile acid metabolism (NCT03976687).

Inhibitors against bile acid absorption

Given that bile acid sequestrants have displayed improving

effects on hepatic metabolism diseases, the blockade of

intestinal bile acid absorption through sequestration rep-

resents a new strategy against NAFLD [8].

Colesevelam, a bile acid sequestrant, is a hydrophobic

polymer with negligible absorption and systemic distribu-

tion. Colesevelam can block the enterohepatic circulation

of bile acids and leads to increased conversion of choles-

terol to bile acids in liver. In addition, Colesevelam treat-

ment could reduce the plasma level of low-density

lipoprotein cholesterol (LDL) and improve glycemic status

in type 2 diabetic patients [119]. However, in a randomized

and placebo-controlled clinical trial, Colesevelam treat-

ment caused increased liver fat accumulation in patients

with NASH while reduced LDL cholesterol [120]. Com-

pared with Colesevelam, Colestimide (an anion-exchange

resin) displayed a good therapeutic effect on patients with

NASH and had no obvious side effects [121]. In the open-

label trial, NASH patients treated with Colestimide

(3 g/day) for 24 weeks showed significantly reduced levels

of BMI and LDL cholesterol. Colestimide treatment was

also associated with the significantly decreased visceral fat

and ameliorated liver steatosis, which is the mainstay of

NASH treatment.

Besides bile acid sequestrants, some ASBT inhibitors

have been demonstrated to reduce the bile acid pool size

and attenuate the hepatic inflammation and fibrosis [122].

In this respect, Anuradha et al. reported that the pharma-

cological blockade of ileal ASBT function using a lumi-

nally restricted inhibitor (SC-435) protected HFD-fed mice

Table 2 Compounds under clinical investigation for NAFLD/NASH, targeting the bile acid-related pathways

Intervention Agent Trial phase Target population Results Clinical Trials ID References

FXR Agonists Obeticholic

acid

Phase 2 NAFLD, n = 64 Reduction in body weight, hepatic

inflammation and fibrosis, improved

insulin sensitivity

NCT00501592 [117]

FXR Agonists Obeticholic

acid

Phase 2 NASH, n = 283 Reduction in ALT, AST, and c-
glutamyl transpeptidase, improved

histological features of NASH

NCT01265498 [118]

FXR Agonists Tropifexor Phase 2 NASH, n = 351 No results posted NCT02855164 –

FXR Agonists EYP001a Phase 1 NASH, n = 12 No results posted NCT03976687 –

FXR Agonists Cilofexor Phase 2 NASH, n = 395 No results posted NCT03449446 –

FXR Agonists Px-104 Phase 2 NAFLD, n = 12 No results posted NCT01999101 –

Bile acid

sequestrant

Colesevelam Phase 2 NASH, n = 54 Reduced LDL cholesterol, increases

liver fat slightly

NCT01066364 [148]

Bile acid

sequestrant

Colestimide - NASH, n = 38 A significant decrease of BMI, low-

density lipoprotein cholesterol, and

liver steatosis

– [121]

ASBT inhibitor Volixibat Phase 2 NASH, n = 197 As none of the volixibat doses met the

prespecified efficacy endpoints, the

study was terminated

NCT02787304 -

ASBT inhibitor Volixibat Phase 1 Obese and

overweight

adults, n = 84

Increased bile acid synthesis,

reductions in total cholesterol, and

low-density lipoprotein cholesterol

levels

NCT02287779 [149]

No Results Posted no results have been submitted to ClinicalTrials.gov
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against NAFLD [123]. The authors observed that oral

administration of SC-435 increased fecal bile acid excre-

tion and suppressed mRNA levels of bile acid-responsive

genes in ileum. Furthermore, SC-435 improved insulin

sensitivity and prevented hepatic accumulation of triglyc-

eride. More recently, a randomized placebo-controlled trial

demonstrated that Volixibat, another ASBT inhibitor,

increased the excretion of fecal bile acid and serum levels

of 7a-hydroxy-4-cholesten-3-one (a bile acid synthesis

biomarker) in healthy adults and patients with type 2 dia-

betes mellitus [124], further supporting the mechanistic

rationale for application of ASBT inhibitors to NASH

treatment. Generally, research about the effect of ASBT

inhibitors on NAFLD are focused on the preclinically

mechanistic studies. Thus, the well-controlled clinical trials

are needed to determine the equivalence of these ASBT

inhibitors between murine NAFLD/NASH models and

human population.

Role of intestinal hormones in the pathogenesis

of NAFLD

Gastrointestinal tract is the largest endocrine organ in

human body and secretes more than 20 different intestinal

hormones [125]. Several G protein-coupled receptors (e.g.,

GPR41, TGR5) exist on the membrane of enteroendocrine

L cells. The nutritional elements and some hormonal fac-

tors (insulin and leptin) can stimulate these receptors to

induce the secretion of intestinal hormones such as ghrelin,

Peptide YY and glucagon-like peptide 1/2 (GLP-1/2)

[126, 127]. After being transported into systemic circula-

tion, the intestinal hormones act on their target organs such

as liver, adipose tissue and intestinal tract, thereby regulate

NAFLD-related metabolic indices including glucose

metabolism, insulin resistance and metabolic inflammation

[128, 129]. Besides, intestinal hormones can be affected by

the metabolites of gut microbiome, i.e., SCFAs [130]. A

number of studies have suggested that intestinal hormones

are critical to the pathogenesis of NAFLD and may become

attractive targets for treatment of such disease [131, 132].

GLP-1, an incretin hormone secreted by L cells, can

enhance glucose-induced insulin and inhibit the release of

glucagon. The GLP-1 receptor agonist liraglutide has been

recognized as a promising option for obesity treatment

[133]. Wang et al. investigated the mechanism about the

effect of liraglutide on weight control and reported that

liraglutide could change the overall structure of intestinal

microbiota in mice, leading to more lean-related phylo-

types [134]. More recently, Moreira and co-workers

investigated the effect of liraglutide on NAFLD in murine

models of obesity [135]. It was found that liraglutide

treatment led to obvious weight loss in obese mice,

accompanied by the attenuated hepatic lipid accumulation.

Moreover, microbiota analysis illustrated that liraglutide

modified the diversity of gut microbiota by reducing the

population of Proteobacteria and increasing the content of

Akkermansia muciniphila, which were correlated with

improved symptoms of NAFLD. Several clinical studies

also demonstrated the efficacy and safety of liraglutide in

patients with NASH or NAFLD [129, 136, 137]. Never-

theless, these clinical trials have not confirmed whether

liraglutide exerts the efficacy by regulation of gut micro-

biota, and further investigations deserve to be performed to

explore the potential relationship between therapeutic

effect of liraglutide and its modulation on gut microbiota in

patients with NAFLD or NASH.

Application of adsorbent and fecal microbiota

transplantation to NAFLD treatment

Endotoxaemia is also implicated in the pathogenesis of

NAFLD [36]. By using adsorbents (a series of highly

adsorptive materials), the toxins and bacterial products in

gut were bound and thereby their flow into the liver and

systemic circulation were suppressed [138, 139]. Since

adsorbents fail to be adsorbed or degraded in gastroin-

testinal tract, they were mainly discharged in the way of

stool. For example, AST-120 is a spherical carbon adsor-

bent (0.2–0.4 mm in diameter) with broad non-specific

binding surface area ([ 1600 m2/g), the application of

which effectively lowered absorption of gut-derived

ammonia into the body circulation in rats with chronic liver

failure [140]. Recently, a synthetic activated carbon,

i.e.,Yaq-001 (Yaqrit Ltd. UK), has been developed with

optimized pore size in both macro- and micro-porous range

[141]. Yaq-001 can selectively absorb intestinal-derived

toxins such as cytokines, hydrophobic bile acid and bac-

terial products. Oral Yaq-001 therapy revealed a significant

reduction in ALT and hepatic TLR-4 expression in rodents

with NAFLD [142]. Currently, the clinical trials to assess

therapeutic effect of Yaq-001 are under investigation as a

part of the European Commission Horizon 2020 program

(carbalive.eu) [141].

Fecal microbiota transplantation (FMT) is a new

approach to clinical treatment, in which gut microbes are

transferred from healthy donor to diseased recipient. By

this way, a ‘healthy’ gastrointestinal microbiota may be

reconstructed. Zhou and co-workers found that FMT

intervention remarkably increased the concentration of

butyrate in fecal contents and improved the tight junction

of small intestine. This study further proved that FMT

attenuated steatohepatitis in mice by a beneficial regulation

of gut microbiota [143]. A growing interesting in FMT and

its potential in liver diseases has been reflected in ongoing

trials such as NAFLD/NASH (NCT03803540,

NCT02469272 and NCT02721264) and liver cirrhosis

J Gastroenterol (2020) 55:142–158 153

123



(NCT02862249). In the future, further high-quality clinical

data are needed to determine the efficacy and safety of

FMT. And standardized protocols should be formed such

as sample preparation, archiving, formulations and

dosages.

Perspectives and conclusions

NAFLD is a very common and severe disease which leads

to cirrhosis and hepatocellular carcinoma and the preva-

lence of NAFLD/NASH is increasing worldwide. Intestinal

microbiome mainly includes bacteria, archaea, fungi and

viruses, and the association of non-bacterial gut microbes

with human liver diseases should be paid more attention in

the future. Recently, a series of studies have confirmed the

critical role of intestinal microbiota in the maintenance of

gut–liver axis balance and occurrence of NAFLD. Thereby,

it is logical to target the gut–liver axis (especially the gut

microbiota) to develop new strategies for NAFLD therapy.

So far, high-quality preclinical researches and few ran-

domized controlled trials have demonstrated the effec-

tiveness of these therapies in NAFLD management.

Considering that multiple therapeutic candidates based on

gut–liver axis are still in the stages of in vitro or preclinical

studies, more well-designed and mechanism-based labo-

ratory and/or clinical investigations are required to confirm

the efficacy of these medical agents for treatment of

NAFLD.
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