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Abstract. We sought to characterize local lung complexity in chest computed tomography (CT)
and to characterize its impact on the detectability of pulmonary nodules. Forty volumetric chest
CT scans were created by embedding between three and five simulated 5-mm lung nodules into
one of three volumetric chest CT datasets. Thirteen radiologists evaluated 157 nodules, resulting
in 2041 detection opportunities. Analyzing the substrate CT data prior to nodule insertion,
14 image features were measured within a region around each nodule location. A generalized
linear mixed-effects statistical model was fit to the data to verify the contribution of each metric
on detectability. The model was tuned for simplicity, interpretability, and generalizability using
stepwise regression applied to the primary features and their interactions. We found that
variables corresponding to each of five categories (local structural distractors, local intensity,
global context, local vascularity, and contiguity with structural distractors) were significant
(p < 0.01) factors in a standardized model. Moreover, reader-specific models conveyed signifi-
cant differences among readers with significant distraction (missed detections) influenced by
local intensity- versus local-structural characteristics being mutually exclusive. Readers with
significant local intensity distraction (n ¼ 10) detected substantially fewer lung nodules than
those who were significantly distracted by local structure (n ¼ 2), 46.1% versus 65.3% mean
nodules detected, respectively. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JMI.7.2.022409]
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1 Introduction

Lung cancer is the leading cause of cancer death in the United States.1 Each year, more people die
of lung cancer than of colon, breast, and prostate cancers combined.2 However, when detected
early, lung cancer is curable following surgical resection.3 As the most common manifestation of
early lung cancer, lung nodule detection is critical to diagnosing cancer at a curable stage.

Lung nodule detection within computed tomography (CT) reconstructions is challenged by
complex and distracting lung anatomy. Efforts have been made to determine the relationship
of local anatomical complexity and the detectability of lung nodules. Smith et al.4 recently dem-
onstrated in a standardized model that nodule detection is influenced by both morphological
distractors and local pixel values. However, there are limitations to a standardized model when
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considering the high degree of interobserver variability among readers seeking to detect lung
nodules in CT scans. Specifically, in a study of 13 readers seeking to identify 157 synthetic
nodules in 40 CT volumes, detection rate ranged between 29.9% and 72.6%.5 Variability in the
relative influence of distracting image characteristics on detection rates is supported by the sig-
nificance of a random effects term in the previously reported generalized linear model that
related lung complexity to nodule detectability.4 In that prior study, the expected detection rates
for a subset of nodule instances was substantially higher than their observed rate of detection by
the 13 radiologists.5 Many of these outlier instances shared a common characteristic of having
nearly equal spacing with neighboring distractors of similar size and shape in the transverse
plane. These distractors invariably represented local clusters of pulmonary blood vessels.
This observation encouraged the definition of a new variable [archipelago effects (ARC)] for
characterizing the impact of local blood vessel clusters with similar size, shape, and spacing
with respect to the lung nodule.

This report aims to extend insights into the influence of background lung characteristics on
lung nodule detection in three ways. First, based upon a review of the 12 image characteristics
modeled by Smith et al.,4 two additional characteristics are added, one statistical and one struc-
tural. The statistical feature is represented by standard deviation of local voxel values, and the
structural feature characterizes a nodule locus as being associated with similarly sized and
spaced “dot-like” distractors, termed the “archipelago effect.” Second, fixed linear effects models
are developed for each of the 13 readers independently and compared with a generalized mixed
effects model to identify interobserver variations and patterns on distractor influence on lung
nodule detection. Finally, pairwise interactions between all 14 variables are included in the can-
didate models with systematic exclusion of primary variables and interactions to balance model
fit with variable count.

Motivated by the concerning problem of lung nodule detectability, this study presents a step
toward understanding the relationship between reader, local lung complexity, and nodule detec-
tion on CT scans, aiming to provide information that might facilitate targeted training for image
interpretation.

2 Methods

2.1 Study Framework

For this study, 14 local and global characteristics of lung CT scans enriched with synthetic nod-
ules and their interactions were analyzed and associated with the nodule detection performance
of radiologists interpreting the CT scans. Readers were instructed to scroll through the CT sec-
tions and identify all pulmonary nodules with a comprehensive search. All examinations had
nodules embedded, but this information was hidden from readers. Also, they were encouraged
to take as much time and session divisions as needed.

A generalized linear mixed model was fit to the performance of all reads, followed by the
creation of generalized linear submodels with fixed effects for each of the 13 readers. These
models were iteratively reduced to 11- and 5-variable models to simplify the models and min-
imize colinearity. Reader-specific models were compared with the standardized model to assess
differences and patterns among those differences. Detailed descriptions of these steps follow.

2.2 Source Data

Data collection for this study has been described previously.5 In brief, 13 radiologists with vary-
ing levels of experience (three first-year residents, three fourth-year residents, two cardiothoracic
fellows, and five cardiothoracic attending physicians) identified lung nodules in 40 CT datasets
(0.625-mm section thickness). Each dataset was composed of one of three nodule-free lung CT
scans into which between three and five synthetic 5-mm nodules were embedded. The readers
were instructed to identify all >4-mm pulmonary nodules. Their search through the stacks of
transverse sections was unconstrained, and they were encouraged to perform a thorough search
to assure comprehensive detection. For this study, the loci of all true and false negative detections
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were recorded and used to analyze characteristics of the background lung CT data without
the imbedded nodules. A total of 157 nodules were assessed by each of the 13 readers across
the 40 CT datasets.

2.3 Complexity Metrics

Fourteen characteristics of lung complexity were measured (Table 1). Twelve of these features
have been described previously,4 and the remaining two features are novel to this study. In brief,
previously defined metrics 1 to 4 quantify local structural distractors surrounding a nodule
(Fig. 1); metrics 5 and 6 quantify local voxel intensity; and metrics 7 to 10 characterize structural
features. Metrics 7 and 8 are global lung characteristics relating to the size of the search field
(small at the apices and bases, large in the mid-lung) and central versus peripheral localization
based upon proximity to the tracheal carina. Metrics 9 and 10 focus on the quantity and dis-
tribution of nearby blood vessels. Finally, contiguity of a nodule with local structural distractors
is captured by metrics 11 to 14. Metrics 1 to 8 are continuous variables; metric 9 is ordinal, and
metrics 10 to 14 are logical with 1 indicating existence and 0 indicating absence. All variables
except the two global context variables were considered within a 25-pixel radius around each
nodule locus, and each CT section was reconstructed with a 512 × 512-pixel matrix.

Based upon an analysis of outlier cases using our previous detectability modeled, we intro-
duced two new factors to our original 12: a statistical feature represented by the natural logarithm
of the standard deviation of local voxel values [log standard deviation in neighborhood of nodule
(LSTD), metric 5], and a structural feature characterizing a nodule locus as being associated with
similarly sized and spaced two-dimensional (2-D) dot-like distractors, termed “archipelago
effect” (ARC, metric 10). The LSTD was added as an additional variable to control for the effects
of noise in the CT images. Higher values of LSTD indicate greater variability in pixel values
surrounding a nodule. ARC is a logical measure coding the position of a nodule as being within

Table 1 Lung complexity metrics check table.

Index Metrics name Code Category
Numeric
type

1 2-D line-like distractor index L2D Locala structural
distractors

Continuous

2 2-D dot-like distractor index D2D

3 3-D line-like distractor index L3D

4 3-D dot-like distractor index D3D

5 Log standard deviation in neighborhood of nodule LSTD Local intensity

6 Mean gray value in neighborhood of nodule MPV

7 Fraction of slice containing lung TR Global context

8 Distance of nodule from trachea DTT

9 Number of vascular particles NP Local vascularity Ordinal

10 Archipelago effects ARC Logical

11 CL2D CL2D Contiguity with
structural distractors

12 Contiguity with 2-D dots CD2D

13 Contiguity with 3-D lines CL3D

14 Contiguity with 3-D dots CD3D

aA local scope (or region of interest) is defined as within an in-plane radius of 25 pixels (∼2 cm) on five con-
secutive slices centered at the central slab.4 Newly introduced features relative to the features of Smith et al.4

are indicated with bold type.
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a local cluster of similarly sized particles. Although the previous study accounted for the number
of local blood vessels, it did not assess the impact of this specific alignment of similarly sized
vessels with respect to the inserted nodule. Here, an ARC value of 1 indicates that the nodule is
located within a chain-like cluster of similarly-sized blood vessels, which potentially disguise it
as a part of the native vascular system.

Figure 2 shows synthetic ARC examples where D2D distractors of similar size with respect
to inserted nodules cluster in nearly equidistant chain-like spatial distribution. Eight out of
157 nodules were identified with ARC.

2.4 Statistical Analysis

The continuous and ordinal features were normalized by minmax scalers. To enhance flexibility
and simplicity of the complexity model, feature selection was carried out. A subset of the 14
complexity metrics with selected interactions were related to detection by the 13 radiologists.
A total of 2041 binary detection outcomes (13 readers × 157 nodules) were related to complexity
features using a generalized linear mixed model with the following equation,6,7

Fig. 1 (a) Local structural distractors explained. The lung nodule (blue) is spheroid and provides
a “dot-like” profile on transverse reconstructions (2-D dots) and volumetrically [three-dimensional
(3-D) dots]. Blood vessels (red) may be seen as either dot-like (2-D dots) or line-like (2-D lines) on
transverse reconstructions, depending on their local orientation, but they are always line-like
volumetrically (3-D lines). (b) Transverse CT section demonstrating numerous dot-like and line-
like structures. Only the dot-like structure in the red circle is a lung nodule. All other dot- or line-like
structures are pulmonary blood vessels.
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EQ-TARGET;temp:intralink-;e001;116;561gðμijÞ ¼ Xijβ þ bi þ ϵij; (1)

where gð·Þ is the probit link function, μi is the probability of detection for reader i, Xi is a vector
of features values for reader i (see Table 1), β is a vector of coefficients (fixed effects), and bi is
a reader-specific random effect, assumed to have a zero mean Gaussian distribution independent
of the measurement error term ϵij, which is also assumed to have a zero mean Gaussian distri-
bution. The model is fit by the method of restricted maximum likelihood.

One goal of this study was to investigate interobserver variability with an expectation that
readers’ detection of nodules is affected by complexity metrics in different ways. To study this,
for a selected set of variables, the following two models were established.

1. Standardized model: a single generalized linear mixed model fit by all of the 2041 responses.

2. Reader-specific model: a set of 13 generalized linear submodels with fixed effects, each fit
by 157 observations of an individual reader.

2.4.1 Feature interactions and selection

The feature selection process consists of automatic stepwise regression and manual exclusion of
certain highly correlated variables.

To better account for nuances in the effects of lung complexity on nodule detection, in
addition to the 14 primary main effects, we considered 55 interactions defined as element-wise
products within pairwise combinations of logical and all types of primary variables, leading to
a feature space of potentially 69 dimensions. To avoid overfitting the model given the increased
feature dimensionality, feature selection was carried out on the basis of the Akaike Information
Criterion (AIC) via stepwise regression. The AIC definition is given as8

EQ-TARGET;temp:intralink-;e002;116;274AIC ¼ 2k − 2 log L; (2)

where L is the likelihood and k is the number of variables in the model.
Feature selection started with the main-effects-only model, followed by iteratively adding

items from the interactions set or removing items from the current model at each step.
Either a main effect or an interaction could be added or removed, yet the removal of a main
effect would cause the removal of all correspondent interactions as well. Actions were driven
by minimizing the AIC.

We repeated the stepwise regression for 100 random iterations of 10-fold cross validation to
enhance robustness. A random subset of 15 nodules was left out in each fold. Subsequently,
the occurrence frequency matrix was binarized at 0.4 threshold. In other words, any variables
occurring less frequently than 40% of the time would not appear in the resulting model.

Furthermore, we refined the selected model by removing certain variables that were highly
correlated with others. Multicollinearity, investigated by both pairwise correlation and the vari-
ance inflation factor (VIF), was avoided to reduce the standard errors of the coefficients.
Therefore, we manually removed highly correlated variables that did not substantially contribute
to reducing AIC following two baselines: (1) the removal should not increase AIC by a factor

Fig. 2 (a) Examples of ARC presence. (b) Although a nodule is in close proximity to blood vessels,
it is not an ARC because the adjacent vessels are either D2L or differently sized D2D distractors.
The red circle indicates a radius of 25 pixels within the 512 × 512 pixel reconstructions, and
the nodules are positioned at the center of the circles.
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>1% and (2) higher removal priority was given to interactions over main effects. In addition,
we computed the adjusted coefficient of determination (adjusted R2) and calculated probability
(p-value) for resulted models and variables.

2.4.2 Comparison between reader-specific and standardized models

We fit candidate models independently to each reader. Reader-specific models were fit for
each of the 13 readers using their binary detection responses for the 157 nodules. The model
performance was evaluated and compared on the basis of the receiver operating characteristic
accuracy of model-estimated detection rates versus human detection rates.

In addition to these reader-specific models, a standardized model using all 2041 responses
was fit to the data. This model accounted for differences in readers by including a random effect
term for reader. We examined the difference between standardized and reader-specific models in
terms of statistical significance and area under the curve (AUC). Each individual model was
compared with the standardized model, as well as with other individual models. We ran statistical
tests for the hypothesis that different readers may present different patterns in perceiving
anatomy complexity. These comparisons and analyses were conducted to reveal commonly sig-
nificant complexity metrics that confounded all or groups of readers. For all analyses of feature
significance, a conservative threshold of p < 0.01 was used to guard against false discovery.

3 Results

3.1 Model Selection

As described in Sec. 2.4.1, the first step of model selection was automatic stepwise regression
in a cross-validation manner. Figure 3 shows both raw and binarized (threshold = 0.4) heatmaps
of variable occurrence frequencies resulting from this process, with cells on the diagonal being
the main effects and cells off the diagonal being interactions between the correspondent rows
and columns.

Based upon their occurrence frequencies, four main effects [distance to trachea (DTT),
number of particles (NP), mean pixel value (MPV), and contiguity with 2-D lines (CL2D)] were
removed and five interactions (D2D:ARC, ARC:L3D, D3D:CL3D, ARC:LSTD, and ARC:
CL3D) were introduced. The AIC of this new model was 2188.3, a reduction compared with
the initial main-effects-only model’s 2211.8.

Nevertheless, we observed strong correlations between certain pairs of variables. A strongly
correlated pair could indicate feature redundancy. Figure 4 shows pairwise correlations of the
new model’s variables, ranging from −1 to þ1. It can be observed that pairs such as ARC-ARC:

Fig. 3 Occurrence frequency heatmap. (a) Raw occurrence frequency map. (b) Occurrence
frequencies binarized at 0.4.
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LSTD have a strong negative correlation and pairs such as ARC:L3D-D2D:ARC have a strong
positive correlation.

Using the manual term removal protocol described in Sec. 2.4.1, we identified two candidate
models, one with 11 variables (adjusted R2 ¼ 0.65,AIC ¼ 2193.3, jp < 0.05j ¼ 7) and one with
5 variables (adjusted R2 ¼ 0.62, AIC ¼ 2237.0, jp < 0.05j ¼ 5). To identify multicollinearity,
we investigated both pairwise correlation and the VIF. According to Dohoo et al.9 and Lin,10

the critical levels of correlation coefficient and VIF values are 0.9 and 10, respectively. In the
11-variable model, the highest correlation was 0.79 (L2D-L3D) and VIF was 3.69 (L3D). In the
5-variable model, the highest correlation was 0.74 (LSTD-L3D) and VIF was 1.95 (L3D).
Hence, we concluded that the multicollinearity of the selected models was acceptable.

3.2 Reader Generalizability Study

In the reader generalizability study, we customized the aforementioned candidate models by
fitting them individually to each reader with fixed effects. We looked for any underlying patterns
by analyzing weights, p values, and fitness of the reader-specific models.

Tables 2 and 3 show variable coefficients of the 11-variable and 5-variable models, each row
being a model fit to the correspondent reader(s). The columns are sorted, descending from left to
right, by the number of statistically significant occurrences (p < 0.01) among all individual mod-
els. The bottom three rows of reader-specific models are, respectively, the mean and standard
deviation (SD) of a variable coefficient, as well as the total number of its significant occurrences.

As shown in Fig. 5, we compute the model-determined detectability against the true human
detectability and obtain the AUC for each user and each model. The number of variables in the
model is also compared within two modeling strategies. For standardized models, we performed a
likelihood ratio test (LRT)11 to compare the performance of 11- and 5-variable models. For reader-
specify models, we similarly performed an LRT for each user and combined the p-values using
Fisher’s method.12 We find that 11-variable models always showed a closer estimate to human
detectability than 5-variable models (p < 0.05). In addition, reader-specific models produce sig-
nificantly higher estimate accuracy than the standardized models (p < 0.05). The mean discrep-
ancy (�SD) of the two modeling strategies is 0.035� 0.02 and 0.025� 0.02, respectively, for
11-variable and 5-variable models. Thus, while the higher degree of personalization provided by
a reader-specific versus a generalized model improves model performance, the improvement was
greater for comprehensive (11-variable) compared with compact (5-variable) models.

4 Discussion

In this study, two new metrics of lung complexity, the standard deviation of local intensity
(LSTD) and the archipelago effect (ARC), are introduced as potential statistical and structural

Fig. 4 Correlation heatmap of variables considered for stepwise model selection based upon
their frequency of occurrence. The final five variables listed are interaction terms between two
variables separated by a “:” mark.
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distractors to lung nodule detectability. Following preliminary analysis, the natural logarithm of
the standard deviation exhibited greater linear correlation with detectability; thus LSTD was
selected to represent the statistical measure of local voxel value variability. Both LSTD and
ARC are found to be significant in reducing nodule detectability throughout an iterative stepwise
model selection. LSTD was a significant factor in 100% and ARC was significant in 89% of
regression models. Their inclusion in the standardized complexity-detectability model resulted
in a significant increase in adjusted R2 from 0.57 to 0.64.

The final result of model selection incorporates one variable from each of the five complexity
categories, reflecting the role of local structural, local intensity, global context, vascular prox-
imity, and contiguity with other structures in influencing nodule detection. Respectively, the five
variables are L3D, LSTD, TR, ARC, and CL2D. While identifying the single most significant
feature among each of the distractor categories was not an aim of the analysis, it is an intriguing
outcome of our stepwise analysis and supports the importance of each of the identified classes of
distractor type for overall nodule detection.

In contrast, MPV, DTT, NP, and CL2D were rarely significant. This observation is generally
consistent with our previous work, except that in previous work MPVwas found to be significant
with a p-value of 0.02.4 The replacement of MPV with LSTD in the final models suggests that
background variability has a greater influence on nodule detectability than average background
intensity.

Table 2 The 11-variable models’ coefficients and statistics.

Reader (Intc.) LSTD ARC L3D CL3D L2D TR D3D CD2D
D3D:
CL3D CD3D

CL3D:
ARC

(a) Standardized model

All 0.09 −2.22** −1.01** −1.99** −0.30** 1.30* −0.59* −0.20 −0.38* −0.80 0.45 5.39

(b) Reader-specific model

1 0.55 — −1.05 −4.99** −0.96* 3.89** — — — — — —

2 0.02 −2.14* −0.89 −2.27 — — — — — 4.71 — —

3 −1.23 — −1.41* −2.81 1.12 2.23 — −24.21 — 19.11 — —

4 0.08 −2.15* −1.90** −2.18 — 2.00 — — — — — —

5 0.19 −2.53* −1.14* — — — — — — — — —

6 −0.22 — — −2.70 — 2.13 — — — — — —

7 0.81 — −1.14* −3.45* — — — — — — — —

8 −0.04 −5.01** — — — — −1.99* — — — — —

9 0.85 −4.30** −1.08 — −0.66 — — — −1.11 — — —

10 −0.19 −3.22** −1.09 — — — — — — — — —

11 −0.11 −2.98** −1.07 −2.39 — — — — — — — —

12 −0.05 −3.66** — — — — — — — — — —

13 −0.8 −2.39 — — — — — — — — — —

Mean 0.37 −1.66 −0.76 −1.6 −29.31 1.53 −0.51 −2.66 −1.11 −584.7 0.44 5.74

SD 1.45 3.38 1.39 2.71 42.45 0.98 0.69 6.55 2.31 848.90 5.56 1.84

Occ. 5 8 4 2 1 1 1 0 0 0 0 0

The statistical significance of a variable is indicated by (i) no asterisk: 0.01 < p ≤ 0.1; (ii) single asterisk *
0.001 < p ≤ 0.01; (iii) double asterisk ** p ≤ 0.001; and (iv) blank cell indicates insignificant p > 0.01.
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Upon determination of two candidate models with 11 and 5 variables, for each set of var-
iables, 13 personalized submodels were fit as reader-specific models. Given a set of metrics, its
generalizability refers to the ability of effectively fitting the detection outcomes across different
readers. For metrics with high generalizability, we expect to see less performance degradation

Table 3 The 5-variable model coefficients and statistics.

Reader (Intc.) LSTD L3D ARC TR CD2D

(a) Standardized model

All 0.04 −2.06** −1.31** −0.84** −0.48** −0.46**

(b) Reader-specific model

1 0.31 — −2.39** — — —

2 −0.02 −1.93 −1.26 — — —

3 −0.25 −2.05* −1.32 −1.18 — —

4 0.01 −2.12* −1.39 −1.54* — —

5 0.17 −2.43* — −0.98 — —

6 −0.29 — −1.78 — — —

7 0.76 − −2.61** −1.11 — —

8 −0.14 −4.40** — — −1.65* —

9 0.69 −3.74** — — — −1.32*

10 −0.16 −2.99** — −0.89 — —

11 −0.1 −3.07** −2.01 −1.04 — —

12 0.05 −3.82** — — — —

13 −0.65 −2.69* — — — —

Mean 0.49 −1.5 −1.01 −0.57 −0.42 −1.14

SD 1.64 3.57 1.60 1.33 0.65 2.20

Occ. 6 9 2 1 1 1

The statistical significance of a variable is indicated by (i) no asterisk: 0.01 < p ≤ 0.1; (ii) single asterisk *
0.001 < p ≤ 0.01; (iii) double asterisk ** p ≤ 0.001; and (iv) blank cell indicates insignificant p > 0.01.

Fig. 5 Controlled comparisons of standardized and reader-specific models with different number
of variables.
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when the modeling strategy is switched from customized to generalized. Reader-specific models
were compared with the standardized baseline models, and the difference in performance AUC
was used to measure the generalizability of the selected metrics. Based upon the principle that
generalizability of reader-specific influences increases with smaller differences between the
standardized and the reader-specific models, the 5-variable model was more generalizable than
the 11-variable model. This is likely because models with more variables provide a basis for
greater variations to manifest among readers, expressing greater nuances among readers.

One particularly intriguing result was that statistical significance (p < 0.01) of L3D and
LSTD, the two most commonly occurring variables within reader-specific models, were mutu-
ally exclusive. For both 5- and 11-variable configurations, only one model, that derived for
reader 6, contained neither L3D nor LSTD as significant variables. For readers 1 and 7, LSTD
was significant, while L3D was significant for the remaining 10 readers. No reader-specific mod-
els demonstrated significance for both metrics. L3D is classified as a local structural distractor,
and LSTD is classified as a local intensity metric. Table 4 identifies the three primary distractor
groups with their associated detection rates.

Interestingly, readers 1 and 7, a first-year resident and a cardiothoracic fellow who exhibited
two of the three highest detection rates of 58.0% and 72.6%, respectively, were significantly
distracted by local structural over intensity-based metrics. The 10 readers with significant
intensity-based distraction exhibited an average detection rate of 46.1%. Following validation
in a larger sample, this finding may inform strategies for improving detection.

Further study to refine the complexity metrics may also be of interest. In particular, ARC
might be defined as a continuous measure instead of the current heuristic binary term. The obser-
vation of intensity-inclined and structure-inclined impact patterns could also come from distinct
search patterns. In future work, we will assess associations between lung distractors and search
characteristics such as gaze duration, search paths, and detection moment.

There are several limitations to the current analysis. We do not address false-positive detec-
tions. Our analysis of false-positive detections has revealed that many represent previously unde-
tected native nodules within the substrate datasets. Focusing exclusively on the synthetic nodules
for which an absolute reference standard exists limits the speculative nature of an analysis based
upon detection of native features where an absolute reference standard does not exist. The dataset
size limited the interpretation and verification of interobserver performance differences. In addi-
tion to generalized random-effect models and customized individual-independent models, multi-
task linear models via structural regularization13 can be another option for personalizing the
detection predictions. Multidimensional analyses could be used to identify clusters of readers
who respond to different feature sets. This would be especially interesting considering that read-
ers 1 and 7 had the best performance and the poorest standardized fits. As might be expected,
the models are less effective for predicting how distractors affect readers that perform at the
extremes. Finally, machine learning approaches offer an opportunity to further understand
background lung characteristics that influence nodule detection performance.

5 Conclusion

Using a semiautomatic stepwise optimization strategy for variable selection, the five selected
variables for the standardized complexity-detectability model represented one metric within each
of the five distractor categories. Both newly assessed distractors, LSTD and ARC, appeared in
the refined standardized 5-variable model and many of the reader-specific models as significant

Table 4 Complexity perception groups.

Group In-group readers Detection rate, mean (�SD) Primary distractor (p < 0.01)

1 1, 7 65.3% (�7.3%) Local structure

2 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 46.1% (�8.5%) Local intensity

3 6 38.9% (�NA) None significant
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distractors for lung nodule detection. The significance of either a local structural (L3D) or inten-
sity-based factor (LSTD) in 12 of 13 reader-specific models, as well as their mutual exclusivity
and association with substantially different reader performance, is an intriguing result. The dom-
inant impact of one of two fundamentally different image characteristics might reflect innate or
learned perceptual tendencies that may be modifiable. Experiments specifically designed to
clarify these tendencies and assess their generalizability across volumetric search tasks would
be useful toward establishing their consistency and might inform interventions that assess
approaches toward improving feature detection during volumetric search. In addition, this early
step toward quantifying reader performance with complexity metrics should inform future
refinement of distractor metrics and their application in a larger cohort of readers to assess the
hypothesis that reader performance is related to varying sensitivity to distraction by either local
structural or intensity factors.
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