
The signal transduction cascade of depolarizing bipolar 
cells (DBCs) is initiated when a light-induced reduction in 
glutamate release from photoreceptor terminals is sensed by 
the metabotropic glutamate receptor 6 (mGluR6) [1,2]. DBC 
activity underlies the b-wave component of the electroret-
inogram (ERG) [3-7], and the b-wave is missing in humans 
carrying mutations in GRM6 (OMIM 604096) [8,9], and 
in mouse models lacking mGluR6 due to null mutations in 
Grm6 [10-13].

We recently reported the Grm6nob8 mutant mouse model 
in which the ERG b-wave is reduced but is not eliminated 
[14]. The mouse carries a missense mutation, p.Met66Leu. 
Immunohistochemistry documented abnormal distribution 
of mGluR6, with a substantial fraction retained within the 
DBC soma and abnormally low levels of mGluR6 at the DBC 

dendritic tips. In the Grm6nob8 model, mutant mGluR6 was 
abnormally glycosylated, a state that has been shown to result 
in abnormal trafficking of other G-protein coupled receptors 
[15-17].

In the present report, we follow up on the observation 
in the mouse model mentioned above in two respects. To 
determine whether reducing levels of mutant mGluR6 might 
normalize localization within Grm6nob8 DBCs, we genetically 
reduced the amount of mGluR6 by crossing the Grm6nob8 
mutant with a Grm6 null model (Grm6nob3). Although we are 
unaware of a comparable approach, we note that mislocalized 
mutant proteins are associated with neuronal degeneration 
in other systems [e.g., 18,19]. Given the relevance of Grm6 
mutant mice to the human condition complete congenital 
stationary night blindness (cCSNB) [14] and the identification 
of human mutations near the nob8 locus [20], we examined 
the retinal structure and function in Grm6nob8 mice at ages up 
to 1 year old.
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Purpose: The Grm6nob8 mouse carries a missense mutation in the Grm6 gene (p.Met66Leu), and exhibits a reduced 
b-wave of the electroretinogram (ERG), abnormal localization of metabotropic glutamate receptor 6 (mGluR6) to the 
depolarizing bipolar cell (DBC) soma, and a reduced level of mGluR6 at the DBC dendritic tips. Although the underlying 
mechanism remains unknown, one possible explanation is that DBCs cannot efficiently traffic the mutant mGluR6. In 
that scenario, reducing the total amount of mutant mGluR6 protein might normalize localization, and thus, improve the 
ERG phenotype as well. The second purpose of this study was to determine whether the abnormal cellular distribution 
of mutant mGluR6 in Grm6nob8 retinas might induce late onset DBC degeneration.
Methods: We crossed Grm6nob8 animals with Grm6nob3 mice, which carry a null mutation in Grm6, to generate Grm6nob3/

nob8 compound heterozygotes. We used western blotting to measure the total mGluR6 content, and immunohistochemistry 
to document mGluR6 localization within DBCs. In addition, we examined outer retinal function with ERG and retinal 
architecture in vivo with spectral domain optical coherence tomography (SD-OCT).
Results: The retinal content of mGluR6 was reduced in the retinas of the Grm6nob3/nob8 compound heterozygotes compared 
to the Grm6nob8 homozygotes. The cellular distribution of mGluR6 in the Grm6nob3/nob8 compound heterozygotes matched 
that of the Grm6nob8 homozygotes, with extensive expression throughout the DBC cell body and limited expression at the 
DBC dendritic tips. The dark-adapted ERG b-waves of the Grm6nob3/nob8 mice were reduced in comparison to those of the 
Grm6nob8 homozygotes at postnatal day 21 and 28. The overall ERG waveforms obtained from 4- through 68-week old 
Grm6nob8 mice were in general agreement for dark- and light-adapted conditions. The maximum response and sensitivity 
of the dark-adapted ERG b-wave did not change statistically significantly with age. SD-OCT revealed the maintained 
laminar structure of the retina, including a clear inner nuclear layer (INL) at each age examined (from 11 to 57 weeks 
old), although the INL in the mice older than 39 weeks of age was somewhat thinner than that seen at 11 weeks.
Conclusions: Mislocalization of mutant mGluR6 is not normalized by reducing the total mGluR6. Mislocalized mutant 
mGluR6 does not trigger substantial loss of DBCs.
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METHODS

Mice: Mice were obtained from the Jackson Laboratory 
(Bar Harbor, ME). The lines used were CBA/CaJ that are 
homozygous for the Grm6nob8 allele (stock #000654; hereafter 
Grm6nob8), C57BL/6J (stock #000664), and B6.B10(D2)-
Grm6nob3/BOC mice that are homozygous for a null muta-
tion in Grm6 [12]; hereafter, Grm6nob3. In addition to these 
homozygous lines, we crossed Grm6nob8 and Grm6nob3 mice 
to generate Grm6nob3/nob8 compound heterozygotes. Mice were 
housed conventionally, in microisolator cages with free access 
to food and water. All procedures involving live animals were 
approved by the Cleveland Clinic Institutional Animal Care 
and Use Committee, and were conducted in accordance with 
the ARVO Statement for the Use of Animals in Ophthalmic 
and Vision Research.

Western blotting: Mouse retinas were isolated and homog-
enized in lysis buffer (1% Nonidet P40, 2 mM EDTA, and 
20 mM HEPES, pH 7.4, supplemented with protease inhibitor 
cocktail (P8340, Sigma-Aldrich, St. Louis, MO), and lysed 
further by rotating at 4 °C for 45 min. Homogenates were 
cleared by centrifugation at 17,000 ×g for 20 min at 4 °C. 
Protein samples were separated with sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–PAGE) and trans-
ferred to polyvinylidene fluoride (PVDF) membranes, and 
immunoblotting was performed as described previously [21]. 
Protein bands were visualized by scanning the membranes 
in an Odyssey Infrared Imaging System (LI-COR, Lincoln, 
NE) using 700 nm and 800 nm channels. Band densities 
were quantified using Image Studio Version 5.0 software 
(LI-COR).

Immunohistochemistry: At 4 weeks, the mice were euthanized 
with carbon dioxide inhalation, and the eyes were enucleated. 
Dissected retinas were fixed for 20 min by immersion in 4% 
(w/v) paraformaldehyde in 0.1 M phosphate buffer (PB) with 
a pH 7.4, then washed in PB, cryoprotected through a graded 
sucrose series (5%,10%, 15%, and 20% in PB), and frozen 
in OCT (Sakura Finetek, Torrance, CA):20% sucrose (2:1) 
[22]. A cryostat was used to cut 18-μm sections, which were 
then mounted on Super-Frost glass slides (Thermo Fisher 
Scientific, Waltham, MA), air-dried, and stored at −80 °C.

After acclimating to room temperature, the sections were 
washed for 5 min in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4, 1.8 mM KH2PO4, pH 7.4), then another 5 min in 
PBX (PBS containing 0.5% (v/v) Triton X-100), and then incu-
bated for 1 h in blocking solution (PBX containing 5% (v/v) 
normal donkey serum). The retinal sections were incubated 
in primary antibodies diluted in blocking solution, at room 
temperature overnight. The antibody against mouse mGluR6 
amino acids 853–871 (KKTSTMAAPPKSENSEDAK) was 

generated in sheep [23]. Anti-PKCα antibody was used at 
1:1,000 dilution (Sigma, P4334). After incubation with the 
primary antibody, the sections were washed with three 
10-min cycles of PBX and one 10-min cycle of PBS. The 
sections were then incubated at room temperature for 1 h 
with fluorescently labeled secondary antibodies (1:1,000 in 
blocking solution). The secondary antibodies were Alexa 
Fluor 488 donkey anti-sheep and Alexa Fluor 546 donkey 
anti-rabbit (Invitrogen, Carlsbad, CA). The slides were then 
washed three times in PBX and coverslipped with Vectashield 
Mounting Media (Vector Laboratories, Burlingame, CA). The 
sections were imaged on a confocal microscope (Olympus 
FV1000, Center Valley, PA), using a 60X oil objective 
(1.45 NA). Images shown here are maximum projections of 
confocal stacks, after adjustment for contrast and brightness 
with Fluoview software.

Electroretinography: Mice were dark-adapted overnight, 
anesthetized (ketamine: 80 mg/kg; xylazine: 16 mg/kg), and 
administered eye drops for pupil dilation (1% tropicamide; 
2.5% phenylephrine HCl; 1% cyclopentolate HCl) and to 
anesthetize the corneal surface (1% proparacaine HCl). 
Needle electrodes were placed in the cheek (reference) and 
tail (ground). ERGs were recorded using a stainless steel 
electrode wetted with 1% carboxymethylcellulose.

Strobe flash stimuli were presented to the dark-adapted 
eye, and after a minimum of 5 min of light adaptation using 
background illumination at 20 cd/m2. Stimuli ranged from 
−3.6 to 2.1 log cd s/m2. Responses were amplified (0.03–1,000 
Hz), averaged, and stored using an LKC (Gaithersburg, MD) 
UTAS E-3000 signal averaging system.

The amplitude of the dark-adapted ERG a-wave was 
measured from the prestimulus baseline to 8 ms after the 
flash onset. The amplitude of the b-wave was measured from 
the a-wave trough to the positive peak, or from the baseline 
to the positive peak for stimulus conditions that did not evoke 
an a-wave. The amplitude of the light-adapted ERG b-wave 
was measured from the initial negative trough to 40 ms after 
the flash onset.

The stimulus-response function of the dark-adapted 
b-wave was fitted with a hyperbolic equation of the following 
form [24]:

R / Rmax= Ln / (Ln + Kn).	

In this equation, R is the b-wave amplitude, Rmax is the 
maximum b-wave amplitude, L is the flash luminance (log cd 
s/m2), n is a dimensionless slope parameter, and K is the flash 
energy that elicits an amplitude of half Rmax (half-saturation 
coefficient). This model yielded values for two parameters 
(i.e., Rmax and K). Grm6nob3/nob8 and Grm6nob8 mice were tested 
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at postnatal day (P) 15, P21, and P28. The Grm6nob8 mice were 
also tested at 9, 28, 48, and 68 weeks of age.

In vivo retinal imaging: Procedures for animal preparation, 
imaging, and recovery have been published [25,26]. Briefly, 
a Bioptigen (Durham, NC) model SDOIS SD-OCT system 
was used for spectral domain optical coherence tomography 
(SD-OCT) imaging. B-scans were made through the optic 
nerve head at 1,000 A-scans/B-scan × 30 frames. B-scan 
images had dimensions of 0.4 mm (depth) by approximately 
1.6 mm (width), and were exported to ImageJ, coregistered, 
and averaged using StackReg/TurboReg/Plugins [27]. Using 
SD-OCT images taken across the horizontal and vertical 
meridians from each mouse, the thickness of the inner nuclear 
layer (INL) was measured at a point midway between the 
optic nerve head and the edge of the image. The Grm6nob8 
mice were imaged at three ages (11, 39, and 57 weeks old).

RESULTS

Impact of reduced levels of mutant mGluR6: The Grm6nob8 
retina is characterized by a selective reduction in the ampli-
tude of the ERG b-wave and mislocalization of mGluR6 to 
the cell body of DBCs, as opposed to its normal restriction 
to the DBC dendritic tips [14]. To determine whether either 
of these abnormalities might be ameliorated by reducing 
the total amount of mutant mGluR6 protein, we compared 
these features in Grm6nob8 homozygotes and Grm6nob3/nob8 
compound heterozygotes. These mice differ with respect 
to the total content of mGluR6, with retinas of Grm6nob3/

nob8 compound heterozygotes having approximately half 
compared to Grm6nob8 homozygotes (Figure 1A,B).

The mGluR6 expression was observed only in the 
DBC dendritic tips of the control mice (Figure 2A,C), with 
no overlap with PKCα labeling in the DBC soma (Figure 
2B,C). In the Grm6nob8 homozygotes, mGluR6 expression 
was reduced (Figure 1D) and colocalized with PKCα in 
DBC soma (Figure 2E,F). The distribution of mGluR6 in the 
Grm6nob3/nob8 compound heterozygotes (Figure 2G–I) matched 
that of the Grm6nob8 homozygotes with extensive expression 
throughout the cell body and limited expression at the DBC 
dendritic tips. This result indicates that the mislocalization of 
mGluR6 was not corrected when only a single Grm6nob8 allele 
was expressed, resulting in a reduction in the total amount of 
mutant mGluR6 (Figure 1A,B).

When the Grm6nob3/nob8 compound heterozygotes were 
examined with ERG, the results complemented those 
obtained with immunohistochemistry. In Figure 3A, the ERG 
phenotypes of representative Grm6nob8 and Grm6nob3/nob8 mice 
are compared at P28, along with a reference control mouse at 
the same age. The dark-adapted a-waves in the Grm6nob3/nob8 

mice showed amplitudes and kinetics that were comparable to 
those of the Grm6nob8 mice (Figure 3A,B; p>0.05). In contrast, 
the dark-adapted b-waves of the Grm6nob3/nob8 mice were statis-
tically significantly smaller than those in the Grm6nob8 mice 
(Figure 3A,B; p<0.01), consistent with these mice expressing 
a single Grm6nob8 allele. The small b-wave and oscillatory 
potentials present in the dark-adapted ERGs of the Grm6nob3/

nob8 mice are, however, clearly larger than those reported for 
the Grm6nob3 homozygotes [12,13]. There was no statistically 
significant difference in the amplitude of the light-adapted 
b-waves obtained from the Grm6nob8 and Grm6nob3/nob8 mice 
(Figure 3C,D; p>0.05).

We also used ERG to examine mice at younger ages. 
Figure 4 presents representative ERGs obtained from 
Grm6nob8 homozygotes (black) and Grm6nob3/nob8 compound 
heterozygotes (red) at P15 and P21. At P21, a clear albeit 
reduced b-wave was present in all animals, with a greater 
reduction observed in the Grm6nob3/nob8 compound heterozy-
gotes compared to the Grm6nob8 homozygotes. We did not 
detect a b-wave in either the Grm6nob3/nob8 compound hetero-
zygotes or the Grm6nob8 homozygotes at P15, an age when the 
retina is still developing, and the ERG has not taken on an 
adult configuration [28].

Changes in the older Grm6nob8 retina: To examine whether 
the Grm6nob8 phenotype might change with age, we exam-
ined mice at different ages. The overall waveforms of the 
ERGs obtained from 4- and 68-week old Grm6nob8 mice 
were in good general agreement for dark- and light-adapted 
conditions (Figure 5A,C). Figures 5B,D present summary 
luminance-response functions for ERG components obtained 
from mice at 4, 9, 28, 48, and 68 weeks of age. These data are 
not indicative of a progressive age-related change in the ERG 
amplitude. We further analyzed the dark-adapted b-wave 
luminance-response functions using the Naka-Rushton equa-
tion, which derives two parameters: the maximum response 
(Rmax) and the sensitivity (K). The Rmax values appeared to 
decrease slightly with age, which is in good agreement with 
a previous report showing a slight decrease in the ERG ampli-
tude with age in wild-type mice [29]. When the values seen 
at the youngest age (4 weeks old) were compared to the later 
time points, the difference was not statistically significant 
(Figure 5E; p>0.05). The sensitivity parameter K trended 
upward with age (Figure 5F). When the K values of the 
4-week-old mice were compared to those obtained from the 
two oldest ages, there was no statistically significant differ-
ence (p>0.05). Together, these results indicate that retinal 
dysfunction in Grm6nob8 mice is not progressive.

In Figure 6A, the SD-OCT images taken across the hori-
zontal meridian from Grm6nob8 mice at 11, 39, and 57 weeks 
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Figure 1. Western blotting analysis 
of mGluR6 content in WT and 
Grm6 mutants. A: Western blots 
for mGluR6 in wild-type (WT; 
lanes 1 and 2), Grm6nob8 homozy-
gotes (lanes 3 and 4), Grm6nob3/nob8 
compound heterozygotes (lanes 5 
and 7), and a Grm6nob3 homozygote 
(lane 6). B: Densitometric analysis 
of western blots, demonstrating 
that mGluR6 levels are dramati-
cally reduced in all Grm6 mutants, 
and that mGlur6 levels of Grm6nob3/

nob8 compound heterozygotes are 
reduced to approximately half of 
the levels seen in Grm6nob8 homo-
zygotes. Each bar indicates average 
+/− standard error of three samples. 
Statistically significant differences 
were detected between groups 
with Aspin-Welch’s t test (*p<0.05, 
**p<0.01). 
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of age are compared. At each age examined, a clear INL, 
housing bipolar cell nuclei, was seen in the Grm6nob8 mice. 
Although the INL thickness in the mice at 39 weeks or older 
was thinner than that at 11 weeks old (Figure 6B), the laminar 
structure of the retina was maintained until the oldest age 
was tested.

DISCUSSION

Unlike other Grm6 mouse models, where the retina lacks 
mGluR6 protein due to a null mutation [10-13], mGluR6 
is detected in the Grm6nob8 retina [14]. The distribution of 
the mutant protein differs from that of the wild type. First, 
mGluR6 is clearly seen in the DBC soma. Second, the amount 

of protein that is successfully trafficked to the DBC dendritic 
tips is reduced. In agreement with mislocalized mGluR6, the 
ERG b-wave is reduced in Grm6nob8 mice, and retinal ganglion 
cell function is also impaired [14]. The mislocalization of 
mutant mGluR6 could be related to abnormal protein folding 
and trafficking mechanisms, secondary to the abnormal 
glycosylation of mGluR6 noted in the Grm6nob8 retina [14].

We hypothesized that reducing the total amount of mutant 
mGluR6 protein might improve the amount of mGluR6 that 
is successfully delivered to the DBC dendritic tips. Previous 
studies demonstrated that a single copy of WT Grm6 is suffi-
cient to support normal DBC function [30], and therapeutic 
strategies (such as hammerhead ribozymes) exist to reduce 

Figure 2. Cellular localization 
of mGluR6 and PKCα in retinas 
from the mice at 4 weeks of age. 
In contrast to the control retinas 
(A–C), the Grm6nob3/nob8 retinas 
(G–I) exhibited a similar mGluR6 
distribution pattern to that of the 
Grm6nob8 retinas (D–F). Scale bars: 
10 μm. OPL, outer plexiform layer.
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Figure 3. Comparison of ERGs from control, Grm6nob8, and Grm6nob3/nob8 mice at P28. ERGs were elicited under dark-adapted (A) or light-
adapted (C) condition. Flash strength (in log cd s/m2) is indicated on the left of each set of waveforms. B: Amplitude of dark-adapted a- and 
b-waves plotted as a function of flash luminance. D: Amplitude of light-adapted b-wave plotted as a function of flash luminance. In B and 
D, each plot indicates average +/− standard error of four (Grm6nob8) or six (Grm6nob3/nob8) mice. Repeated-measures ANOVA (ANOVA) 
was used to compare response functions. Compared to the Grm6nob8 mice, the Grm6nob3/nob8 mice showed comparable a-wave (p>0.05) and 
reduced b-wave (*p<0.01) under the dark-adapted condition. The difference in the amplitude of the light-adapted b-wave was not statistically 
significant between groups (p>0.05).
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gene expression in the retina [31-33]. This has relevance for 
patients with cCSNB, as some are known to carry mutations 
that lie near the nob8 locus [20], although we do not yet know 
if they also cause mislocalization. To test this hypothesis, 
we generated Grm6nob3/nob8 compound heterozygotes, which 
express a single Grm6nob8 allele; Grm6nob3 is a null mutation 
[12]. In contrast to the possibility that mGluR6 protein and/
or DBC function might be improved in the Grm6nob3/nob8 retina 
compared to the Grm6nob8 retina, we observed neither normal-
ization of mGluR6 localization nor an improved ERG b-wave. 
Instead, the b-wave was reduced in compound heterozygotes. 
These results indicate that simply reducing mutant mGluR6 
protein will not provide a therapeutic avenue, and instead, 
suggest that some other means of improving mGluR6 traf-
ficking to the DBC dendritic tips is needed.

A large number of mouse mutants have been reported 
where the ERG b-wave is reduced or abolished [34]. In 
general, the b-wave is abolished in mice with mutations 
in members of the DBC signaling cascade, including Nyx 
[35,36], Trpm1 [30,37-39], Gpr179 [40], Lrit3 [41-43], Gnb3 
[44], Gnb5 [45], Gna01 [46], and Grm6 [10-12], or in mice 
that lack DBCs [47]. In comparison, the b-wave is reduced 
but not abolished in mice with mutations in proteins that are 
involved in multiple other systems, including the control of 
glutamate release from photoreceptor terminals (Cacna1f 
[48-50], Cacna2d4 [51,52], and Cabp4 [53]), the develop-
ment of retinal vasculature (Fzd4 [54], norrin [55,56], and 
Lrp5 [57]), or the dystroglycan complex (pikachurin [58], 
POMGnT1 [59], and Large [60-62]). Based on the premise that 
the b-wave is abolished in mice with mutations of the DBC 

Figure 4. Comparison of dark-
adapted ERG from Grm6nob8 and 
Grm6nob3/nob8 mice at P15 and P21. 
Flash strength (in log cd s/m2) is 
indicated on the left of each set 
of waveforms. At P15, no obvious 
b-wave was detected either from 
the Grm6nob8 or the Grm6nob3/nob8 
mice. At P21, a clear albeit reduced 
b-wave is present in all animals, 
with a greater reduction observed 
in the Grm6nob3/nob8 mice when 
compared to the Grm6nob8 mice.
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Figure 5. Longitudinal evaluation of ERG phenotype in adult Grm6nob8 mice. Comparison of dark- (A) and light-adapted (C) electroretino-
grams (ERGs) from young adult (4 weeks) and old (68 weeks) Grm6nob8 mice. Flash strength (in log cd s/m2) is indicated on the left of each 
set of waveforms. B: Amplitude of dark-adapted a- and b-waves plotted as a function of flash luminance. D: Amplitude of the light-adapted 
b-wave plotted as a function of flash luminance. In B and D, each plot indicates average +/− standard error of four to five mice. Time course 
change in the maximum response (Rmax, E) and sensitivity (K, F) parameters of the dark-adapted b-wave amplitude. When the Rmax and 
K values of 4-week old mice were compared to those of older mice, the differences were not statistically significant (Aspin-Welch’s t test, 
p>0.05).
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signaling process, we anticipated that the nob8 mice would 
involve one of the processes that reduces but does not abolish 
DBC function [63], and were surprised when the mutation 
in Grm6 was identified [14]. The Grm6nob8 mouse is the first 
mouse mutant to retain a b-wave in the presence of a mutation 
in a component of the DBC signaling cascade, and raises the 
possibility that similar variation may occur in human patients 
with CSNB, who are currently classified into complete and 
incomplete forms based in part on the absence of the b-wave 
in complete CSNB and on the presence of a reduced but not 
abolished b-wave in patients with incomplete CSNB [64]. 
Human patients expressing mutations in the glutamate ligand 
binding domain of GRM6, near the Met66 residue, have been 
reported [20]. It would be of interest to determine if they 
retained a measurable ERG b-wave compared to patients with 
CSNB with other Grm6 mutations.

Protein-misfolding diseases, such as Alzheimer disease 
and Huntington's disease, involve the accumulation of 
misfolded proteins with abnormal conformation in neurons 
[65]. Furthermore, it has been reported that patients with 
complete CSNB harboring a GRM6 mutation showed reduced 

inner retinal thickness with OCT imaging [66]. This moti-
vated us to investigate whether long-term accumulation of 
mutant mGluR6 protein in DBC cell bodies might impact the 
inner retina of Grm6nob8 mice. ERG and SD-OCT analyses of 
Grm6nob8 mice at multiple ages indicate that rod DBC func-
tion is maintained at a reduced but stable level up to 68 weeks 
of age, and that a clear laminar structure of the retina is main-
tained up to 57 weeks old, with only a slight thinning of the 
INL. The absence of major age-related changes in the ERG 
b-wave or in the overall retinal structure indicated that DBCs 
tolerate the presence of mislocalized mutant p.Met66Leu 
mGluR6.
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Figure 6. Longitudinal evaluation 
of SD-OCT image in adult Grm6nob8 
mice. A: The upper image is a 
representative image taken across 
the horizontal meridian from a 
Grm6nob8 mouse at 57 weeks of age 
showing the well-defined laminar 
structure of the retina. Lower 
images were taken from Grm6nob8 
mice at the ages indicated. ELM, 
external limiting membrane; EZ, 
ellipsoid zone; INL, inner nuclear 
layer; IPL, inner plexiform layer; 
ONL, outer nuclear layer; OPL, 
outer plexiform layer; RPE, retinal 
pigment epithelium. B: Thickness 
of the INL at 11, 39, and 57 weeks 
of age. The INL was thicker at 11 
weeks of age, compared to the older 
ages (Aspin-Welch’s t test; *p<0.05, 
**p<0.01). Each plot indicates 
average +/− standard error of four 
(11 weeks old) or three (39 and 57 
weeks old) mice.
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