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Abstract

Appropriately adjusting to errors is essential to adaptive behavior. Post-error slowing (PES) refers 

to the increased reaction times on trials following incorrect relative to correct responses. PES has 

been used as a metric of cognitive control in basic cognitive neuroscience research as well as in 

clinical contexts. However, calculation of PES varies widely between studies and has not yet been 

standardized, despite recent calls to optimize its measurement. Here, using behavioral and 

electrophysiological data from a modified flanker task, we considered different methods of 

calculating PES, assessed their internal consistency, examined their convergent correlations with 

behavioral performance and error-related event-related brain potentials (ERPs), and evaluated their 

sensitivity to task demands (e.g., presence of trial-to-trial feedback). Results indicated that the so-

called “robust” measure of PES, calculated using only error-surrounding trials, provided an 

estimate of PES that was three times larger in magnitude than the traditional calculation. This 

robust PES correlated with the amplitude of the error positivity (Pe), an index of attention 

allocation to errors, just as well as the traditional method. However, all PES estimates had very 

weak internal consistency. Implications for measurement are discussed.
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1 Introduction

Errors are common in everyday life. The ability to detect, respond, and adjust to mistakes is 

an important human capacity that has been the subject of decades of cognitive neuroscience 
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research (see Gehring et al., 2012 for a review). One common metric of this capacity is post-

error slowing (PES; see Figure 1), which refers to the tendency of respondents to slow their 

reaction times (RTs) on trials that follow errors, relative to trials that follow correct 

responses (Rabbitt, 1966). PES has been investigated in basic models of cognitive control 

(Botvinick et al., 2001; Cavanagh & Shackman, 2015) and in a number of clinical contexts, 

including ADHD (Balogh & Czobor, 2016), substance abuse disorders (Sullivan, 2018), and 

Parkinson’s disease (Siegert et al., 2014).

There is debate regarding the functional significance of PES (Danielmeier & Ullsperger, 

2011; Wessel, 2018). Some contend that PES reflects the output of a cognitive control 

process aimed at preventing future errors (Botvinick, Braver, Barch, Carter, & Cohen, 2001), 

while others suggest it reflects a non-adaptive orienting response to uncommon or surprising 

events (Notebaert et al., 2009). Some of this debate reflects the inconsistent relationship 

between PES and post-error accuracy (PEA) (Danielmeier & Ullsperger, 2011; Schroder & 

Moser, 2014). However, emerging evidence using drift-diffusion modeling – which allows 

specific theoretical accounts to be tested mechanistically with the various parameters this 

model provides – suggests PES may in some cases reflect an increase in response caution 

after an error is made (Dutilh et al., 2012b), or is part of an adaptive post-error process in 

which selective attention is increased and drift rate is reduced (i.e., both control and 

orienting aspects are present) (Fischer, Nigbur, Klein, Danielmeier, & Ullsperger, 2018). 

Other evidence indicates that the precise mechanisms underlying PES are nuanced and vary 

from task to task and across samples (Purcell & Kiani, 2016). Here, we are not so much 

concerned with the functional significance of PES, but rather how best to measure it. We 

believe that measuring PES consistently represents a necessary step toward the elucidation 

of its functional significance and its potential application to clinical populations.

There is currently no consensus on how to best measure PES, an issue poignantly raised by 

Dutilh and colleagues (Dutilh et al., 2012a). They noted that PES is most typically measured 

by subtracting the average reaction time (RT) on correct trials following correct trials from 

the averaged RT on correct trials following errors (PES = MPost-Error - MPost-Correct). Dutilh 

and colleagues referred to this estimate as PESTraditional. However, based on drift-diffusion 

modeling and empirical data, these authors showed that this calculation is susceptible to 

fluctuations over the course of the assessment, including task engagement and fatigue. For 

some participants, as task engagement declines, most errors occur during the second half of 

the task. Therefore, the PESTraditional estimate likely contains post-error RTs from the second 

half of the task and post-correct RTs from the first half. Depending on the context, this may 

mask real PES or artificially inflate PES estimates. The PESTraditional method is also 

problematic because correct trials and post-correct trials greatly outnumber errors and post-

error trials in most speeded-response tasks. To counteract these issues, Dutilh and colleagues 

recommended measuring PES by limiting the calculation to trials that surround errors (i.e., 

only consider post-correct trials that also precede errors). They refer to this estimate as 

PESRobust. This estimate, as its name implies, is robust to fluctuations in task engagement, 

and the number of trials included in post-error and post-correct averages are equal (as they 

come from the same error sequence).
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Since the original call to modify the calculation of PES, there have been many studies that 

have followed this recommendation (e.g., Agam et al., 2014; Navarro-Cebrian, Knight, & 

Kayser, 2013). However, we are aware of only a few studies that have compared traditional 

and robust estimates. These studies typically found a larger estimate for the robust method 

compared to the traditional method and a high correlation between the two metrics 

(Tabachnick, Simons, Valadez, Dozier, & Palmwood, 2018; van den Brink, Wynn, & 

Nieuwenhuis, 2014). The larger size for the robust method is due to the faster RTs on trials 

preceding errors (Brewer & Smith, 1989; Gehring & Fencsik, 2001) that are used in the 

robust estimate, resulting in larger differences in RT between post-error and pre-error trials. 

In the current study, we examined electrophysiological and behavioral data from one of the 

most commonly used tasks in the literature – the Eriksen flanker task (Eriksen & Eriksen, 

1974) – to provide a more in-depth exploration of these two estimates.

In particular, we examined how PES estimates relate to two event-related brain potentials 

(ERPs) elicited after errors – the error-related negativity (ERN) and error positivity (Pe). The 

ERN is a sharp negative ERP deflection elicited between 50–100ms following error 

commission and reaches maximal amplitude at frontocentral recording sites (Falkenstein, 

Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993). 

The ERN is reliably source-localized to the anterior cingulate cortex (ACC; Herrmann et al., 

2004; van Veen & Carter, 2002). The functional significance of the ERN remains debated, 

although the two most prominent accounts suggest that it either reflects a reinforcement-

learning signal mediated by the mesencephalic dopamine system (Holroyd & Coles, 2002) 

or an automatic response conflict signal (Yeung, Botvinick, & Cohen, 2004). In either case, 

the ERN is thought to reflect the output of an adaptive error/conflict-signaling process that 

indicates more control is needed on subsequent trials.

Following the ERN, the Pe is a slower, more broadly distributed ERP that reaches maximal 

amplitude between 200–500ms over centroparietal recording sites (Falkenstein, Hoormann, 

Christ, & Hohnsbein, 2000). Whereas the ERN may be more linked to unconscious error/

conflict-detection (although see Wessel, 2012), the Pe is consistently linked with the 

conscious awareness that a mistake has been made (Endrass, Franke, & Kathmann, 2005; 

Murphy, Robertson, Allen, Hester, & O’Connell, 2012; Shalgi, Barkan, & Deouell, 2009; 

Steinhauser & Yeung, 2010). Source localization studies indicate the Pe also originates in 

ACC (Herrmann, Römmler, Ehlis, Heidrich, & Fallgatter, 2004), although other areas 

including the anterior insula (Ullsperger, Harsay, Wessel, & Ridderinkhof, 2010) have been 

implicated in its generation. Moreover, the Pe may be related to attentional orienting 

processes in service of mobilizing resources in response to the error (Tanaka, 2009) and 

shares topographic and latency properties with the stimulus-locked P300 (Leuthold & 

Sommer, 1999; Ridderinkhof, Ramautar, & Wijnen, 2009). The ERN and Pe are reliably 

dissociated from one another in terms of functional significance and sensitivity to task 

demands (Davies, Segalowitz, Dywan, & Pailing, 2001; Overbeek, Nieuwenhuis, & 

Ridderinkhof, 2005; Tanaka, 2009).

The relationship between ERN/Pe and post-error behavioral adjustments is complicated and 

largely inconsistent. A recent meta-analysis attempted to quantify relations between the 

ERN and PES (Cavanagh & Shackman, 2015). These authors found that correlations were 
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larger for intra-individual relationships (correlations in trial-to-trial variation in ERN and 

subsequent RT on the next trial) than for inter-individual correlations (averaged ERNs and 

averaged PES estimates correlated between participants). Yet, closer inspection of these data 

reveals inconsistent measurement of PES. The five studies that examined intra-individual 

correlations did not technically examine post-error slowing (which would require a 

difference to be computed between post-error and post-correct trials)¸ but rather considered 

only post-error RT (Cavanagh, Cohen, & Allen, 2009b; Debener et al., 2005; Gehring et al., 

1993; Weinberg, Riesel, & Hajcak, 2012), or examined the time it took participants to rate 

the accuracy of their response (Wessel, Danielmeier, & Ullsperger, 2011). These five studies 

examined ERN on trial N and RT on trial N+1 and produced a significant meta-analytic 

correlation of r = .52. In contrast, the 20 inter-individual studies almost exclusively used the 

PESTraditional estimate (just one used PESRobust), which, as mentioned above, is subject to 

contamination. The analysis of these 20 studies revealed a small and non-significant meta-

analytic correlation between ERN and PES of r = .19. Thus, because very few studies 

examined PES optimally, it is difficult to judge the relationship between error-related brain 

activity and post-error adjustment. A more recent study examined relations between frontal 

theta, ERN and PES (Valadez & Simons, 2018) and found that post-error RT was negatively 

correlated with greater frontal theta power, but that PES was unrelated to ERN. We are 

unaware of any systematic reviews of the relationship between Pe and PES, although some 

past studies found that individuals with larger Pe amplitudes are characterized by larger PES 

(Chang, Chen, Li, & Li, 2014; Hajcak, McDonald, & Simons, 2003) and others show 

relationships between Pe and post-error accuracy, but not slowing (Schroder, Moran, Moser, 

& Altmann, 2012).

The inconsistent between-subjects correlations involving PES may, in part, be related to low 

internal reliability of this measure, as between-subjects correlations are always constrained 

by the internal reliabilities of the measures used (Schmitt, 1996). Although no previous 

studies have evaluated the internal consistency of PES, recent work has highlighted poor 

measurement properties within the cognitive neuroscience literature (Hajcak et al., 2017; 

Hedge, Powell, & Sumner, 2018; Infantolino, Luking, Sauder, Curtin, & Hajcak, 2018). This 

is particularly true of difference measures – which are calculated by subtracting one measure 

from another (see Infantolino et al., 2018) – which is the case with PES. Difference scores 

have long been known to have unfavorable internal consistency, especially if the two 

constituent scores are highly correlated with one another (Infantolino, Luking, Sauder, 

Curtin, & Hajcak, 2018; Lord, 1958). Thus, in the current study, we also evaluated the 

internal reliability of the different PES estimates. It is certainly possible that PES has low 

internal reliability; in fact, Hedge et al (2017) point out that experimental tasks designed to 

elicit large within-subjects effects may produce the lowest between-subjects variance (and 

subsequently low reliability).

Finally, PES and post-error accuracy (PEA) appear to be sensitive to task characteristics. 

Specifically, when the response-stimulus interval (RSI) is short – i.e., when participants do 

not have much time between the error trial and the following trial – PES tends to be larger 

and PEA tends to be lower than trial sequences with longer RSIs (Jentzsch & Dudschig, 

2009). Extending these findings, Wessel (2018) outlined an adaptive orienting theory of 

error processing. This theory distinguishes between orienting-related PES and strategic PES. 
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Specifically, orienting-related PES occurs when the cognitive system in charge of adjusting 

to errors does not have enough time to complete the adaptation process (short RSI); 

conversely, strategic PES occurs when the system has enough time to complete the process 

and is associated with increased PEA (long RSI). PES’s sensitivity to task timing makes it 

difficult to compare across studies, as many error-monitoring studies use trial-to-trial 

feedback, which may increase RSI times.

1.1 The Current Study

Owing to the literature summarized above, the overarching goal of the current study was to 

examine different calculations of PES and compare convergent correlations with task 

behavior and error-related ERPs (ERN, Pe). We examined traditional and robust estimates of 

PES, as well as a less commonly used method of calculating PES, which is to subtract the 

averaged post-error RT by the RT of the error trial (Cavanagh et al., 2009; Smith & Allen, 

2019); we called this PESError Trial. We also evaluated the utility of a single-trial regression 

approach (Fischer et al., 2018) that estimates PES while simultaneously controlling for other 

known contributors to RT including previous trial congruency (e.g., Van Der Brought, 

Braem, & Notebart, 2014). Finally, we examined the internal reliability of each PES 

calculation, which we believe is the first analysis of its kind for PES. Data were derived 

from a modified flanker task we developed for a larger project; as such, approximately half 

of the participants received trial-to-trial feedback and the other half did not. This afforded us 

the opportunity to also evaluate the above-mentioned effect of increased RSI on PES, PEA, 

and ERPs.

2. Method

2.1 Participants

A total of 77 psychologically healthy, right-handed adults were recruited from the larger 

Boston community and participated in the current study. All participants provided written 

informed consent prior to study procedures, and the Partners Healthcare Institutional Review 

Board approved the study. Participants were free of any psychiatric history, as determined by 

a semi-structured clinical interview (SCID-5; First, Williams, Karg, & Spitzer, 2015) 

administered by a clinical psychologist or clinical psychology doctoral students with 

extensive SCID-5 training. Participants were compensated at a rate of $20/hour for their 

time. Participants were recruited as part of a larger cross-species examination of 

electrophysiology and behavior. As such, participants in this phase were recruited for 

purposes of task development. We originally proposed to collect 20 participants but 

continued to collect data until the onset of the next phase of the study, and a total of 77 

participants were enrolled.

Prior to statistical analysis, data from 11 participants were excluded due to poor task 

performance (see below). Data from a further four participants were excluded for excessive 

EEG and electromyography (EMG) artifacts, and from one participant who was 

uncooperative and had questionable task engagement. Thus, the final sample for data 

analysis consisted of 61 participants (37 female, 24 male, M age = 23 years [SD = 5, range 

18–42]), who identified as follows: White (N = 36), Asian (N = 20), Black or African 
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American (N = 3), and More than one race (N = 2). Six participants identified as Hispanic or 

Latino.

2.2 Flanker Task

Participants completed a modified version of the Eriksen flanker task (Eriksen & Eriksen, 

1974). Participants were instructed to indicate the color of the center image (target) of a 

three-image display using one of two buttons on a response pad. Image-button assignments 

were counterbalanced across participants. Violet flowers and green leaves constituted the 

images used in the task1, and flanker images could either match the center image (congruent 

trials) or could not match it (incongruent trials).

During each trial, the two flanking stimuli were presented 100 ms prior to target onset, and 

all three images remained on the screen for a subsequent 50 ms (i.e., total trial time: 150 

ms). A blank screen followed for up to 1850 ms or until a response was recorded. Another 

blank screen was presented for a random duration between 750 to 1250 ms, which 

constituted the intertrial interval. The experimental session included 350 trials grouped into 

five blocks of 70 trials during which accuracy and speed were equally emphasized. To 

encourage quick responding, a feedback screen with the message “TOO SLOW!!!” was 

displayed if responses fell outside of the 1850 ms time window or if RTs were longer than 

600 ms in the first block, or outside of the 95th (or 85th) percentile of RTs (see footnote 1) in 

the previous block for blocks 2 through 5. Prior to the experiment, participants completed a 

short practice block identical to the experiment to become familiar with the task.

Because these data were collected during the task development stage of a larger project, 

approximately half of the participants received trial-to-trial feedback (N = 31) whereas the 

remaining 30 participants did not2. For the feedback version of the task, an additional 1000–

1250 ms (jittered) interstimulus interval (blank screen) followed the response window period 

before the presentation of the feedback stimulus (1000 ms), which consisted of a dollar sign 

enclosed in a circle for correct responses and an empty circle for erroneous responses. Thus, 

for the participants who received feedback, an additional 2000–2250 ms was added at the 

end of each trial, lengthening the intertrial interval (ITI) and therefore the response stimulus 

interval. Presence or absence of feedback was used as a factor in the analyses presented 

below to assess for previously mentioned effects of RSI (Jentzch & Duschig, 2009).

All stimuli were presented on a 22.5-inch (diagonal) VIEWPixx monitor (VPixx 

Technologies, Saint-Bruno, Canada) using PsychoPy software (Pierce, 2007) to control the 

presentation and timing of all stimuli, the determination of response accuracy, and the 

measurement of reaction times. Images were displayed on a black background and 

subtended 4.16° of visual angle vertically and 17.53° horizontally.

1The task was developed as part of a larger project examining electrophysiological and behavioral assays of error monitoring in 
humans and rodents. The visual stimuli were chosen to maximize visual discrimination and task performance in the rodents.
2Other task parameters differed slightly between participants as well. Thirty-four participants received the “Too Slow” feedback if 
their responses were outside of the 95th percentile of RTs in the previous block, and 27 participants received this feedback if their 
responses fell outside of the 85th percentile of RTs in the previous block. Although accuracy and reaction times were decreased in the 
85th percentile condition, this manipulation did not differentially impact the post-error adjustments under investigation (ps < .63) and 
was not considered further. Furthermore, four participants used a standard QWERTY computer keyboard to respond, while the 
remaining 57 used a Cedrus response pad (RB-740, Cedrus Corporation, San Pedro, CA).
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2.3 Behavioral data analysis

The primary analysis concerned the PES calculations. Note that all calculations involved 

trials that occurred only after incongruent errors to avoid conflating conflict and post-error 

effects3. Trials following congruent errors were excluded due to low trial counts (few errors 

occur on congruent trials). The following calculations were used:

PESTraditional = MPost‐Error RT (eC) – MPost‐Correct RT (cC)

PESRobust = MPost‐Error RT (cceCc) – MPre‐Error, Post‐Correct RT (cCecc)

PESError Trial = MPost‐Error RT (cceCc) – MError Trial RT (ccEcc)

In the above equations, M is numeric mean, c is correct, e is error, and capitalized letters 

refer to the trial of interest. Five-trial sequences (ccecc) were used for the robust and error-

trial estimates to ensure that post-error trials were also pre-correct trials, to avoid the effects 

of double errors on RTs (Hajcak & Simons, 2008). Pairs of RTs surrounding the same error 

(pre- and post-error trials) were used to calculate PESRobust. There was an average of 24.59 

(SD = 11.52, range: 5–50) trials for the PESTraditional estimate, and an average of 14.21 (SD 
= 5.36, range: 4–26) for the PESRobust and PESError Trial estimates as these two were derived 

from the same trial sequences.

As noted above, 11 participants were removed from analysis due to poor task performance, 

which was defined as more than 35 trials with outlier reaction times (RTs below 150 ms or 

± 3 intra-individual standard deviations from the congruent or incongruent mean), having 

fewer than 200 congruent and 90 incongruent non-outlier trials, achieving an accuracy below 

50% for both congruent and incongruent trials, and having fewer than six non-outlier trials 

that followed incongruent errors. All behavioral data were processed using Python 3.7 

software.

2.4 Internal Reliability of PES

We next examined internal consistency of the different PES calculations using split-half 

reliability, which is essentially the correlation between odd- and even-numbered trials (see 

Hajcak, Meyer, & Kotov, 2017). Split-half reliability is particularly useful when trial 

numbers differ widely across participants, as in cognitive tasks when participants commit 

different numbers of errors. Here, we used the Spearman-Brown (SB) formula to correct the 

reliability, as only half of the number of items are being considered for the estimate: (SB = 

2r/(1+r)) For all PES estimates, we first computed split-half reliability for post-error and 

post-correct RTs separately, then the correlation between post-error and post-correct trials, 

3We considered examining congruency sequence effects to evaluate the impact that the so-called Gratton effect had on post-error 
slowing estimates, but unfortunately the trial counts for the difference sequences (congruent-incongruent vs. incongruent-incongruent) 
were too low for reliable comparisons.
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and then the reliability of the difference (the PES estimate). For the PESRobust and 

PESError Trial methods, calculating split-half reliability was straightforward because the 

number of post-error and post-correct (pre-error and error) trials was completely balanced as 

these trials came from the same sequences (ccecc). However, for the PESTraditional estimates, 

the number of post-error and post-correct trials differed widely, so several different trial-

selection techniques were employed to calculate a list of PES values (subtracting post-error 

RT by post-correct RT), and then odd and even-numbered trials were selected from this list 

of values. For these different trial-selection techniques, the list of post-error RTs remained 

the same, but the selection of post-correct RTs differed. The first approach randomly 
selected post-correct RTs. A second approach selected post-correct RTs that followed error-
trial RT-matched correct trials. A computer algorithm began with the first error trial and 

found the correct trial that was closest in RT, repeating the process for each subsequent error 

trial with the remaining correct trials (see Hajcak et al., 2005). Then, the post-correct trials 

were chosen from this list of matched correct trials. As described in previous work, this 

procedure estimates PES by controlling for slowing caused by regression to the mean after a 

particularly fast trial (i.e., error trials, Hajcak, McDonald, & Simons, 2003). Finally, we used 

an even more stringent matching procedure that only accepted post-error and post-correct 

RTs that were derived from very closely matched error and correct RTs (within 5ms). This 

final method excluded error and post-error trials if there was not a corresponding correct 

trial that fell within 5ms of its RT. By design, there were fewer trials included in these 

averages (M trials = 11.56, SD = 5.24, range: 2–25). For each of these traditional estimates, 

we first verified whether PES was still observed before estimating the internal reliability.

Several authors warn against simple rules of thumb for interpreting “acceptable” versus 

“unacceptable” values of internal reliability (Norcini, 1999; Schmitt, 1996), as these values 

differ widely across different domains of measurement (e.g., self-report measures versus 

cognitive measures). Nonetheless, in order to provide descriptions for our reliability 

estimates, we follow the recommendations laid out by Nunnally (1994) in terms of basic and 

applied sciences: coefficients of .70 are considered acceptable and coefficients of above .90 

or .95 are desirable for clinical purposes (see also Rodebaugh et al., 2016).

2.5 Post-Error Accuracy

Like the PES analysis, post-error and post-correct trials were limited to trials that followed 

incongruent errors and incongruent corrects, respectively. Post-error accuracy (PEA) was 

computed by summing the number of post-error correct trials and dividing this value by the 

sum of post-error correct trials and post-error error trials. Post-correct accuracy (PCA) was 

calculated similarly (number of post-correct correct trials / post-correct correct + post-

correct error). Then, the post-error accuracy difference (ΔPEA) was calculated as PEA 

minus PCA.

2.6 Psychophysiological recording and data reduction

Participants were seated approximately 70 cm in front of a computer monitor inside an 

acoustically and electrically shielded booth. Continuous electroencephalographic (EEG) 

activity was recorded from a customized 96-channel actiCAP system using an actiCHamp 

amplifier (Brain Products GmbH, Gilching, Germany). Impedances were kept below 25 kΩ. 
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The ground (GND) channel was embedded in the cap and was located anterior and to the 

right of channel 10, which roughly corresponds to electrode Fz. During data acquisition, 

channel 1 (Cz) served as the online reference channel. All signals were digitized at 500 Hz 

using BrainVision Recorder software (Brain Products).

Offline analyses were performed using BrainVision Analyzer 2.0 (Brain Products). Gross 

muscle artifacts and EEG data during the breaks in between blocks were first manually 

removed by visual inspection. The data were band-pass filtered with cutoffs of 0.1 and 30 

Hz, 24dB/oct rolloff. Blinks, horizontal eye movements, and electrocardiogram were 

removed using independent component analysis (ICA), and corrupted channels were 

interpolated using spline interpolation. Scalp electrode recordings were re-referenced to the 

average activity of all electrodes. Response-locked data were segmented into individual 

epochs beginning 1500 ms prior to response onset and continuing 1500 ms after the 

response. Epochs were rejected as artifactual if any of the following criteria were met: 1) a 

voltage step exceeding 50 µV in 200 ms time intervals, 2) a voltage difference of more than 

150 µV within a trial, or 3) a maximum voltage difference of less than 0.5 µV within a trial. 

Similar to the behavioral analysis trial rejection, ERP trials were rejected if responses fell 

outside of an intra-individually-determined 95% confidence interval of incongruent response 

times. However, trial number differences between ERP and behavioral trials remained 

because ERP trials were not required to have happened in specific sequences (e.g., “ec” or 

“ccecc”) like those imposed in the behavioral data. The average activity between the −800 

and −700 ms time window preceding the response was used for the baseline correction.

The ERN and its correct-trial counterpart, the correct response negativity (CRN), were 

defined as the average activity in the 0–100 ms post-response window at channel 9 (roughly 

FCz), where these components were maximal. The Pe and its correct-trial counterpart were 

defined as the average activity in the 200–400 ms window following a response at channel 

40 (roughly Pz), where these components reached their maximal amplitude. An average of 

28 (SD = 14, range: 7–59) artifact-free ERP trials were retained in the error-trial analysis 

and an average of 87 (SD = 16, range: 47–112) trials were retained for the correct-trial 

analysis, consistent with recommendations (Olvet & Hajcak, 2009b). To evaluate internal 

consistency of the ERPs, we calculated split-half reliability by correlating odd-numbered 

trials with even-numbered trials and then adjusting with the Spearman-Brown formula 

(Hajcak, Meyer, & Kotov, 2017). The resulting coefficients for the ERN, CRN at channel 9 

were .80 and .92, respectively, and for the Pe and correct-trial Pe at channel 40 were .79 

and .90, respectively – these coefficient magnitudes mirror those from prior work (Hajcak et 

al., 2017).

2.7 Overview of Analyses

First, we computed and compared estimates of PES with paired sample t-tests. Second, we 

computed reliability estimates of the different PES calculations. Third, we examined how 

PES relates to other behavioral indices of cognitive control (flanker congruency effects, 

post-error accuracy) with bivariate Pearson correlations. Fourth, we examined bivariate 

correlations between PES estimates and error-related ERPs (ERN, Pe). Difference 

amplitudes were computed by subtracting correct-trial ERPs (CRN, Pe-correct) from error-
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trial ERPs (ERN/Pe) and were used in these analyses. Repeated-measures analyses of 

variance (ANOVAs) used Type III Sum of Squares for interactions with the Greenhouse-

Geisser correction applied to p values associated with multiple df repeated measures 

comparisons.

3 Results

3.1 Flanker task behavioral results

As expected, the typical flanker interference effects emerged in our modified task version. 

Specifically, reaction times were significantly longer on incongruent trials (M = 399, SD = 

31) than congruent trials (M = 334, SD = 30, t(60) = 28.14, p < .0001, Cohen’s d = 3.60). 

Additionally, accuracy rates (%) were significantly lower on incongruent trials (M = 75, SD 
= 12) than congruent trials (M = 95, SD = 4, t(60) = 14.57, p < .001, Cohen’s d = 1.87). 

Highlighting the strength of this effect, all participants (61/61) showed longer RTs and lower 

accuracy rates on incongruent versus congruent trials (binomial tests, p(61/61) < .0001).

To evaluate the impact that trial-to-trial feedback had on congruency effects, a 2 × 2 

repeated-measures analysis of variance (ANOVA) with the within-subjects factor 

congruency (congruent vs. incongruent) and between-subjects factor feedback (absent vs. 

present) was separately conducted on the RT and accuracy data. For RT, neither the main 

effect of feedback (F(1, 59) = 0.77, p = .38, η2
p = .013) nor the interaction between 

congruency and feedback (F(1, 59) = 1.02, p = .32, η2
p = .017) reached statistical 

significance. Likewise, for accuracy rates, neither the main effect of feedback (F(1, 59) = 

2.07, p = .16, η2
p = .034) nor the interaction between congruency and feedback (F(1, 59) = 

0.68, p = .42, η2
p = .011) were significant. Thus, feedback had no impact on flanker 

interference effects on reaction times or accuracy rates.

3.2 Post-Error Slowing

A comparison of post-error and post-correct RTs for each PES estimate, along with the 

effect size of each estimate, is displayed in Figure 2 and in Table 1. PES was observed when 

using the traditional method: averaged post-error RT (M = 358, SD = 42) was longer than 

post-correct RT (M = 348, SD = 30; t(60) = 2.92, p = .005, Cohen’s d = 0.37). That is, 

PESTraditional provided a small-to-medium effect size (Cohen, 1988). Notably, the robust 

calculation also revealed significant PES, with an effect size more than three times larger 

than the estimate from the traditional method: post-error trials in the cceCc sequence had 

significantly longer RTs (M = 360, SD = 43) than post-correct, pre-error trials (cCecc; M = 

325, SD = 30, t(60) = 8.94, p < .0001, Cohen’s d = 1.15). The robust estimate thus produced 

a large-to-very large effect size (Cohen, 1988). The PESRobust estimate (M = 35, SD = 30) 

was significantly larger than the PESTraditional estimate (M = 10, SD = 3, t(60) = 8.02, p < .

0001, Cohen’s d = 1.03). Finally, the PESError Trial estimate was also significant, as error 

trials in the ccEcc sequence (M = 314, SD = 44) were faster than the post-error trials (which 

was the same post-error value used in the robust calculation, M = 360, SD = 43, t(60) = 9.58, 

p < .001, Cohen’s d = 1.23). The PESError Trial provided a very large effect size (Cohen, 

1988) and was larger than both the traditional (t(60) = 7.96, p < .001, Cohen’s d = 1.00) and 

robust (t(60) = 3.01, p = .004, Cohen’s d = 0.38) estimates.
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Next, we evaluated the different post-correct trial selection schemes for the traditional 

estimate. When post-correct trials were randomly selected, a significant post-error slowing 

effect was observed (t(60) = 3.10 p = .003, Cohen’s d = 0.40). In terms of RT matching, the 

original matching algorithm was partially successful in matching error trials with 

correspondingly fast correct RTs. The difference in RTs was still significant (t(60) = 9.06, p 
< .001, Cohen’s d = 1.16), but the effect size was much smaller than the original difference 

between error and correct RTs (t(60) = 19.85, p < .001, Cohen’s d = 2.54).When post-correct 

trials were selected on the basis of this RT matching, there was also a significant PES effect 

(t(60) = 4.59, p < .001, Cohen’s d = 0.58). The more restrictive matching procedure was 

successful in matching correct and error RTs (t(60) = 1.80, p = .077, Cohen’s d = 0.23). 

When this most conservative RT-matching approach was used, post-error (M = 365, SD = 
48) and post-correct RTs (M = 340, SD = 35) still differed significantly (t(60) = 4.30, p < .

001, Cohen’s d = 0.55), indicating a PES effect. These findings replicate previous work in 

that even after RT-matching, post-error slowing is still observed (Hajcak et al., 2003), 

suggesting PES does not solely reflect regression to the mean.

Finally, we considered a single-trial regression approach to estimating PES (Fischer et al., 

2018). This analysis was conducted using the lmer function in R and considered the full 

dataset of all non-first and non-outlier trials from all 61 participants (total trials = 20,532). In 

the model, RT was the dependent variable, and the following factors and all interactions 

were included: previous accuracy, previous congruency, current accuracy, and current 

congruency, as well as a random intercept for subject. This model allows the simultaneous 

prediction of post-error slowing (indicated by main effects and interactions involving the 

term previous accuracy, which we focus on here) while controlling for other well-known 

factors that influence RT (including the previous trial’s congruency and post-conflict 

reduction of interference (see Van der Borght, Braem, & Noteabert, 2014). The model 

produced a significant main effect of previous accuracy (F(1, 20246.4) = 17.21, p < .0001), a 

significant interaction term between current and previous accuracy (F(1, 19821.4) = 7.63, p 
= .006), a significant interaction between previous accuracy and previous congruency (F(1, 

20443.5) = 9.24, p = .002) and a significant four-way interaction between current 

congruency, current accuracy, previous congruency and previous accuracy (F(1, 20454) = 

3.93, p = .047). Because the interactions involving previous congruency are less relevant 

here, we followed up on the Current x Previous Accuracy interaction (averaging over 

previous and current congruency) with the lsmeans function in R, using Tukey’s post-hoc 

tests4. Notably, the post-hoc tests comparing post-error correct and post-correct correct trials 

were all significant (all ts > 7.90, ps < .0001). The only post-hoc test that was not significant 

was the one comparing post-error error and post-correct error trials (t(19879) = 0.77, p = .

87); post-error slowing was not observed when the next trials were errors, replicating 

previous results (Hajcak & Simons, 2008). These results indicate that post-error slowing was 

observed at a single-trial level, while also controlling for potentially confounding factors.

We next examined how many participants showed post-error slowing, indicated by positive 

values for the post-error minus post-correct comparison, for each metric separately. A total 

4Full model results are available in the Supplemental Material.
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of 42/61 participants had positive PES values when calculated using the traditional method 

(binomial test, p(42/61) = .0013), whereas 55/61 participants had positive PES values with 

the robust estimate (binomial test, p(55/61) < .0001) and 58/61 had positive PES values with 

the error-trial estimate (binomial test, p(58/61) < .0001). A McNemar Test (McNemar, 1947) 

was used to evaluate differences in the proportion of individuals categorized as having PES 

(positive PES values) versus not having PES (negative PES values or PES value of 0 ms) 

between the estimates of PES. A significant effect emerged for the comparison between 

traditional and robust estimates (McNemar’s Χ2 = 11.08, df = 1, p = .0009). Of note, 13 

participants categorized as having post-error speeding (faster RTs on post-error trials than on 

post-correct trials, indicated by negative PES values) using the traditional method were 

categorized as having had post-error slowing (positive PES values) when using the robust 

method. Compared to the traditional method, the error-trial estimate also categorized more 

participants as having had positive PES values (McNemar’s Χ2 = 12.5, df = 1, p = .0002). 

However, the robust and error-trial estimates did not differ in terms of proportion categorized 

as having or not having positive PES values (McNemar’s Χ2 = 0.80 df = 1, p = .37).

To investigate the impact that feedback had on post-error slowing, a repeated-measures 

ANOVA with the within-subjects factor trial type (post-error vs. post-correct) and between-

subjects factor feedback (absent vs. present) was run on RT data for each PES estimate 

separately. None of these ANOVAs revealed significant interactions between trial type and 

feedback: Traditional: F(1, 59) = 0.30, p = .59, η2
p = .0.005; Robust: F(1, 59) = 0.002, p = .

97, η2
p < .001; Error-Trial PES: F(1, 59) = 0.44, p = .51, η2

p = .007. Thus, feedback and 

lengthened ITI had no impact on PES.

3.3 Reliability of PES

Table 1 displays split-half reliability coefficients of the different PES estimates. As can be 

seen, the post-error and post-correct reliabilities were quite high (all split-half coefficients 

> .64); this is consistent with previous research on the reliability of reaction times. 

Moreover, post-error and post-correct RTs were highly correlated (rs > .64). However, the 

PES reliability estimates were all unacceptably low (range: .29 to .63). The highest 

coefficients were derived from the PESError Trial estimate. The robust estimate of PES 

showed one of the lowest reliability estimates. This is likely due to at least two reasons. 

First, by the nature of the trial extraction procedure (identified as ccecc sequences), fewer 

trials were available for the split-half reliability estimates. Reliability is scaled with the 

number of items. Second, because the post-error and post-correct trials were derived from 

the same trial sequence, their correlations were quite high. Large correlations between the 

constituent items in a difference score tend to reduce the reliability of the difference measure 

(Infantolino et al., 2018).

3.4 Post-Error Accuracy

Data from one participant were excluded from the post-error accuracy (PEA) analysis due to 

outlier status (Z-score < −3.00). A paired-samples t-test revealed that overall, participants 

were less accurate after errors (M = 90.67%, SD = 6.81) than after corrects (M = 92.80%, 

SD = 4.55, t(59) = 3.13, p = .003, Cohen’s d = 0.41). Most participants showed the inverse 

post-error accuracy improvement effect, as just 25 participants showed increased post-error 
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accuracy vs. post-correct accuracy (binomial test, p(25/60) = .045). A Trial Type x Feedback 
ANOVA was conducted to evaluate the impact of feedback on post-error accuracy. This 

analysis revealed a trend-level interaction (F(1, 58) = 3.42, p = .07, η2
p = .06). To evaluate 

Wessel’s (2018) model, follow-up t-tests were performed in spite of the trending interaction. 

These tests revealed that post-error accuracy was significantly poorer than post-correct 

accuracy in the no-feedback condition (t(28) = 3.40, p = .002), but was not significantly 

different from post-correct accuracy in the feedback condition (t(30) = 1.06, p = .30).

3.5 Event-related brain potentials (ERPs)

Figure 3 displays response-locked ERPs. As can be seen, a sharp negative deflection was 

prominent on error trials in the 0–100 ms post-response time window. A Trial Type x 

Feedback ANOVA was conducted on the ERN and Pe separately. For the ERN, a significant 

main effect of Trial Type (F(1, 59) = 132.36, p < .001, η2
p = .69) confirmed that error trials 

elicited a larger negativity than correct trials. Neither the main effect feedback (F(1, 59) = 

0.05, p = .82, η2
p = .001) nor the interaction between trial type and feedback (F(1, 59) = 

2.34, p = .13, η2
p = .04) reached statistical significance.

For the Pe, there was a significant main effect of trial type (F(1, 59) = 88.81, p < .001, η2
p 

= .60), indicating the positivity in the 200–400 ms post-response window at channel 40 (Pz) 

was larger for errors than for corrects. Like the ERN, the impact of feedback on the Pe was 

negligible: neither the main effect of feedback (F(1, 59) = 1.72, p = .20, η2
p = .03) nor the 

interaction between trial type and feedback (F(1, 59) = 0.44, p = .51, η2
p = .007) was 

significant.

3.6 Correlations between behavior and ERPs

Table 2 shows bivariate correlations between PES estimates, post-error accuracy difference 

(ΔPEA), flanker interference effects, and the ERP variables (ERN and Pe). As can be seen, 

the traditional and robust estimates were correlated with one another (r = .64, p < .001), 

replicating past research (van den Brink et al., 2014). None of the PES estimates was 

significantly correlated with ΔPEA. Both the traditional and robust estimates of PES were 

negatively correlated with the flanker interference effect on accuracy. Because more negative 

values on this flanker interference effect typically indicate better cognitive control – as 

participants are disrupted less by the incongruent nature of the stimuli – this finding suggests 

that participants who slowed down more after errors exhibited better cognitive control on 

incongruent stimuli. However, when incongruent accuracy rates were controlled for in a 

partial correlation, these correlations were reduced to non-significance (PESTraditional partial 

r = .21, p = .10, PESRobust partial r = .00007, p = 1.00). As can be seen in Table 2, 

PESError Trial was not correlated with any of the behavioral indices.

None of the PES estimates was correlated with the ERN difference amplitude. However, 

both traditional (r = .26) and robust (r = .26) estimates of PES were positively correlated 

with the Pe difference amplitude. These correlation magnitudes did not differ significantly, 

according to the formula for comparing dependent correlations of Meng, Rosenthal, & 

Rubin (1992): Z = 0.008, p = 1.00, two-tailed. This suggests that both traditional and robust 
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estimates correlated with electrophysiological index of attention allocation to errors equally. 

The PESError Trial estimate did not correlate with the Pe difference amplitude (r = .04).

A final analysis considered relations between PES estimates and number of trials included in 

the averages. There was a significant negative correlation between number of trials for the 

traditional estimate and PESTraditional (r = −.35, p = .001), suggesting smaller PES effects 

with increasing number of trials available, in line with past studies (Notebaert et al., 2009). 

However, there was no significant relationship between PESRobust and the number of five-

trial sequences used to calculate this average (r = −.20, p = .12). The PESError Trial estimate 

was also not significantly related to the number of five-trial sequences (r = .13, p = .33).

4 Discussion

Post-error slowing has been increasingly used in basic cognitive neuroscience and clinical 

psychology, yet its precise calculation has not been standardized or optimized. The current 

study compared different estimates of PES in a modified flanker task, arguably the most 

common task used to elicit error-related adjustments. Results indicate the robust calculation 

of PES described by Dutilh et al (2012) provided an estimate of PES that was three times 

larger than the estimate derived from the traditional method. Moreover, the robust PES 

correlated with an electrophysiological index of attention allocation (Pe) just as well as the 

traditional method. The last estimate of PES examined (PESError Trial) – which compared 

RTs on error trials with RTs on post-error trials – provided a large estimate of PES but did 

not correlate with external indicators of error monitoring or cognitive control. However, PES 

demonstrated very low reliability estimates, regardless of how it was calculated. We consider 

these results in the context of the error-monitoring literature and discuss implications for 

consistent measurement.

4.1 Comparing PES metrics

The primary objective of this study was to compare different methods of calculating PES. 

The few studies that have computed both traditional and robust estimates of PES reported 

that the robust estimate tends to be larger (Murphy, Moort, & Nieuwenhuis, 2016; van den 

Brink et al., 2014; Williams, 2016). This pattern was replicated in the current study: 

PESRobust provided an effect size three times larger than the PESTraditional estimate (Cohen’s 

d: 0.34 vs. 1.15; Figure 2). The two estimates were correlated with one another, further 

replicating previous research (Tabachnick et al., 2018; van den Brink et al., 2014). As noted 

in the Introduction, unlike PESTraditional, the PESRobust estimate is not sensitive to global 

fluctuations in task engagement and fatigue, because the trials used in its computation 

involve the same trial sequence surrounding errors. Thus, participants may be slowing down 

more after errors than previously thought. Furthermore, significantly more participants 

showed positive PES values (indicating true post-error slowing) when using the robust 

method compared to the traditional method (55/61 = 90.16% vs. 40/61 = 65.57%). This 

analysis, which to the best of our knowledge has not been reported before, indicates that the 

traditional estimate may underestimate how many participants slow down after their errors. 

This may have important consequences for studies of clinical populations in which reduced 

PESTraditional is a primary outcome (e.g., Yordanova et al., 2011).
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Only a few studies have used the error-trial method, in which error-trial RTs are subtracted 

from post-error RTs (e.g., Smith & Allen, 2019). In our study, this method provided a larger 

PES estimate than both traditional and robust methods. This is because error trials are almost 

always faster than surrounding trials in simple two-choice tasks (Brewer & Smith, 1989), 

and thus when these values are subtracted from post-error RTs, the resulting estimate will be 

larger. We believe this calculation may overestimate the true magnitude of post-error 

slowing and has two significant drawbacks. First, from a conceptual standpoint, it does not 

compare correct RTs with correct RTs, as the other estimates do. This is potentially 

problematic because it compares the output of a cognitive process that led to a correct 

decision with a cognitive process that caused an error. Thus, the “slowing” reflected in this 

estimate is not a true estimate of slowing down the same cognitive process that leads to a 

correct decision. Second, from a measurement standpoint, the error-trial estimate of PES 

may be suboptimal because the distributions of error- and correct-trial RTs are known to 

differ (Rabbitt & Vyas, 1970). Thus, we would recommend researchers not use this method 

to quantify PES. The robust estimate seems to provide a balanced approximation of post-

error slowing both conceptually and methodologically.

One potential issue with the robust estimate of PES is that pre-error trials are associated with 

unique neural activity compared to pre-correct trials – a phenomenon some have suggested 

is a waning of attention and performance monitoring activity prior to errors (Allain, 

Carbonnell, Falkenstein, Burle, & Vidal, 2004; Hajcak, Nieuwenhuis, Ridderinkhof, & 

Simons, 2005; Ridderinkhof, Nieuwenhuis, & Bashore, 2003; Schroder, Glazer, Bennett, 

Moran, & Moser, 2017). In this way, the robust estimate compares trials that are associated 

with differential neural activity. As noted in the Introduction, pre-error trials are also 

associated with faster RTs than most post-correct trials (Brewer & Smith, 1989); this 

estimate thus captures the end of a series of increasingly fast response times. It is possible 

that pre-error speeding and post-error slowing result from different mechanisms. However, 

we feel this is precisely what a measure of PES should capture – the waning of attention 

before, and the subsequent reactivity following, an error. Thus, the robust estimate much 

more definitely captures the essence of a uniquely error-related phenomenon. Appropriately 

choosing a baseline, however, as we have demonstrated, has an impact on the overall 

magnitude of the PES estimate, and we encourage further study into choosing the most 

appropriate baseline comparator (i.e., the post-correct RT).

Finally, future studies will need to further parse competing influences of previous-trial 

accuracy and congruency effects on response times. Although the single-trial regression 

approach (e.g., Fischer et al., 2018) implemented here revealed a significant PES effect 

above and beyond the effects of previous-trial congruency, there were too few trials in the 

Robust trial sequence (ccecc) to reliably compare various congruency sequences. Future 

studies using tasks with many more trials will be necessary to more critically evaluate how 

the robust estimate is sensitive or insensitive to congruency sequence effects.

4.2 Internal Consistency of PES

A novel analysis we examined in this study was the internal reliability of PES. Although 

previous studies had examined test-retest reliability of PES (Danielmeier & Ullsperger, 
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2011; Segalowitz et al., 2010), no previous study – to our knowledge – has examined the 

internal reliability of PES. We find that, despite PES being observed in every comparison 

between post-error and post-correct RTs, by most standards, the split-half reliability 

estimates of PES ranged from poor to unacceptable. Analysis of only participants who had 

sufficiently high numbers of trials did not impact the reliability estimates. These findings are 

in line with recent studies calling attention to poor psychometric properties of commonly 

used cognitive neuroscience measures, particularly those based on difference scores (Hajcak 

et al., 2017; Hedge, Powell, & Sumner, 2018; Infantolino et al., 2018; Meyer, Lerner, Reyes, 

Laird, & Hajcak, 2017).

There is little doubt that PES is replicable from a within-subjects perspective. Indeed, across 

all of the calculations we used, a significant PES effect was observed. However, the poor 

reliability precisely follows as Hedge et al (2017) claimed: “experimental designs aim to 

minimize between-subject variance, and thus successful tasks in that context should be 

expected to have low reliability” (pg. 1181). Low reliability of PES may explain the 

inconsistent correlations reported in the literature between PES and individual differences of 

psychopathology and of error-related brain activity. This would have serious implications for 

the use of PES in clinical applications. Indeed, recent calls have urged researchers to 

routinely report internal consistency of neural measures (Hajcak et al., 2017). We feel that 

extending this recommendation to behavioral adjustment measures is also warranted, 

particularly when between-subjects effects are under examination. We did find that 

reliability estimates were higher for the post-error RTs, and perhaps individual differences 

research could use this as a metric of post-error adjustment. However, this is not technically 

slowing, per se, and should be distinguished from PES (and theoretical accounts of slowing 

adjustments). Our results also invite critical discussion between two divergent lines of 

research – the basic, experimental work (within-subjects) and the applied sciences aimed at 

better understanding psychopathology (between-subjects).

One potential reason reliability estimates of PES were so low is that PES may reflect 

multiple competing mechanisms (Dutilh et al., 2012; Fischer et al., 2018; Purcell & Kiani, 

2016). As noted in the Introduction, even researchers using the drift diffusion model have 

come to varying conclusions regarding the underlying mechanisms giving rise to PES, 

depending on the particular sample studied as well as the task. Reliability may thus suffer 

because the internal consistency of a measure is constrained when the measure is 

multifaceted (Schmitt, 1996). Overall, the results presented here urge future studies to 

critically evaluate psychometric properties of both behavioral and neural measures, 

especially if they are to be used in individual-differences research.

4.3 Relations to other indices of behavior

None of the PES estimates correlated with post-error accuracy, which is in line with previous 

results suggesting these two indices of error monitoring are dissociable (Danielmeier & 

Ullsperger, 2011). In fact, it is likely that most studies do not find a positive association 

between PES and PEA (e.g., Tabachnick et al., 2018; see Forster & Cho, 2014, for an 

exception). Similarly to PES, PEA is also not consistently measured; some studies evaluate 

it as accuracy after errors, whereas others (including the current study) use the difference 
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between post-error and post-correct accuracy. We believe that in instances where PES is 

correlated with PEA, a difference PEA score should be used, as PES is also a difference 

measure. Again, as accumulating evidence indicates that PES may arise for various 

mechanistic reasons, there are some situations in which a correlation between PES and PEA 

would not be predicted. It is necessary, then, to take into consideration the precise task 

parameters, fluctuations across the task, and participant sample when considering 

correlations between PES and PEA. The relationship between PES and flanker interference 

effects on accuracy was limited to the traditional and robust estimates of PES. However, 

both of their correlations were reduced to non-significance after controlling for overall 

accuracy rates on incongruent trials.

Finally, the number of trials that was used in the average of PES was significantly correlated 

with PESTraditional, but not with PESRobust or PESError Trial. The direction of this correlation 

indicates that, as more post-error error trials are included in the average, the effect of PES 

becomes smaller. In fact, the effect size of the correlation between PESTraditional and the 

number of trials (r = −.35, R2 = .12) was three times larger than that between PESRobust and 

the number of trials (r = .20, R2 = .04). Although replications are warranted, these findings 

indicate that PESTraditional may be more sensitive to the number of trials included in the 

average. This is potentially important, as both functional and non-functional (orienting) 

accounts indicate that one major contributor to the magnitude of PES is the number of errors 

committed in the task. Again, however, both of these theories have been developed based on 

traditional estimates of PES. It is necessary to continue evaluating relations between number 

of post-error trials and PES estimates using both traditional and robust calculations.

4.4 Associations with error-related brain activity

None of the PES estimates correlated with the amplitude of the ΔERN. These results are 

largely in line with the between-subjects meta-analysis by Cavanagh and Shackman (2015), 

which found a small and non-significant meta-analytic correlation between ERN and PES. 

However, in our study, both robust and traditional estimates did correlate with amplitude of 

the Pe. The Pe is generally considered to be an index of conscious awareness of having made 

a mistake or attention allocation to the error (Nieuwenhuis, Ridderinkhof, Blom, Band, & 

Kok, 2001; Overbeek et al., 2005). Notably, there is research suggesting the Pe may also 

index an orienting response to uncommon events (Ullsperger et al., 2010), as it shares 

topographic, temporal, and functional similarities to the P3b (Leuthold & Sommer, 1999; 

Ridderinkhof et al., 2009). Past research found that the Pe correlated with post-error 

accuracy (Schroder, Moran, Infantolino, & Moser, 2013), but this was not found here; rather, 

Pe correlated with only PES. Again, the varying correlations reported in the literature may 

arise for multiple reasons, including low internal reliability of PES and the various 

parameters, populations, and task contexts that may give rise to PES.

4.5 The impact of trial-to-trial feedback

Finally, we considered the impact of trial-to-trial feedback on post-error adjustments and 

error-related ERPs. Approximately half of the participants received trial-to-trial feedback, 

and the presence of feedback significantly lengthened the intertrial interval and also the 

response-stimulus interval (RSI). Prior literature suggests RSI has a major impact on 
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whether or not PES emerges (Danielmeier & Ullsperger, 2011; Jentzsch & Dudschig, 2009; 

Wessell, 2018). Specifically, PES tends to be largest when RSIs are very short (<500ms) and 

tapers off with increasingly large RSI. In the current study, none of the PES estimates was 

impacted by the effect of feedback and the subsequently increased (+2s) RSI. However, 

post-error accuracy was marginally improved with the presence of feedback. Specifically, in 

the no-feedback condition, participants were significantly less accurate after errors 

compared to after corrects – which is the opposite of the post-error improvement in accuracy 

described by Laming (1979) and Danielmeier and Ullsperger (2011) – but there was no 

significant difference between post-error and post-correct accuracy rates in the feedback 

condition. It is possible that the presence of feedback – and the subsequently lengthened ITI 

– may have negated the negative impact of errors on subsequent performance (in terms of 

accuracy).

Collectively, these post-error adjustment data are interesting to consider with respect to 

Wessel’s (2018) adaptive orienting theory of error processing. This theory specifically 

predicts that at long ITIs, PES only occurs due to controlled processing (strategic PES). This 

would suggest that post-error accuracy is enhanced in long ITI trial sequences. In the current 

study, participants performed equally well after errors compared to correct trials in the 

feedback condition but performed significantly worse with short ITIs (in the no-feedback 

condition). This conforms to Wessel’s prediction of ITIs impacting post-error performance. 

As Wessel (2018) noted, the extant literature is highly inconsistent with regard to finding 

increased vs. decreased accuracy rates after errors vs. after corrects. Future studies will need 

to evaluate just how often and under which conditions participants are more accurate after 

errors than after corrects.

The trial-to-trial feedback had no impact on amplitudes of the ERN and the Pe. This finding 

replicates a previous study that found identical ERNs between feedback and no-feedback 

versions of an arrow flanker task (Olvet & Hajcak, 2009a). That study’s feedback version of 

the task did not have longer ITIs in the feedback version, which is one difference from the 

current study, in which the feedback trials were substantially (+2s) longer. These data 

suggest that trial-to-trial feedback may not have a large impact on these ERPs.

4.6 Limitations

There are limitations to the current study that should be addressed in future research. First, 

the data were collected from healthy, well-adjusted adults and we cannot speak to how 

clinical or more heterogeneous samples would respond or provide differing estimates of 

PES. However, the goal of the current study was to evaluate PES in a healthy sample in 

order to provide some precedent for further evaluation in clinical samples. Second, the 

examination of the impact of ITI on error monitoring was a convenience analysis as the data 

were collected while the task was under development. Third, the variation of the flanker task 

used here was unusual in that it used images, and not arrows or letters, which is more 

common. However, the task elicited the most common flanker-interference effects as well as 

ERP and behavioral signatures of error monitoring. Moreover, previous studies have used 

faces as flanker stimuli and have also elicited similar electrophysiological and behavioral 

indices of performance monitoring (Moser, Huppert, Duval, & Simons, 2008; Navarro-
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Cebrian et al., 2013). Thus, our findings are likely generalizable to other flanker tasks. 

Nonetheless, examining the estimation, reliability, and brain-behavior correlations of 

different PES calculations in other paradigms (other versions of the flanker task, Stroop task, 

Simon, Go/No-Go) is certainly warranted.

Conclusions

The precise measurement of PES has significant implications for both cognitive 

neuroscience research and for applications to clinical populations. Functional and non-

functional theories of PES have been developed almost exclusively based on studies using 

the PESTraditional estimate, which, as we find here, may underestimate the true magnitude of 

PES. An important finding here is that, regardless of the precise calculation of PES, this 

metric produced unacceptably low reliability values, at least based on conventional 

guidelines (Nunnally, 1994). This adds to the emerging literature on the low reliability of 

cognitive neuroscience measures (Hedge, Powell, & Sumner, 2018; Infantolino et al., 2018; 

Rodebaugh et al., 2016) and calls for a careful examination of basic psychometric properties 

in any individual differences research. Reliably assessing the magnitude of PES is an 

important endeavor for future studies in the basic and applied sciences. The three 

calculations of PES in the current work yielded significantly different magnitudes of the 

slowing effect and differentially correlated with cognitive control-related electrophysiology. 

We suggest that future studies of error-monitoring continue to evaluate both robust and 

traditional estimates as well as report their reliabilities. Once we understand how best to 

measure PES, we can then make finer theories that explain its functional significance and 

understand its potential variability in clinical populations.
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Figure 1. 
Typical post-error slowing effect.
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Figure 2. 
PES calculations and associated effect sizes.

Schroder et al. Page 25

Psychophysiology. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Response-locked event-related potentials.
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