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Both environmental and genetic factors are involved in the initiation and development of 

gastrointestinal cancer. Covalent closed circular RNAs (circRNAs) are produced by a mechanism 

called “back-splicing” from mRNAs. They are highly stable and show cell and tissue specific 

expression patterns. Although some functions such as “microRNA sponge” and “RNA binding 

protein sponge” have been reported for a small number of circRNAs, the function of thousands of 

other circRNAs is still unknown. Dysregulation of circRNAs has been reported in many GI 

cancers and are involved in metastasis and invasion. CircRNAs have been reported to be useful as 

prognostic markers and targets for developing new treatments. We first describe the properties and 

biogenesis of circRNAs. We then summarize recent reports about circRNA functions, expression 

status, and their potential to be used as biomarkers in GI cancers including, gastric cancer, 

colorectal cancer, esophageal cancer, hepatocellular carcinoma, gallbladder cancer and pancreatic 

cancer.
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1. Introduction

Gastrointestinal (GI) cancers can originate from the stomach, esophagus, pancreas, 

hepatobiliary system, large intestine (colorectal and anal regions) and together comprise a 

major cause of cancer-related mortality worldwide (Siegel et al., 2019). Smoking, obesity, 

Helicobacter pylori, hepatitis B virus (HBV) and hepatitis C virus (HCV) are known 

environmental risk factors for GI cancer development (Pourhoseingholi et al., 2015). Genetic 

factors such as, APC mutation predisposing to familial adenomatous polyposis (Leoz et al., 

2015; Nallamilli and Hegde, 2017), and mutations in E-cadherin leading to hereditary 

diffuse-type gastric cancer (Brooks-Wilson et al., 2004; Liu and Chu, 2014) are known risk 

factors for GI development, but the exact molecular mechanisms underlying the progression 

and malignancy of other GI cancers remain largely unknown. Despite the success of 

chemotherapy in the treatment of some GI cancers, many patients continue to have a bad 

outcome and the 5-year survival rate in gastric cancer is less than 10% (Orditura et al., 2014; 

Sitarz et al., 2018). It is important to identify predictive and prognostic biomarkers to 

improve current treatment strategies and extend the 5-year survival rate.

CircRNAs are a group of single-stranded RNAs molecules that form a covalently closed 

loop structure as a result of joining the 3’ and 5’ ends. The existence of circRNAs has been 

known for more than 20 years (Nigro et al., 1991), but they have generally been considered 

to be artifacts of aberrant splicing (Cocquerelle et al., 1993). The first circRNA was 

serendipitously identified in a study that aimed to understand how viroids function as plant 

pathogens (Sanger et al., 1976). It was found by electron microscopy that viroid RNA is a 

single-stranded circular RNA which does not code for any proteins(Gross et al., 1978). 

Hepatitis delta was the second virus which was identified as a circular RNA, and in this case 

the circRNA encoded an open reading frame (ORF) which was translated to a protein (Kos 

et al., 1986). The first endogenously produced circRNA detected in human cells was a 
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transcript of the DCC gene (deleted in colorectal cancer), which was identified in the early 

1990s. The authors identified a transcript with the exons not in the expected order (Nigro et 

al., 1991). In the next two decades shuffled exons in transcripts of other genes such as SRY 
(sex-determining region Y) (Capel et al., 1993) and cytochrome P450 2C24 (CYPIIC24) 

(Zaphiropoulos, 1993, 1996) were also identified. However, recent work has revealed a large 

number of circRNAs in mammalian cells, and most of them are stable (Guo, J.U. et al., 

2014; Rybak-Wolf, A. et al., 2015; Salzman et al., 2012). Most circRNAs in humans arise 

from coding genes (Wilusz, 2017). These transcripts are regulated independently from the 

linear transcripts of the underlying gene, and their transcription levels vary in a cell-specific 

manner (Salzman, J. et al., 2013; Salzman et al., 2012).

Studies have shown that circRNAs have some common properties. Exonic circRNAs are 

very stable and most of them have half-lives longer than 48 hours inside cells, in comparison 

to mRNAs that show average half-lives about 10 hours (Jeck, W. R. et al., 2013; 

Schwanhausser et al., 2011). However, circRNAs are not stable in serum, which could be 

due to the presence of circulating RNA endonucleases (Haupenthal et al., 2006). Their 

stability inside cells is because of their resistance to exonucleases. This resistance may 

explain why some circRNAs are more abundant than the linear RNA products of their 

respective genes (Salzman et al., 2012). CircRNAs do not contain the 2′−5′ linkage which 

is present in RNA lariats, and are therefore resistant to RNA debranching enzymes. Using 

different methods, some studies reported that exonic circRNAs localize in the cytoplasm, 

and they were susceptible to the siRNA-mediated decay system, which could be useful in 

clarifying the functional roles of circRNAs (Hansen et al., 2011). The human homologs of 

the Drosophila melanogaster Hel25E (helicase at 25E) similarly regulate circRNA 

localization, and their export from the nucleus to cytoplasm is size dependent (Azmi, 2018; 

Huang, C. et al., 2018). Exonic circRNAs share some sequence-dependent features. The 

circRNAs that have been described to date all involve a GT-AG pair of canonical splice sites, 

but this could be unreliable because of the detection methods employed (Jeck, W. R. et al., 

2013). Moreover, some flanking introns are smaller than the average size, but most are 

usually longer than introns on average(Salzman, J. et al., 2013). Lastly, the length of the 

exons influences the circularization, and in circRNAs comprising a single exon, the given 

exon was found to be three fold longer compared to all expressed exons (Jeck, W. R. and 

Sharpless, N. E., 2014).

The lack of the free 3′ end in the circRNA molecule, which is needed for polyadenylation to 

take place, prevents researchers from using many molecular techniques that work by adding 

a poly-A tail to the RNA molecule. This makes it difficult to detect circRNAs and to explore 

their function. Moreover, because of the backsplicing process, the arrangements of exons are 

not in the expected order, and circRNAs are usually filtered out in sequencing algorithms. 

These problems in circRNA detection have been overcome with new bioinformatics tools 

such as, exonuclease-based enrichment approaches and sequencing of ribosomal RNA 

(rRNA)-depleted RNA libraries (instead of polyA-enriched libraries) (Jeck, W. R. and 

Sharpless, N. E., 2014).

Although they have been thought to be a class of non-coding RNAs, some studies have 

shown that these circRNAs could also act as mRNAs and be translated to produce functional 
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proteins. Moreover this process could be tissue-dependent (Meganck et al., 2018). 

CircRNAs have been reported to be associated with ribosomes, and it has been reported that 

circRNAs from the muscleblind locus could encode a protein (Pamudurti et al., 2017). More 

recently, several studies have reported that dysfunction or dysregulation of circRNAs could 

be associated with the development of human diseases including Alzheimer’s(Akhter, 2018) 

and cancer (He et al., 2017). CircRNAs could act either as tumor suppressor genes or as 

oncogenes in cancer initiation and development. In this review we focus on new findings 

concerning circRNA function in gastrointestinal (GI) cancers and their potential as 

biomarkers and prognostic factors.

2. Circular RNA biogenesis

CircRNAs are produced during a unique type of splicing -called back-splicing- which is 

catalyzed by canonical spliceosomal machinery (Vicens and Westhof, 2014). They are 

formed whenthe 5’ and 3’ ends of transcribed exons and/or introns are joined covalently. 

During this process, down-stream splice site of donor exon/intron joins to the up-stream 

splice site of acceptor exon/intron in a pre-mRNA molecule (Figure 1) (Ragan et al., 2019). 

Several splice variants of circRNA transcripts could be generated from a single gene 

depending on which exons are selected by alternative back-splice site selection during the 

back-splicing process (Zhang et al., 2016). There are two types of alternative back-splicing; 

(a) 5’ back-splicing and (b) 3’ back-splicing. In the 5’ alternative back-splicing, two or more 

downstream splice sites are alternatively linked to the up-stream 3’ splice site. On the other 

hand, in the 3’ alternative back-splicing, two or more up-stream 3’ splice sites are 

alternatively linked to the down-stream 5’ splice site (Zhang et al., 2016). The expression 

level of circRNAs is regulated at three different stages, including transcription, back-splicing 

regulation, and circRNA turnover (Li, X. et al., 2018).

Regulation of circRNA generation depends on cis-regulatory elements and trans-acting 

factors (Li, X. et al., 2018). Cis-regulatory elements are the same in all tissues and cells, and 

the tissue-specific pattern of circRNA expression suggests that trans-factors must be 

involved in regulation of circRNA expression (Zhang et al., 2016). Splicing machinery, RNA 

binding proteins, and repeated sequences, such as the Alu transposable element which is 

inverted (oriented in opposite direction) in the RNA can modulate the biogenesis of circRNA 

(Zhang et al., 2014). Back-splicing and linear splicing compete with each other in newly-

synthesized RNA in a cell-specific manner (Ashwal-Fluss et al., 2014). CircRNAs 

biogenesis is not yet fully understood, but three main pathways have been identified. Exonic 

circRNA arise from exons and can be subdivided into two groups: single exon circRNAand 

multiple exon circRNA. The second group of circRNAs are exon-intron circRNAs 

(EIciRNA) which contain both intron and exon sequences. Intronic circRNAs originate from 

the introns of the underlying gene. Analysis of the splice sites in circRNAs has revealed that 

most exonic circRNAs contain canonical GT/AG splicing sites(Shen, T. et al., 2015). 

However the mechanism of splice-site selection in circularization by spliceosomes is poorly 

understood.
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3. CircRNAs function

All the functions of circRNAs have not been fully elucidated, but some biological functions 

(especially in gene regulation) have been proposed (Figure 2). Their diversity, abundance 

and conservation suggest that they may play key roles in cell physiology (Lasda and Parker, 

2014). Several functions such as the microRNA sponge and transcription regulators have 

been proposed for circRNAs (Holdt et al., 2018)

Based on competitive endogenous RNA (ceRNA) hypothesis, some transcripts with shared 

microRNA binding site compete for microRNA and post-transcriptional control (Thomson 

and Dinger, 2016). It was proposed that circRNAs could act as a decoy for binding to 

microRNAs, hence increasing the level of the microRNA target genes (Figure 3). The first 

example of a circRNA acting as a microRNA sponge, was circRNACDR1as which could be 

viewed as an extreme example as itcontained >70 microRNA binding sites for mir-7. 

Decreasing the level of CDR1as led to a decreased level of CDR1 mRNA (Hansen et al., 

2011). This regulatory pathway was proposed to play a role in tumorigenesis and in the 

mammalian brain (Kleaveland et al., 2018; Xu et al., 2018). Likewise, the circular SRY 

contained 16 binding sites for miR-138, and it co-precipitated with Argonaute-2 (Ago-2) 

which is a key protein in the microRNA regulatory pathway (Hansen et al., 2013). These two 

are extreme examples of the microRNA sponging activity of circRNAs, and most other 

circRNAs contain a much smaller number of microRNA binding sites.

Some studies have reported that circRNAs can regulate gene transcription. Nuclear localized 

circRNAs can interact with the complex between RNA polymerase II and U1 snRNP (small 

nuclear ribonucleoprotein) that acts as a regulator of transcription and splicing machinery 

(Maiti et al., 2017). Some circRNAs regulate splicing and promote circularization thereby 

decreasing linear mRNA levels (Bose and Ain, 2018). CircRNAs could also regulate gene 

expression (and even its own expression) at a post-transcriptional level by acting as a RNA 

binding protein sponge. CircRNAs have some properties, which suggest they might act as 

scaffolds for RNA binding proteins (Dudekula et al., 2016; Zang et al., 2018). They may 

have roles as sequence targeting elements, which could simultaneously bind to RNA binding 

proteins and also to complementary sequences in target RNA or DNA molecules. However, 

the function of thousands of other circRNAs has not yet been elucidated and awaits further 

study.

4. Circular RNAs as Biomarkers

Hulka et al. have defined biomarkers as “cellular, biochemical or molecular alterations, 

which can be measured in biological media, including human tissues, cells, or fluids”. 

However, recently researchers have extended the above definition to cover biological 

processes, which may be objectively measured and assessed as indices of normal or 

pathogenic biological parameters, or responses to therapeutic interventions (Mayeux, 2004; 

Naylor, 2003).

Based on the National Cancer Institute, a biomarker is “a biological molecule found in 

blood, other body fluids, or tissues, which could be a marker of a normal or abnormal 
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process, or of a condition or disease” such as cancer (Henry and Hayes, 2012). In general, 

biomarkers could differentiate an affected individual from a healthy individual (Henry and 

Hayes, 2012). Studies have identified a diverse range of biomarkers, such as proteins 

(enzymes or receptors) (Álvarez-Chaver et al., 2007; Watabe-Rudolph et al., 2012), nucleic 

acids (microRNAs or other non-coding RNAs) (Witwer, 2015; Zhou et al., 2015), antibodies 

(Schwarz et al., 2006), and peptides (Belogurov et al., 2008). Moreover, a biomarker may 

also consist of a set of modifications, including metabolomic and proteomic signatures, and 

gene expression profiles. It should be noted that many biomarkers are capable of being 

detected in the circulation: (serum, plasma, or whole blood); or in excretions or secretions 

(urine, stool, nipple discharge, or sputum). For this reason, they can be readily evaluated in a 

non-invasive serial manner. Other biomarkers may be only detectable in whole tissue, in 

which case, they would need special imaging or biopsies to be evaluated (Henry and Hayes, 

2012).

Contemporary studies have shown that many features of circRNAs enable them to serve as 

biomarkers for some human diseases (Conn et al., 2015). One of these features is their 

stability. As a result of the covalently closed-loop structure with no free 5′ and 3′ ends, 

circRNA molecules show high resistance to the exonuclease RNase R compared to linear 

RNAs (Enuka et al., 2015; Memczak et al., 2013). Other studies have found that the average 

half-life of circRNAs in plasma exceeds 48 hours, which is much longer than the average 

half life of mRNAs (10 hours) (Jeck, William R and Sharpless, Norman E, 2014; Zhong, Y. 

et al., 2018). Another feature is universality. According to some researchers, circRNAs are 

among the most universal molecules found in human cells (Salzman et al., 2012). circRNAs 

can be more abundant than their linear isoforms under some conditions (Glažar et al., 2014). 

Moreover, circRNA is more abundant in the brain compared to other organs (Rybak-Wolf, 

Agnieszka et al., 2015). The relatively high concentration of circRNAs in the blood could be 

ascribed to their high stability (Li, M. et al., 2018; Memczak et al., 2015). Another 

advantageous feature is specificity; that is, the circRNAs are expressed in a tissue-specific 

and developmental stage-specific manner. This characteristic makes circRNAs useful 

biomarkers for particular diseases. Several studies have found that circRNAs are 

differentially expressed between cancerous and noncancerous tissues (Memczak et al., 2013) 

and that there identity and abundance are also distinctive of cancer cells (Floris et al., 2017; 

Salzman, Julia et al., 2013). Finally, circRNAs are strongly conserved across various species, 

meaning that a number of circRNA biomarkers that have been detected in murine models are 

also candidates for translation to clinical applications in humans (Jeck, William R et al., 

2013).

5. GI cancers and circRNAs

The aberrant expression of circRNAs has been linked to many human diseases including 

cancer (He et al., 2017). CircRNAs are becoming an interesting subject in cancer research 

due to their abundance, stability and regulatory function. To date some circRNAs have been 

implicated with several hallmarks of cancer, such as cell death and survival, invasion, 

metastasis and angiogenesis (Kristensen et al., 2018). These circRNAs can be detected in 

body fluids such as saliva and blood, and also in exosomes, suggesting that they could be 

used as non-invasive biomarkers in cancer detection (Bahn et al., 2015; Memczak et al., 
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2015; Qian et al., 2018; Wang et al., 2016). The role of circRNAs in GI cancers remains 

unknown, but some studies have shown that they are differentially expressed, and could be 

linked with prognosis, stage determination, and 5-year survival. The results have similarities 

and differences between studies, which could be due to different sample size, expression 

analysis methods, and subject status or race. Here we briefly review the current knowledge 

of circRNAs in different GI cancers.

5.1. Role of circRNAs in gastric cancer

Gastric cancer (GC) is an aggressive disease and despite declining in prevalence in recent 

decades, due to improved nutrition, better food preservation, reduction of H. pylori infection, 

and earlier diagnosis, it still remains the fourth most frequent malignancy worldwide, with a 

poor prognosis (Ferro et al., 2014). GC is the result of a combination of environmental 

factors and an accumulation of genetic alterations (Carcas, 2014; Sitarz et al., 2018). This 

cancer is usually diagnosed at advanced stages, and unfortunately the treatment of advanced 

and metastatic cancers has made little progress with a median survival only around 1 year 

(Cervantes et al., 2013).

CircRNAs have been proposed to have a key role in GC carcinogenesis through functioning 

as a sponge for microRNA and interacting with RNA binding proteins. To date there have 

been 13 reported circRNAs which can act as microRNA sponges in gastric cancer, some of 

them can act as tumor suppressors, while others could act as oncogenes in GC progression 

(Table 1) (Wang and Dong, 2019). The microarray expression level analysis of circRNAs in 

5 samples of GC in comparison with adjacent non-tumor tissues showed different expression 

patterns of 713 circRNAs in GC. In GC tissues, 522 circRNAs were down-regulated whereas 

191 were up-regulated, and among them,hsa_circ_0076305, hsa_circ_0035431, and 

hsa_circ_0076304showed the greatest alteration levels. Pathway analysis of differentially 

expressed circRNAs revealed that they were mostly related to carcinogenesis (Dang et al., 

2017). Shen et al. showed 603 down-regulated and 347 up-regulated circRNAs in GC tissue 

in comparison to healthy gastric tissue. Further analysis showed that these circRNAs 

expression levels did not relate to their host gene linear mRNA levels, suggesting a different 

mechanism of regulation in the circularization process (Shen et al., 2018). CircRNA 

expression analysis using a circRNA chip on 8 GC and normal paired tissue samples 

identified 1285 differentially expressed circRNAs, 594 were down-regulated and 691 were 

up-regulated. Functional analysis of these circRNAs showed that 69 circRNAs could 

potentially sponge microRNAs and therefore regulate the target mRNAs. They also 

suggested that cancer-related genes such as CD44, CXXC5, MYH9 and MALAT1 could be 

regulated in GC development through the interaction of circRNA-miRNA-mRNA pathways 

(Sui et al., 2017). Another study revealed 16 up-regulated and 84 down-regulated circRNAs 

in GC. Prediction of interactions between circRNAs and miRNAs targeting specific genes 

revealed that hsa-circ-0026 probably regulates gene silencing, gene expression, RNA 

metabolism, RNA transcription and other biological activities relevant to GC. They also 

suggested that hsa_circ-0026 could be a potential biomarker for diagnosing GC as well as 

for its targeted therapy (Chen, J. et al., 2017). In this report, uni-variate and multi-variate 

Cox proportional hazard models were used to assess whether circPVT1 levels were able to 

predict survival independently from other pathological and clinical parameters in GC 
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patients. In addition, if the expression levels of circPVT1 and TNM phase were combined, 

they could provide a better prognostic indicator compared to the TNM phase alone. This 

study also examined the clinical importance of linear PVT1 expression. Differently from 

circPVT1, patients showing lower levels of PVT1 exhibited better DFS and OS in 

comparison to the patients having higher levels of PVT1. When the combined levels of 

circPVT1 and PVT1 were examined, patients with lower levels of circPVT1 and higher 

levels of PVT1 showed a considerably shorter DFS and OS compared to patients having 

higher levels of circPVT1 and lower levels of PVT1 (Chen, J. et al., 2017).

736 unique annotated circRNAs were detected by RNA sequencing in several types of 

gastric tissues. Further analysis found that five microRNAs could be regulated by 5 

differentially expressed circRNAs out of the 736 totals (Vidal et al., 2017). All of these 

circRNAs were previously shown to play roles in GC (Chen, J. et al., 2017; Shao et al., 

2017; Tian et al., 2018).

In GC cells, hsa_circ_0000993 inhibits invasion as well as proliferation through sponging 

miR-214–5p(Zhong, S. et al., 2018). Hsa_circ_000146 is negatively associated with survival 

in GC patients, and could sponge miR-548g, which is a tumor suppressor microRNA (Hu et 

al., 2014). miR-548 directly targets mRNA, and could reverse the effects of 

hsa_circ_000146 overexpression, such as invasion, migration, and proliferation of GC 

cells.miR-548 directly targets runt-related transcription factor 1 (RUNX1),which controls 

genes expression implicated in the regulation ofcell cycle, the p53 and transforming growth 

factor β (TGF-β)signaling pathways(Cai et al., 2015; Chuang et al., 2013; Sood et al., 

2017). Therefore, hsa_circ_000146 was revealed to act as a tumor suppressor 

viamodulatingthemiR-548/RUNX1 axis in GC cells (Fang et al., 2019). It has been also 

demonstrated that hsa_circ_0027599could sponge miR-101–3p, and its overexpression 

inhibited proliferation and metastasis in GC cells. Pleckstrin homology-like domain family 

A member 1 (PHLDA1) overexpression, a direct target of miR-101, decreased the growth 

and migration of GC cells(Wang, L. et al., 2018). Some studies reported pro-apoptotic and 

anti-proliferative roles ofPHLDA1, which is involved in drug resistance in cancer (Fearon et 

al., 2018; Nagai, 2016). The result of another study was in contradiction with the above 

results, since it reported that miR-101 overexpression inhibited invasion and proliferation in 

the AGS gastric cancer cell line(Wu et al., 2017). It seems that clarification of the role of 

miR-101 in GC needs more investigation, and it is worth distinguishing between the 

modulatory and regulatory functions of circRNAs. Knockdown of hsa-circ_001569, which 

sponges miR-145(a known tumor suppressor gene in human cancer) decreased cell viability 

and promoted apoptosis, while it led to increased miR-145 levels(Shen et al., 2019).

CircRNAs could sponge RNA binding proteins and decrease their availability within the 

cell. A down-regulated circRNAin GC cells called hsa_circ_104916 could suppress 

proliferation, invasion and migration by decreasing the expression of Slug, a transcription 

factor suppressing the expression of E-cadherin, and hence modulates the epithelial–

mesenchymal transition (EMT)(Li, J. et al., 2017). Hsa_circ_104916 overexpression up-

regulated E-cadherin, which could be due to downreglation of Slug (Li, J. et al., 2017).
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Recent work has revealed the different expression of circRNAs in GC, and some studies 

have suggested specific circRNAs which could be used as biomarkers in GC diagnosis 

(Table 2). Hsa_circ_0000190 expression level was evaluated in 104 GC and adjacent non-

tumor samples, and also in plasma samples from 104GC patients and normal subjects. The 

results showed down-regulation of this circRNA in GC, which could differentiate patients 

from normal samples and subjects with specificity and sensitivity values of 0.750 and 0.712 

respectively (Chen, S. et al., 2017). Hsa_circ_002059 expression level was proposed as a 

biomarker for GC progression, and it was down-regulated in plasma samples from 36 post-

operative patients in comparison to pre-operative plasma samples. According to the findings, 

Hsa_circ_002059 was down-regulated in gastric cancer tissues in comparison to the adjacent 

non-cancerous tissue. Moreover, it was found that the levels of hsa_circ_002059 in plasma 

collected from post-operative gastric cancer patients were significantly different from the 

levels obtained from pre-operative gastric cancer patients. Lower levels of expression 

showed a significant correlation with distant metastasis, TNM stage, and patient age (Li, P. 

et al., 2015). Hsa_circ_0003159 expression was evaluated in 108 paired GC samples, and it 

was suggested that its down regulation could be a biomarker in GC(Tian et al., 2018). 

Hsa_circ_0000467 was reported to promote cancer progression and was upregulated in GC 

cell lines, tissues, and plasma samples from GC patients. It was proposed as a promising 

non-invasive marker for GC prognosis as well as diagnosis. Findings also showed significant 

upregulation of Hsa_circ_0000467 in GC tissues in comparison to adjacent non-tumor 

tissues. The same results were observed in the MGC-803, HGC-27, NUGC-3, AGS, and 

GES-1 cell lines. and in samples of plasma from GC patients. Results showed that the area 

under the ROC curve of hsa_circ_0000467 was 0.790, which was higher than widely utilized 

biomarkers such as CA-724 and CEA. In addition, the levels of hsa_circ_0000467 

expression were significantly reduced after surgical operation. Furthermore, a close 

relationship was found between the expression levels of hsa_circ_0000467 and the TNM 

phase. Cox multivariate analysis also suggested hsa_circ_0000467 could be a new 

independent prognostic marker. In-vitro experiments showed that proliferation, migration, 

and invasion of GC cells were considerably suppressed by knockdown of hsa_circ_0000467. 

In addition, hsa_circ_0000467 silencing resulted in increased tumor cell apoptosis in-vitro. 

Therefore, it was suggested that Hsa_circ_0000467 could function as a novel non-invasive 

biomarker in GC, and could also be a therapeutic target for GC (Lu, J. et al., 2019). 

Hsa_circ_KIAA1244 was down-regulated in GC patient plasma, tissues and exosomes, and 

was proposed as a diagnostic marker for GC. Its expression status was related to TNM stage, 

metastasis and shorter survival rates (Tang et al., 2018).

5.2. Role of circRNAs in colorectal cancer

Colorectal cancer (CRC) accounts for 10% of cancer-related deaths, and is the second and 

third most frequent malignancy among women and men, respectively(Marley and Nan, 

2016). CRC prevalence has been increasing in recent decades mainly because of changes in 

life style, obesity, low physical activity, smoking, and dietary habits (Kuipers et al., 2015; 

Marmol et al., 2017). Most of the hereditary forms of CRC are caused by mutations in 

genes, including EPCAM,PMS2, MSH6, MSH2or MLH involved in DNA mismatch-repair 

system(Tiwari et al., 2016), and the adenomatous polyposis coli (APC) gene which handles 
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the Wnt signaling pathway)(Vasen et al., 2015). Of note, polyposis is related to mutations in 

the mutY DNA glycosylase (MUTYH) gene (Kashfi et al., 2013; Markkanen et al., 2013).

The association between CRC and circRNAs was reported for the first time, with the 

identification of a circular transcript of the Deleted in CRC (DCC)gene (Nigro et al., 1991). 

As its name suggests the deletion of the DCC gene in CRC had been known for more than 

two decades (Fearon and Pierceall, 1995). Bachmayr-Heyda and colleagues (Bachmayr-

Heyda et al., 2015)indicated the global decrease of the expression of circRNAs in tumor 

tissues and CRC cell lines in comparison with normal colonic mucosa. They found 39 

circRNAs differentially expressed between CRC samples and normal mucosa. Of these, 28 

circRNAs were down-regulatedand11 circRNAs were up-regulated. Interestingly, this data 

agreed with a recent study that also reported the global decrease of circRNAs in CRC tissues 

and cell lines (Taborda et al., 2017). It was hypothesized that circularization is less 

functional in tumors than in normal tissues, and this could be due to onco-micoRNAs which 

are up-regulated in CRC (Ragusa et al., 2015). CircRNA sequencing data in two CRC cell 

lines,SW620(a metastasis-derived cell line)and SW480 (a primary tumor cell line), and 

abnormal colorectal cell, NCM460,showed an overall circRNA abundance decreasein CRC 

cell lines in comparison to normal colonic epithelial cells. 2,919 circRNAs that were 

differentially expressed between CRC cells and normal cells were identified, and it was also 

found that circRNAs in CRC cells were usually shorter than those in normal cells (Jiang, W. 

et al., 2018).

The circRNAs expression profile from three paired CRC samples and adjacent non-tumor 

tissues revealed 136 significantly over-expressed circRNAs and 243 down-regulated 

circRNAs in CRC tissues. Circ-BANP was up-regulated in 35 CRC samples and its 

knockdown attenuated the proliferation of CRC cells (Zhu, M. et al., 2017). CircRNA-seq 

analysis in 40 samples of CRC and CRC with liver metastasis (CRC-m) revealed 113 

differentially expressed circRNAs, of which 92 circRNAs were up-regulated and 21 

circRNAs were down-regulated.Hsa_circRNA_0001178 and 

hsa_circRNA_0000826wereconsiderably up-regulated in CRC-m tissues. In order to assess 

the utility of circRNAs as diagnostic biomarkers, the ROC curves of circRNA_0000826 and 

circRNA_0001178 were analyzed in CRC-m patients with liver metastasis. The results 

showed increased expression levels of circRNA_0000826 and circRNA_0001178 in patients 

with CRC-m. The ROC curves were analyzed for assessing the diagnostic value of both 

circRNAs in CRC-m patients. The analysis showed that AUC was 0.816 for 

circRNA_0000826 and 0.945 for circRNA_0001178. The mentioned circRNAs could be 

promising markers for the diagnosis of liver metastasis from CRC (Xu, H. et al., 2019).

Expression pattern analysis has shown significantly higher hsa_circ_001569 expression in 

CRC, which was related to aggressive features such as metastasis (Taborda et al., 2017). 

Over-expression of hsa_circ_001569 increased invasion as well as proliferation in the CRC 

cell lines, while its suppression showed a remarkable decrease in invasiveness and 

proliferation rate. It has also been shown that hsa_circ_001569 sponges miR-145 leading to 

increased protein levels of formin like 2 (FMNL2), “B-cell lymphoma 2 associated 

athanogene 4” (BAG4), and E2F5 (Taborda et al., 2017). E2F5 is a transcription factor 

regulating the expression of genes implicated in the cell cycle (Jiang et al., 2011). BAG4 and 
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FMNL2 are implicated in invasion and growth as well as metastasis (Annunziata et al., 

2007; Li et al., 2010; Liang et al., 2013). MiR-145 has been reported to be correlated with 

survival in patients with CRC (Li et al., 2012), and also inhibits invasion and migration in 

CRC cell lines (Sheng et al., 2017). Hsa_circ_001988 down-regulation was reported in CRC 

tissues compared with adjacent normal mucosa in 62 patients, and its expression level was 

related to differentiation and invasion (Wang, X. et al., 2015). Hsa_circ_0000069 was 

significantly up-regulated in 30 paired CRC samples and non-tumor adjacent tissues (Guo, 

J.N. et al., 2016). The knockdown of hsa_circ_0000069 can inhibit invasion, migration, and 

proliferation of tumor cells. CircCCDC66 expression was elevated in CRC and was 

associated with poor prognosis. CircCCDC66 could function as an oncogene and its 

knockdown significantly reduced cell migration and metastasis (Hsiao, K.Y. et al., 2017). 

Evaluation of ciRS-7-A in 44 matched healthy mucosal samples and 153 primary CRC 

tissues revealed that this biomarker was remarkably up-regulated in cancer tissues(Weng et 

al., 2017). CiRS-7 over-expression led to miR-7 suppression, and the RAF1 and EGFR 

oncogene activation, and was also correlated with poor patient survival. Cir-ITCH was found 

to be down-regulated in 45 CRC tissues in comparison to adjacent non-tumor tissues 

(Huang, G. et al., 2015). Functional analysis showed that cir-ITCH increases ITCH levels 

implicated in the Wnt/β-catenin pathway suppression. Therefore, cir-ITCH may play a key 

role in CRC through modulating the Wnt/β-catenin pathway.

A summary of the circRNAs that have been reported to be involved with CRC is shown in 

Table 3, and 4.

5.3. Role of circRNAs in esophageal cancer

Esophageal cancer (EC) has an overall five-year survival ranging from 15% to 20%, and is 

the eighth most frequent malignancy in the world, and the sixth most prevalent cause of 

cancer-related mortality. The two histological subtypes of EC are squamous cell carcinoma 

and adenocarcinoma, that each has varying geographical and racial distribution (Abbas and 

Krasna, 2017; Sohda and Kuwano, 2017). The risk factors for EC are abuse of tobacco and 

alcohol, obesity, diet, race and gender (Domper Arnal et al., 2015). EC continues to be a 

generally fatal disease with only a modest improvement in survival, and surgery still plays 

the main role in EC treatment (D’Journo and Thomas, 2014). The poor prognosis in EC is 

mainly because of late diagnosis, and more than 50% of patients already had metastatic 

tumor at the time of diagnosis (D’Journo and Thomas, 2014). Identifying a biomarker for 

the detection of EC at an early stage is crucial to improve disease management.

Accumulating evidence suggests that circRNAs have a crucial role in EC (Table 5). 

Microarray analysis of circRNAs in esophageal squamous cell carcinoma (ESCC) and 

adjacent-cancer tissues in three patients revealed 3,288 differentially expressed circRNAs of 

which 2,139 were up-regulated, and 1,149 were down-regulated. Further network analysis of 

circRNAs-mRNA-microRNA interactions showed that 32 differentially expressed circRNAs 

and 98 differentially expressed mRNAs were linked to 64 miRNAs in ESCC (Jiang, C. et al., 

2019). The expression pattern of the circRNAs revealed that 1045 were up-regulated and 

1032 were down-regulated in 3 pairs of frozen tumor and non-tumor ESCC tissues. Three 

circRNAs including hsa_circ_0043603, hsa_circ_0001946, andhsa_circ_0062459 were 
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detected in plasma, and the combination of hsa_circ_0043603 and hsa_circ_0001946 could 

be utilized as a diagnostic biomarker with sensitivity of 0.928 and specificity of 98%.The 

findingsdemonstratethat these two circRNAs could be utilized as diagnostic biomarkers.

A circular RNA micro-array was employed to analyze three pairs of ESCC frozen tumor and 

non-tumor tissue in order to detect ESCC-associated circRNAs. A total of 1045 up-regulated 

and 1032 down-regulated circRNAs were observed, among which six circRNAs 

(hsa_circ_0062459, hsa_circ_0076535, hsa_circ_0072215, hsa_circ_0042261, 

hsa_circ_0001946, and hsa_circ_0043603) were confirmed by qRT-PCR analysis. Because 

blood is the most widely utilized sample in the laboratory, these six circRNAs were also 

investigated in blood as diagnostic biomarkers. The results indicated there were no 

detectable levels of hsa_circ_0042261, hsa_circ_0072215, or hsa_circ_0076535 in the 

plasma or serum of either patients or healthy individuals. ROC curve analysis was used to 

assess the specificity and sensitivity of the other three circRNAs. The AUCs of 

hsa_circ_0001946 and hsa_circ_0062459 respectively were 0.894 (sensitivity=92%, 

specificity=80%) and 0.836 (sensitivity=64%, specificity=92%) respectively. A logistic 

regression analysis was run to establish the whether a combination of the expression levels 

of both circRNAs in plasma was useful. The formula was established as 3.272-(0.465*level 

of hsa_circ_0001946) – (1.706* level of hsa_circ_0062459). Logistic regression analysis 

showed better diagnostic precision with the combination AUC, specificity of 98% and 

sensitivity of 0.928. Moreover, hsa_circ_0001946 over-expression decreased invasion, 

migration, and proliferation in cell lines (Fan et al., 2019).

Another study reported that 267 circRNAs revealed considerably different levels of 

expression in ESCC tissues from five patients and adjacent non-tumor tissues (Jiang, C. et 

al., 2019). Of these circRNAs, 92 were up-regulated and 175 were down-regulated. 

Hsa_circRNA_406826and hsa_circRNA_101125 were proposed as novel potential markers 

for ESCC treatment and diagnosis. Another study identified 813 significantly up-regulated 

and 445 down-regulated circRNAs in normal epithelial and malignant esophageal cell 

lines(Sun et al., 2017). The five most up-regulated circRNAs were ciRNA11, circRNA904, 

circRNA3594, ciRNA101, circRNA1241, and the top five most down-regulated circRNAs 

were circRNA9864, circRNA9650, circRNA9865, circRNA9671 and circRNA9930. 

Pathway analysis showed that differentially expressed circRNAs were linked to cancer-

related pathways including metabolism, cell apoptosis, proliferation and migration.

Evaluation of circRNA expression in ESCC using microarray technology revealed that 469 

circRNAs were up-regulated, and 275 were down-regulated in ESCC in comparison with 

non-tumor adjacent tissue. Of these, the most up-regulated (increased 20.3-fold) circRNA 

was hsa_circRNA_103670, while the most down-regulated (decreased 12.1-fold) was 

hsa_circRNA_030162 (Shi et al., 2018).

In addition to profiling circRNAs in EC, there have been some reports, which have explored 

the expression of specific circRNAs in EC, and clarified their roles in vitro. 

Hsa_circ_0067934 was significantly up-regulated in 51 paired ESCC samples in comparison 

to the adjacent normal tissues. SiRNA inhibition of hsa_circ_0067934 blocked migration 

and proliferation, and suppressed the progression of cell cycle in ESCC cells (Xia et al., 
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2016). Cir-ITCH expression status was analyzed in a total of 684 ESCC and paired adjacent 

non-tumor tissue samples and its overall down-regulation was established in ESCC samples 

(Li, F. et al., 2015). Cir-ITCH sponges miR-7, −17, and −214. In addition, Cir-ITCH 

probably exerts its suppressive effects on ESCC through modulating the Wnt/β-catenin 

signaling pathway. The circ-TTC17 expression levels were observed to be greater in ESCC 

plasma and tissue from ESCC patients in comparison to healthy subjects. The ROC curves 

were utilized for investigating the diagnostic value of circ-TTC17 in differentiating ESCC 

samples from normal plasma. As shown by the analysis, the cutoff value of circ-TTC17 was 

–2.548, and the area under the ROC curve (AUC) was 0.8200. Moreover, this showed a 

sensitivity of 73.33% and a specificity of 88.00%. In addition, a positive relationship was 

observed between the expression of circ-TTC17 and the TNM phase and the presence of 

lymphatic metastasis. Kaplan–Meier survival analysis and log-rank statistics were used to 

compare patient postoperative survival and the expression levels of circ-TTC17 for the 

prognosis of ESCC patients. The ESCC patients with higher levels of circ-TTC17 expression 

demonstrated a considerably shorter survival time in comparison to patients with lower 

levels of circ-TTC17 expression. Univariate analysis revealed that the TNM phase, relative 

circ-TTC17 expression level, and lymphatic metastasis were all prognostic indices for OS 

rates of ESCC patients. Nevertheless, multi-variate analyses of the variance showed that 

only the size of the tumor was an independent marker to assess the prognosis of the ESCC 

patients. Hence, circ-TTC17 has potential to be utilized as a prognostic and diagnostic 

marker for ESCC. Circ-TTC17 can act as an oncogene, and promote ESCC cell proliferation 

and migration. Bioinformatics analysis suggested that circ-TTC17 could play a role in ESCC 

by sponging microRNAs such as miR-153, −217, −224, and −370 (Wang, Q. et al., 2019).

It was observed that hsa_circ_0004370 was up-regulated in both EC tissues and cell lines. 

Interestingly, loss of hsa_circ_0004370 function suppressed invasion as well as proliferation 

of EC cell lines and increased their apoptosis rate. Hsa_circ_0004370 can sponge miR-1294 

and indirectly increase the level of “LIM and SH3 domain protein 1” (LASP1) suggesting 

that hsa_circ_0004370 can function as an oncogene affecting proliferation, apoptosis, and 

invasion via the miR-1294/LASP1 axis (Zhang, Z. et al., 2019). LASP1 enhances tumor 

invasion as well as proliferation in various cancers and could act as an essential EMT 

mediator by mediating the mitogen-activated protein kinase (MAPK) phosphorylation, 

triggering Smad and PI3K/AKT pathways (Wang et al., 2014; Zhang, X. et al., 2017). Circ-

SMAD7 derived from the gene SMAD7 intron, is remarkably downmodulated in plasma 

samples from ESCC patients in comparison with healthy subjects, and showed a negative 

correlation with the TNM stage. In vitro circ-SMAD7 overexpression could suppress 

migration and proliferation in ESCC cells, while circ-SMAD7 knockdown showed the 

opposite effects. Taken together these finding suggested a tumor suppressor role for circ-

SMAD7 in ESCC(Zhang, Y. et al., 2019). Functional analysis of circ0043898 shown to be 

downmodulated in ESCC tissue samples, indicating its inhibitory effects on invasion, 

migration, and proliferation of tumor cells, and could induce apoptosis in ECA-109 and 

Kyse-520 ESCC cells. In vivo experiments showed that circ0043898 was associated with 

inhibition of oncogenesis (Guo, S. et al., 2018). Besides playing a role in carcinogenesis, 

circRNAs could be involved in other aspects of cancer, such as the development of drug and 

radiation resistance. Evaluation of circRNAs found significant up-regulation of 57 circRNAs 
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and down-regulation of 17 circRNAs in KYSE-150R, a radioresistant EC cell line, compared 

with the radiosensitive KYSE-150(Su et al., 2016).

5.4. Role of circRNAs in hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is increasing in incidence worldwide with an average 

survival rate between 6–20 months(Waller et al., 2015). HCC is more common among 

males, with a male: female ratio of 2.4 worldwide, and the most common age at presentation 

is between the third and fifth decades of life (Kulik and El-Serag, 2019). Chronic liver 

diseases caused by hepatitis B and C viruses, and excessive consumption of alcohol 

contributes most to the HCC subjects (Ghouri et al., 2017).HCC pathogenesis involves 

different genetic aberrations, and alterations in several signaling pathways, which lead to a 

heterogeneity in the disease at a molecular level(Bertino et al., 2014). An improved 

knowledge of the molecular mechanisms of hepatocarcinogenesis could help to improve 

diagnostic methods, and enable possible therapeutic strategies to inhibit cancer-driving 

signaling pathways.

Mounting data suggests that circRNAs are related to HCC development (Tables 6, 7), but 

their mechanism of action in the development of HCC remains unclear. Shang et al analyzed 

circRNA expression in 3 paired HCC and non-tumor tissues, and identified 61 differentially 

expressed circRNAs. Among them, 26 circRNAs were up-regulated and 35 were 

downregulated in tumor cells. Additionally, they reported that hsa_circ_0005075 levels were 

considerably up-regulated in HCC, was associated with HCC tumor size, and could be used 

as potential biomarker with sensitivity of 83.3%and specificity of 90.0%. Bioinformatics 

analysis of the circRNA-miRNA-mRNA interaction network predicted that a total of 4 

miRNAs and 121 mRNAs could interact with hsa_circ_0005075 (Shang et al., 2016). Micro-

array analysis detected twenty specific circRNAs with differential expression levels between 

tumor and non-tumor tissues. qRT-PCR was employed to verify the expression levels of the 

above 20 circRNAs. Moreover, the micro-array test results showed that hsa_circ_0091579 

mRNA and hsa_circ_16245–1 expression was consistent with the respective levels. 

However, because the levels of hsa_circ_16245–1 and hsa_circ_0091579 were significantly 

enhanced in the HCC tissues, it was decided to evaluate their potential diagnostic value. 

ROC curves were obtained for hsa_circ_0091579 and hsa_circ_16245–1 levels in HCC. The 

areas under the ROC curve were 0.720 for hsa_circ_16245–1 and 0.656 for 

hsa_circ_0091579. For hsa_circ_0091579, the sensitivity and specificity were 0.4 and 0.97 

respectively. The specificity and sensitivity of hsa_circ_16245–1 were 0.63 0.83 

respectively. 75 pairs of HCC specimens were tested to validate the prognostic value of these 

circRNAs. Hsa_circ_0091579 expression was remarkably increased in HCC tumor tissue in 

comparison to the levels in adjacent non-tumor tissues. They could not detect 

hsa_circ_16245–1 in a number of the HCC samples. Thus, hsa_circ_0091579 up-regulation 

serves as a potential prognostic marker for individuals with HCC, and is related to overall 

survival (Zhang, C. et al., 2018). Hsa_circ_0001649 expression was considerably down-

modulated and was correlated with tumor size in 89 HCC tissues in comparison to adjacent 

non-tumor tissues.(Qin, M. et al., 2016).Microarray analysis of circRNAs revealed that the 

expression of hsa_circ_0004018 was lower in HCC than non-tumor tissues. 
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Hsa_circ_0004018 expression was also associated with TNM stage, differentiation, and 

tumor diameter (Fu, L. et al., 2017).

The microRNA sponging function of circRNAs is involved in HCC development, and 

various pathways have been reported to be regulated by this mechanism. circMTO1 

(mitochondrial translation optimization1 homologue) and hsa_circRNA_0007874/

hsa_circRNA_104135 were detected to be remarkably down-modulate in HCC tissues, and 

were linked to shortened survival. MiR-9 was found to bind tocircMTO1, and circMTO1 

silencing in HCC cells could down-modulate p21, the oncogenic miR-9 target, leading to 

HCC invasion and proliferation promotion. Furthermore, an inhibitor of miR-9 blocked the 

tumor-promoting impact of circMTO1 silencing (Han, D. et al., 2017). The expression of 

CircTRIM33–12 in HCC tissues was investigated, and it was revealed that circTRIM33–12 

is down-regulated in HCC cell lines and tissues. CircTRIM33–12 can sponge miR-191, and 

its inhibition increased immune evasion, tumor invasion, migration, and proliferation 

(Zhang, P.F. et al., 2019). Compared to the adjacent non-tumor tissues, Cdr1as expression is 

up-regulated in HCC tissues, and its suppression inhibits miR-7 expression and increased 

tumor cells invasion and proliferation. Mentioned findings propose that Cdr1as acts as an 

oncogene in HCC, partly by targeting miR-7 (Yu et al., 2016). Expression analysis of 

circRNA-101368 showed that this circRNA is considerably up-modulated in HCC tissue 

samples, and the higher expression of hsa-circ-101368 was related to poor prognosis in 

patients with HCC. Hsa-circ-101368 was confirmed that directly binds to miR-200a and 

both could negatively modulate each other. The expression of miR-200a was negatively 

related to hsa-circ-101368 expression in tissue samples. Hsa-circ-101368 inhibition blocked 

migration, which could be partially attenuated via miR-200a suppression (Li, S. et al., 2018).

CircSETD3 (hsa_circRNA_101436/hsa_circRNA_0000567) was remarkably down-

regulated in HCC cell lines and tissues, and was correlated with larger tumor size and poor 

HCC differentiation in affected subjects. CircSETD3 could suppress the proliferation of 

HCC cells and induced G1/S cell cycle arrest. Furthermore, it was shown that circSETD3 

could act as a sponge for miR-421, which targets MAPK14 signaling (Xu, L. et al., 2019). 

MAPK14 may facilitate tumor cells proliferation and survival, and contribute to the 

progression of some tumor types (Igea and Nebreda, 2015).Yu et al reported that hsa-

circ-104718 was physically associated and co-expressed with microRNA-218–5p in HCC. 

They found that exogenously expressed hsa-circ-104718 accelerated cell proliferation, 

migration, invasion, and inhibited apoptosis. Hsa-circ-104718 over-expression could 

increase tumor size and metastasis, while its silencing had the opposite effect. Conversely, 

miR-218–5p over-expression could decrease the proliferation, migration, invasion, and 

increase apoptosis (Yu et al., 2019).

5.5. Role of circRNAs in gallbladder cancer

Gallbladder cancer (GBC), the most prevalent biliary tract cancer, accounts for more than 

80% of biliary tract malignancies (Lai and Lau, 2008). GBC has only a 6 month mean 

overall survival, while the 5-year survival rate remains low at about 5%. A genetic 

predisposition, congenital biliary tract anomalies, female sex, and age are considered to be 

the main risk factors for GBC development. Based on the geographical and ethnical 
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considerations, the mentioned factors are different among populations (Hundal and Shaffer, 

2014). This malignancy is most often diagnosed at late stages, frequently proving fatal. 

Although surgical resection is the only treatment option, only 10% of affected subjects are 

candidates for surgery with curative intent at initial presentation (Kanthan et al., 2015). The 

development of diagnostic markers is essential for improved GBC management, and could 

lead to the development of screening programs for individuals at risk.

Some evidence has shown that circRNAs are involved in GBC development. However, much 

remains unknown about the role of circRNAs in GBC, and further investigation is needed to 

clarify possible circRNA regulatory pathways in the initiation and development ofGBC. 

CircHIPK3 was found to be up-regulated in human GBC cells. Silencing of circHIPK3 using 

siRNA, induced apoptosis and suppressed proliferation and survival of both primary and 

established human GBC cells. The opposite effects occurred with circHIPK3 over-

expression (Xu et al., 2013). Further investigation showed that circHIPK3 could sponge 

tumor-suppressive microRNA-124 resulting in enhanced miR-124 gene targets expression, 

such as CDK6 (rho-associated protein kinase) and ROCK1 (rho-associated protein kinase 1) 

(Pierson et al., 2008). They concluded that, through sponging miR-124, circHIPK3 could 

promote GBC cell growth (Kai et al., 2018). CircHIPK3 was also observed to sponge 

miR-379, and miR-379 up-regulation rescued the phenotype induced by over-expression of 

circHIPK3 (Tian et al., 2017).

5.6. Role of circRNAs in pancreatic cancer

Pancreatic cancer is the fourth most frequent cause of malignancy-associated mortality in 

USA. Although the approaches for management and detection of this cancer have been 

developed, 5-year survival remains at only 4%. The lethality is mainly caused by its 

propensity to rapidly metastasize to the lymphatic system and distant organs (Iovanna et al., 

2012). The main risk factors for developing pancreatic cancer are high-fat diet, African-

American ethnic origin, obesity, diabetes mellitus, male sex (Vincent et al., 2011), smoking, 

age, and family history of chronic pancreatitis (Klein et al., 2004). Up to now, surgical 

resection is the only therapeutic approach for pancreatic cancer, and it responds poorly to 

chemotherapeutic agents (McGuigan et al., 2018). Understanding the underlying mechanism 

contributing to pancreatic cancer is essential to develop new treatment strategies.

Studies have suggested that circRNAs could serve as diagnostic or predictive biomarkers for 

pancreatic cancer, and could provide new insights especially in pancreatic ductal 

adenocarcinoma (PDAC) (Table 8, 9) (Qu et al., 2015). Microarray analysis of circRNAs in 

6 PDAC and paired non-tumor tissues revealed that 351 circRNAs were differentially 

expressed between PDAC and the healthy tissue, of which 142 circRNAs were 

downregulated and 209 circRNAs were up-regulated in tumor samples. Some differentially 

expressed circRNAs were evaluated by qRT-PCR in 20 paired tissues. Bioinformatics 

analysis predicted that hsa_circ_0005785 (one of the differentially expressed circRNAs) was 

potentially able to bind miR-181a and miR-181b (Li, H. et al., 2016). MiR-181a has a 

crucial role in modulating the migration as well as growth of pancreatic cancer cells (Zhang 

et al., 2015). MiR-181b is related to pancreatic cancer cell resistance to gemcitabine 

chemotherapy (Takiuchi et al., 2013). Gue et al. investigated the circRNA profile in 20 
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pancreatic cancer tissues and corresponding adjacent tissues. They reported that 128 

circRNAs were up-regulated and 161 circRNAs were down-regulated in cancer tissues (Guo, 

S. et al., 2018). Moreover, these authors predicted circRNA-miRNA interactions, and 

identified eight circRNAs that bound to miR-15a.Three of these were up-regulated 

(hsa_circ_100435, hsa_circ_103076, hsa_circ_103309) and five were down-regulated 

(hsa_circ_000780, hsa_circ_101252, hsa_circ_102374, hsa_circ_104433, 

hsa_circ_104882).Moreover, four up-regulated circRNAs bound to miR-506 

(hsa_circ_101717, hsa_circ_104084, hsa_circ_100646, hsa_circ_102213). It has been 

reported that miR-15a could inhibit the proliferation of pancreatic cancer cells and the EMT, 

and that miR-506 could suppress progression and chemoresistance (Guo, S. et al., 2014; Li, 

J. et al., 2016). Gue et al speculated that circRNAs could regulate gene expression via the 

miRNA sponging effect and may have a role in the progression of pancreatic cancer (Guo, S. 

et al., 2018).

Hsa_circ_0006215 was shown to be remarkably up-regulated in pancreatic cancer tissue. 

Based on bioinformatics analysis, it was proposed that hsa_circ_0006215 most likely 

regulated the expression of miR-378a-3p (Zhu, P. et al., 2018). Expression analysis of circ-

IARS in human microvascular vein endothelial (HUVECs) cells, Hs 766 T, Hs 766 T-L2 

pancreatic cancer cells, plasma exosomes, and PDAC tissues revealed that the expression of 

circ-IARS is up-modulated in plasma exosomes and in pancreatic cancer cells/tissues of 

metastatic disease patients (Zhang, C. et al., 2018). Also, the expression of circ-IARS is 

positively linked to TNM stage, vascular invasion and liver metastasis, and negatively 

associated with postoperative survival time. Circ-IARS sponges miR-122, and its 

overexpression considerably down-regulates miR-122. Taken together, it was proposed that 

circ-IARS promotes tumor metastasis and invasion (Zhang, C. et al., 2018). The expression 

of ciRS-7 and MiR-7 in 41 pairs of PDAC tumors and their adjacent tissues revealed that the 

expression of ciRS-7 is remarkably greater in PDAC tissue. However, the expression of 

miR-7 demonstrated the conflicting trend. Moreover, ciRS-7 suppression inhibits invasion 

and proliferation of PDAC cells. Using functional analysis they proposed an oncogenic role 

for ciRS-7 in PDAC, which could act partially through modulating the EGFR/STAT3 

pathway as well as targeting miR-7 (Liu et al., 2019a). Qu and colleagues indicated that 

circRHOT1 was up-regulated in pancreatic cancer. CircRHOT1 could bind to miR-382, 

−330, −125a, and −26b, leading to modulate various tumor-related pathways. Moreover, 

circRHOT1 knockdown could inhibit pancreatic cancer cell proliferation, invasion and 

migration (Qu et al., 2019).

Gemcitabine (2’,2’-difluoro 2’-deoxycytidine, dFdC) (a cytidine analogue) is a cornerstone 

of PDAC therapy at all stages. Unfortunately, chemoresistance development within weeks of 

treatment initiation has limited its clinical use (Amrutkar and Gladhaug, 2017). Shao et al 

reported that the circRNA signature was different between the gemcitabine-resistant 

PANC1-GR cell line and the gemcitabine-sensitive PANC-1 counterpart (Shao et al., 2018). 

Differential analysis of gene expression between PANC-1 and PANC-1-GR cells showed 

that 126 circRNAs had significantly different expression between these two cell lines, with 

68 up-regulated and 58 down-regulated in PANC-1-GR cells in comparison with PANC-1 

cells. In another investigation, the expression levels of circ-LDLRAD3 were examined in 31 

plasma samples from normal cases 31 plasma samples from pancreatic cancer patients, cell 
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lines and 30 paired pancreatic cancer and adjacent non-tumor tissues (Yang et al., 2017). 

Their results showed that Ccirc-LDLRAD3 is up-regulated in plasma samples tissues and 

cell lines of pancreatic cancer. Besides, the expression of circ-LDLRAD3 is significantly 

associated with metastasis, as well as venous and lymphatic invasion.

6. Conclusions

CircRNAs, once thought to be merely random errors in transcription, have now been 

realized to be important players in cell biology and regulation of gene expression. The 

mechanism by which they regulate gene expression, and their overall function are not yet 

fully understood. Recent studies have clarified that these transcripts are dysregulated in 

many cancers, and play an essential role in cancer-related signaling pathways. Taken 

together, these findings highlight the important and diverse role of circRNAs in cancer 

initiation and progression. Accumulating evidence suggests that one important mechanisms 

of action for circRNAs is by acting as microRNA sponges, thus having the opposite effect 

on gene expression as manifested by the corresponding miRNAs involved. The present 

review has shown that circRNAs are involved in many different GI cancers, including 

esophagus, stomach, pancreas, liver, gallbladder and colorectal cancer. The fact that these 

cancers arise from several different cell types and have different risk factors for cancer 

development, underlines the likelihood that circRNAs may be involved in general signaling 

pathways in cancer, such as cell cycle regulation, cell death, proliferation, migration and 

metastasis. On the other hand, some circRNAs show tissue or malignancy-specific 

expression patterns, and may function in a single type of cancer or even a single-subtype. 

The fact that expression levels of many circRNAs can be detected in serum or plasma 

samples encourages the development of non-invasive screening or biomarker studies. High-

throughput screening of thousands of circRNAs together with sophisticated computer 

algorithms may allow prognostic predictions, and monitoring of the development of 

treatment resistance. Inhibitors (small molecules or nucleic acid-based) of those circRNAs 

that function as oncogenes may be developed in the future. Clarifying the roles of circRNAs 

in GI cancers could open a new window in management and the development of new 

therapeutic strategies. Further investigation in the field of circRNAs and cancers is needed to 

fully characterize their role in carcinogenesis.
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Abbreviation list

GI Gastro-Intestinal

circRNAs Covalently closed circular RNAs

GC gastric cancer

CRC colorectal cancer

EC esophageal cancer

ESCC esophageal squamous cell carcinoma

HCC Hepatocellular carcinoma

GBC Gallbladder cancer

PC pancreatic cancer

PDAC pancreatic ductal adenocarcinoma

HBV Hepatitis B virus

HCV Hepatitis C virus

APC Adenomatous polyposis coli

ORF open reading frame

DCC Deleted in Colorectal cancer

SRY sex-determining region Y

rRNA ribosomal RNA

EIciRNA exon-intron circRNAs

PHLDA1 pleckstrin homology-like domain family A member 1

EMT Epithelial–Mesenchymal transition

BAG4 B-cell lymphoma 2 associated athanogene 4

FMNL2 formin like 2

LASP1 LIM and SH3 domain protein 1

MAPK mitogen-activated protein kinase

ROCK1 rho-associated protein kinase 1

qRT-PCR the quantitative reverse transcription polymerase chain reaction
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Figure 1. CircRNAs biogenesis.
Exons are shown as rectangles with different colors, and introns are depicted as black lines. 

Exon-derived circRNA (ecRNA) contains only exons (A and B), while circular intronic 

RNA (ciRNA) comprises only introns (D). In exon–intron circRNA (EIciRNA), an intron is 

introduced between two exons (C). The pathway by which mature ecRNAs are exported into 

the cytoplasm is still unclear. Some circRNAs are assumed to pass through the nuclear 

membrane via a nuclear pore complex.
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Figure 2. Schematic illustration of circRNA functions.
(A) CircRNAs might function as miRNA sponges by competing for binding of miRNA 

sequences, lessening the impact of miRNA-mediated regulationon gene expression. (B) 

CircRNAs might function as protein sponges, by binding to other RNA-binding proteins 

(RBPs). (C) Some circRNAs might control the expression of proteins by sequestering 

mRNA translation start sites. (D) CircRNAs might be translated to create functional 
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proteins. (E) CircRNAs (e.g., EIciRNAs and ciRNAs) might interact with transcription 

complexes and increase the expression of their parental genes.
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