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Abstract: This paper presents a sound source distance estimation (SSDE) method using a convolutional
recurrent neural network (CRNN). We approach the sound source distance estimation task as an image
classification problem, and we aim to classify a given audio signal into one of three predefined distance
classes—one meter, two meters, and three meters—irrespective of its orientation angle. For the
purpose of training, we create a dataset by recording audio signals at the three different distances
and three angles in different rooms. The CRNN is trained using time-frequency representations of
the audio signals. Specifically, we transform the audio signals into log-scaled mel spectrograms,
allowing the convolutional layers to extract the appropriate features required for the classification.
When trained and tested with combined datasets from all rooms, the proposed model exhibits high
classification accuracies; however, training and testing the model in separate rooms results in lower
accuracies, indicating that further study is required to improve the method’s generalization ability.
Our experimental results demonstrate that it is possible to estimate sound source distances in known
environments by classification using the log-scaled mel spectrogram.

Keywords: sound source distance estimation; log-scaled mel spectrogram; deep learning; convolutional
recurrent neural network

1. Introduction

Sound source distance estimation is a process that determines the spatial length between a sound
source and a receiver in a given area. It determines the location of a sound source in terms of distance.
It can be used to complement the well-known sound source localization (direction and elevation only)
methods [1–9] to enhance their localization accuracy and improve their effectiveness. For example,
in a security breach situation where there is a gunshot, an intelligent surveillance system [10] can
detect the sound of the gunshot, localize its azimuth, and estimate its distance in addition. This could
provide information to assist the police and other emergency personnel by reducing their emergency
response time [11]. Such a method could also be applicable in human–robot interaction systems [12],
service robots [13], intelligent hearing aids [14], smart homes [15], etc.

Although the location of a sound source entails the azimuth (horizontal angle), elevation,
and distance [16], previously proposed sound source localization methods mostly focus on either
the azimuth aspect only [1–5] or the azimuth and elevation aspects only [7–9], without distance.
The distance estimation aspect of sound source localization has received relatively less attention in the
scientific research community compared to the azimuth and elevation [16]. However, considering its
potential usefulness in the face of rapidly advancing technology and artificial intelligence (AI), it is
imperative for this topic to be studied in order to develop useful solutions.

In the past few years, researchers have depended upon hand-crafted features to estimate sound
source distances. Among the proposed features that have been used to tackle the sound source distance
problem is the room impulse response (RIR) [17]. For example, Bronkhorst [18] proposed a method for
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distance perception in rooms by applying information about the RIR. Another popular feature was the
ratio of the energy of the signal received directly from the source to that of the signal that reflects from
surfaces, which is a feature known as the direct-to-reverberant-ratio (DRR) [19]. Lu et al. [20] suggested
a binaural distance estimation method using DRR, which they computed by first estimating the sound
source’s direction and then removing the energy of the sound in that region in order to identify the
reverberant signal. Rodemann [21] investigated several audio cues, including the interaural intensity
difference (IID), interaural temporal difference (ITD), sound amplitude, and spectral characteristics,
discovering that in certain circumstances, mean signal amplitude and binaural cues work well in
estimating sound source distances. Another method for estimating the distance of single-channel
audio signals was proposed by Honda et al. [22], who used the phase interference between observed
and pseudo-observed signal waves to estimate the signal’s distance.

Other researchers used traditional machine learning approaches, which also required hand-crafted
features. For example, Vesa [23] proposed a distance-dependent feature in the form of magnitude
squared coherence (MSC) for binaural sound source distance learning using Gaussian mixture
models (GMMs). This feature was motivated by the fact that an increase in the source to receiver
distance leads to a decrease in the correlation between signal channels. Another method proposed
by Georganti et al. [24] uses a novel feature known as binaural signal magnitude difference standard
deviation (BSMD-STD) in addition to statistical properties of binaural sounds to estimate the source
distance. They also trained support vector machines (SVMs) and GMMs for the estimation. While
their proposed BSMD-STD feature proved to be effective in detecting the distance of sound source at
a 0◦ orientation, its performance was significantly reduced for sound sources in other orientations,
and it requires many other statistical values in other to function accurately. Georganti et al. [25]
also suggested the use of statistical parameters of speech source excitation signals for the distance
estimation of single-channel audio signals. Niu et al. [26] used supervised machine learning methods
including a feed-forward neural network (FNN) and an SVM to perform source localization in an
ocean waveguide. They used normalized sample covariance matrices, which included both amplitude
and phase information as their input features, and they showed that the classification approach to
source localization performed better than multi-field processing (MFP) and regression approaches.
In addition, Brendel and Kellermann [27] proposed a learning-based approach that trains a GMM to
estimate source–microphone distances in a known environment. Their method relies on the estimation
of the coherent-to-diffuse power ratio, which indicates the amount of reverberation present in each
frequency bin of the signal.

In recent years, many deep learning-based sound source localization methods have been proposed
due to the popularity and remarkable performance of deep neural networks [3–6,9]; however,
deep learning-based sound source distance estimation methods are comparatively scarce. In the area
of source localization in ocean or water waveguides, researchers [28,29] have applied deep learning
methods to successfully determine the range of sound pressure. Yiwere and Rhee [30] proposed a
deep learning-based method for the joint estimation of sound source azimuths and distances using
cross-correlation coefficients as input features; this study seeks to focus on the distance estimation
aspect and improve the accuracy by exploring a different type of input feature.

Through a survey of the existing literature on the topic of sound source distance estimation,
we found that a main challenge in sound source distance estimation is the identification of suitable
distance-dependent features. While some researchers [22–27] have come up with hand-crafted features
that are capable of estimating distance, their extraction processes are either complex or tedious.
In addition, for a distance estimation or source localization algorithm, accuracy is a paramount factor;
however, the accuracies of existing distance estimation methods are still far from perfect and must
be improved. To solve the above-mentioned problems, this study proposes a deep learning-based
sound source distance estimation method. The method trains a convolutional recurrent neural network
(CRNN) [31,32] using log-scaled mel spectrograms [33] extracted from single-channel audio signals as
input features. The transformation of the audio signals into images allows the convolution layers of
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the network to automatically extract distance-dependent features from the audio signals; therefore,
this approach comes with the advantage of eliminating the need for excessive hand-crafted feature
engineering, in addition to achieving high classification accuracy. We create an audio dataset for the
purpose of sound source distance estimation, using a two-microphone array. However, in this method,
we use only one channel signal. In addition, we use a publicly available room impulse response dataset
convolved with speech data to evaluate the generalization ability of the proposed method.

As mentioned above, the proposed method could be incorporated into any application that could
benefit from the knowledge of a sound source’s position in the environment. The most obvious
example being sound source localization applications, which could leverage distance estimation to
make a more accurate and complete estimation of a sound source’s position. Similar to the work
of Georganti et al. [25], this method is typically applicable in applications for distributed ambient
telephone systems [34]. In such a system, the ability to select the microphone closest to the human
speaker could help enhance the signal-to-noise ratio of the received speech signal prior to transmission.

The organization of this paper is as follows. Section 2 presents the materials and methods, which
includes the data collection and transformation processes, as well as a description of the deep learning
model architecture. Section 3 presents the experiments and results, and the results are discussed in
Section 4. Finally, Section 5 summarizes the study in the conclusion.

2. Materials and Methods

In this section, a description of the first part of the study is provided. This includes data collection
and transformation of the audio signals into spectrograms. Unlike other audio processing tasks such
as sound event classification [35,36] and automatic speech recognition [37], this study requires the
collection and labeling of audio data as described below. We recorded audio data by playing speech
signals from a loudspeaker [38]. The speech signals were taken from the Edinburgh University Speech
Timing Archive and Corpus of English (EUSTACE) downloadable corpus [39], which is a free database
provided by the Center for Speech Technology Research at the University of Edinburgh.

2.1. Data Collection

To set up the system for recording, we used two microphones positioned at a distance of 30 cm
apart. The speech signals were played from a loudspeaker, which was positioned at three different
distances in front of and facing the microphone setup (i.e., at the 0◦ orientation); specifically at
one-meter, two-meter, and three-meter positions. The volume of the speaker was varied during the
recording to avoid a clear distinction between the three distance classes based on the volume. The
microphones were connected to a TASCAM US 4 × 4 audio interface for analogue-to-digital conversion
of the signals, and we used the PortAudio library [40] to capture the sound at a sampling rate of
44.1 kHz. When recording began, the algorithm saved one-second-long clips of the sound into the
computer’s drive. The process was repeated at two other orientation angles, i.e., 30◦, and 60◦, as shown
in Figure 1. The recording was done in three different rooms.

Figure 1. Training data recording positions.
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Figure 1 shows all the nine recording positions at which the sound source should be placed. This
implies that after all the recordings for a particular orientation are taken, the sound source should be
shifted to a different orientation. However, in certain rooms, this might be impossible if there is not
enough space, in which case an alternative approach is taken, by keeping the sound source at the 0◦

orientation and rotating the microphone array for the other two orientations. Figure 2 illustrates the
alternative approach for recording, where the microphones are rotated.

Figure 2. Illustration of the rotated microphone approach.

During the data collection, a simple sound activity detection step is performed to ensure that
the audio files being saved indeed contained sufficient audio signals. This is done by computing
the total amplitude of the captured sound and comparing it to a predefined threshold value. The
threshold value was determined by observing the total amplitudes of sound files that contained actual
signals and setting it close to the minimum observed total amplitude. If a recorded signal’s amplitude
is below the threshold value, the sound is discarded, and otherwise it is saved. The sound activity
detection algorithm is expressed in both equation and flow diagram forms, as shown in Equation (1)
and Figure 3, respectively.

decision =

{
save, i f A ≥ y
discard, i f A < y

(1)

where A is computed amplitude, i.e., the sum of squared intensities of the signal samples, and y is the
predefined threshold value.

In Table 1, we show the exact number of sounds recorded at each of the nine positions for all
the three rooms, and Table 2 also shows the room type, dimensions, volumes, and total number of
signals recorded per room. After all the data are recorded and stored, we move to the next stage of
transforming them into the appropriate form for the training of our model. The process is explained in
Section 2.2.
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Figure 3. Sound activity detection flow diagram.

Table 1. Number of audio signals recorded at each position in all three rooms.

Orientation Zero Degrees (0◦) Thirty Degrees (30◦) Sixty Degrees (60◦)

Distance (meter) 1 m 2 m 3 m 1 m 2 m 3 m 1 m 2 m 3 m

Room 1 1000 993 1000 1000 1000 1000 1000 1000 1000
Room 2 1000 1000 945 1000 1000 1000 1000 1000 1000
Room 3 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 2. Room types, dimensions, volumes, and total number of recordings per room.

Room Type Length (m) Width (m) Height (m) Volume (m3) No. of Signals

Room 1 Research laboratory 8.97 3.45 2.62 81.08 8993
Room 2 Classroom 8.97 7.12 2.62 167.33 8945
Room 3 Computer laboratory 14.8 9.11 2.47 333.03 9000

2.2. Data Transformation

The goal of this study is to use a deep learning model to learn relevant distance-related features
from the audio signals for classification. To accomplish other deep learning-based audio analysis goals,
previous researchers [36,41] have represented the time domain audio signals by mel [33] spectrograms
before training. The mel spectrogram is a time-frequency representation of an audio signal that
compresses high-frequency components and focuses more on low-frequency components [36]. We use
librosa [42] to extract from our dataset log-scaled mel spectrograms of size 128 × 128. Some examples
of the log-scaled mel spectrograms of the recorded signals are shown in Figure 4. Along with the
transformation, a corresponding ground truth label is saved for each spectrogram. Figure 5 shows
some of the first channel mel spectrograms randomly selected from the three distance classes. Given
the log-scaled mel spectrograms as our input features, the next step is to design a suitable deep learning
model for the training.
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Figure 4. Examples of the log-scaled mel spectrograms extracted from recorded signals. (a) Log-scaled mel
spectrograms of the first-channel signals; (b) Log-scaled mel spectrograms of the second-channel signals.

Figure 5. Random selections of the first-channel mel spectrograms. (a) Log-scaled mel spectrograms in
the one-meter class; (b) Log-scaled mel spectrograms in the two-meter class; and (c) Log-scaled mel
spectrograms in the three-meter class.
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2.3. Proposed CRNN Model Architecture

Convolutional neural networks (CNNs) are a powerful type of artificial neural networks that
consist of one or more convolutional layers, followed by one or more fully connected layers. The
convolutional layers are optionally paired with their respective pooling layers, which enable the
extracted features to be downsized appropriately. In 2012, the winner of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) used a deep CNN model [43], which drew much attention
to the outstanding performance of CNNs. Another type of neural network is the recurrent neural
network (RNN) [44], which learns by holding on to past memories. In a typical RNN, a unit’s output is
influenced by both its own input and the history of previously fed inputs. RNN models are famous for
tasks involving sequential data; for example, these include automatic speech recognition tasks [45,46],
handwriting recognition tasks [47], and stock price prediction tasks [48]. By stacking these two types
of neural networks to form convolutional recurrent neural networks (CRNN), some researchers have
achieved remarkable results in acoustic scene analysis and audio processing tasks [36,49].

In this study, a CRNN architecture is employed, which enables the model to learn both the
spectral and temporal features and relationships effectively. While the CNN extracts frequency-based
information from each input spectrogram by convolution, the RNN analyzes the temporal connections
between the extracted feature maps. First, three 2D convolutional layers extract features from the
input log-scaled mel spectrograms. The LeakyReLU activation function is applied to the output of
each convolution layer, and the activation maps are max-pooled to reduce their dimensions. The
downsized feature maps become the input to the next convolution layer. The feature maps from the
final convolution layer are reshaped after max-pooling and then passed to the RNN layer. This is
specifically a gated recurrent unit (GRU) RNN [50]. Next, the output of the RNN layer is passed to
the fully connected layer and then finally to the output layer. The output layer has three neurons,
representing the three predefined distance classes. To regularize our model, we applied dropout rates
of 25% to the first two convolution layers, 40% to the third convolution layer, and 50% to the fully
connected layer. In addition, we applied the L2 weight regularization to all convolution and the
recurrent layers using a penalty of 0.001 to further reduce overfitting. Figure 6 shows the architecture
of our CRNN model.

Figure 6. Diagram of the proposed convolutional neural networks (CRNN) model’s architecture.

3. Experiments and Results

The environment used for implementing the proposed method is described as follows.
The programs were compiled and executed with the aid of an Intel(R) Core(TM) i7-7700 3.6 GHz CPU
PC, in which was installed an NVDIA GeForce 1060 graphics card with a 6 GB frame buffer and an
8 Gbps processing speed. The programming languages used were C++ and Python. To train the
model, we used the Keras library [51] with a Tensorflow [52] backend. The training data samples were
prepared as described in Sections 2.1 and 2.2. See Figures 1 and 2 for an illustration of the recording
positions. The signals had average signal-to-noise ratios (SNRs) of 3.7 dB, 7.4 dB, and 11.08 dB for
room 1, room 2, and room 3, respectively. The noise in each room was first recorded, and afterwards,
the signals were played and recorded. The average power of the noise (Power of Noise) for each room
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was subtracted from the power of the individual recorded sounds to get the power of the wanted
signals (Power of Signal). Then, the SNR in decibels (dB) was computed using Equation (2).

SNR = 10 log10

(
Power o f Signal
Power o f Noise

)
dB (2)

To begin with, the effects of some of the hyperparameters in our preliminary experiments are
discussed as follows. Note that the dropout regularization is already applied to the model. Firstly, an
epoch number of 100 was used with a batch size of 32. Figure 7a shows the training history of the
model, where we can see that the training and validation accuracies and losses begin to decrease and
increase respectively as the training approaches the 100th epoch. Increasing the number of epochs
reveals high levels of fluctuations, which can be seen in both the accuracy and loss curves, as shown in
Figure 7b. Figure 7c shows some improvement in the learning process after increasing the batch size to
128 and reducing the Adam optimizer’s [53] default learning rate of 0.001 to a rate of 0.0001. This was
done in an attempt to stabilize both the accuracy and loss curves. Compared to the Figure 7b curves,
the fluctuations are tremendously reduced. Although the training loss values are more stabilized and
are reducing consistently, the validation loss values seem to be rather increasing, implying that the
model is performing well on the training dataset but is performing poorly on the validation dataset:
a classic case of overfitting. To address this problem, L2 weight regularization is applied, and its effect
can be seen in Figure 7d. Both the training and validation curves are much similar at this point, and we
can see that the curves are very stable. This final configuration of our model was used in all of our
experiments presented below.

Figure 7. Graphs showing the effect of hyperparameters on the training progress. (a) History of the
model with 100 epochs, a batch size of 32, and a default learning rate of 0.001; (b) History of model
with 1000 epochs, a batch size of 32, and a default learning rate of 0.001; (c) History of model with 1000
epochs, a batch size of 128, and a learning rate of 0.0001; (d) History of model with 1000 epochs, a batch
size of 128, a learning rate of 0.0001, and an L2 weight decay value of 0.001.
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3.1. Classification in Known Environments

In the first experiment, the study sought to train and then test the model in the same environment
(i.e., the train dataset and the test dataset are both recorded in the same environment). Multiple
trainings were done using our recorded dataset as well as a public dataset. In some cases, the model
was trained with the combined dataset from multiple rooms, and in other cases, the model was trained
in each room separately.

3.1.1. Our Recorded Dataset

In the first case using our dataset, all the data from the three different rooms consisting of
approximately 27,000 audio signals were randomly combined to form one dataset and then divided
into training and testing sets. A total of 2700 signals were selected from the total dataset—100
signals from each of the nine recording positions in the three rooms. Then, using the stratified k-fold
cross-validation [54] approach, the training set consisting of approximately 24,300 was split into k = 5
subsets, and the model was trained five times. Figure 8 illustrates how the k-fold cross-validation
works. In each of the five folds, one data subset x is reserved, while the model is trained on the
remaining four subsets, and afterwards, it is tested on the reserved subset x. As shown in Figure 8,
in every run (fold), a unique subset of data is reserved as the test set, and by the end of the experiments,
each of the five subsets of data would have taken its turn as the test set. Table 3 shows the test accuracy
of each fold’s model on the test dataset initially reserved, as well as the average accuracy for all
five models.

Figure 8. Illustration of the k-fold validation.

Table 3. Results of fivefold experiments using our recorded datasets combined from all three rooms.

Fold Number Accuracy (%)

Fold 1 98.51
Fold 2 98.35
Fold 3 98.49
Fold 4 98.58
Fold 5 98.41

Average Accuracy 98.47

Next, the model is trained and tested in each room separately. First, the dataset for each room
is split into training and testing sets, after which the model is trained on the training dataset and
evaluated on the testing dataset. The keras function ‘validation_split’ is used to split the training data
into training (80%) and validation (20%) sets. In Figure 9, we show the results of evaluating each
model on its respective testing set in the form of confusion matrices for performance visualization.
In each matrix, each row represents instances in a true class, and each column represents instances in
the predicted class. The correctly predicted instances are shown in the diagonal of the matrix, and the
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values outside the diagonal show the incorrectly predicted instances. Note that utterances from the
EUSTACE corpus were repeatedly played and recorded for our dataset; hence, there is similarity in the
data, which possibly led to the high classification accuracies recorded in these experiments.

Figure 9. Confusion matrices showing the performances of models trained and tested separately in
(a) Room 1; (b) Room 2; and (c) Room 3.

3.1.2. Public Dataset

In the second case, the study sought to examine the performance of the model when trained
and then tested on a dataset different from our recorded dataset, which is also a known environment
scenario. Using the Aachen room impulse response public dataset [55], we prepared training and testing
datasets by convolving with speech data taken from the telecommunications and signal processing
(TSP) anechoic speech database [56]. The TSP database consists of over 1400 utterances spoken by 24
speakers. We used utterances from four speakers to prepare the training set, and we used utterances
from two separate speakers to prepare a separate test set. The utterances were convolved with impulse
responses from four different rooms with different mean reverberation times (RT60), as shown in Table 4.
The table also shows the various source–microphone distances available in each room as well as their
respective distance-specific RT60s. The total number of source–microphone distances is 15, and Table 5
shows the class labels for all the 15 classes. After each convolution, we take the first one-second-long
segment from the convolved signal, extract the log-scaled mel spectrogram, and then save it as one
data sample.

The model was trained on the training dataset, using the ‘validation_split’ function to split it
into training (80%) and validation (20%) sets. Here, the performance of the model was evaluated on
two test sets—a same-speaker test set and a different-speaker test set—and the results are shown in
Table 6 and Figure 10. It can be seen both in Table 6 and Figure 10 that the performance of the model
on the different-speaker test sets are lower than the performance on the same-speaker test set; however,
considering that there are 15 different classes in this experiment, the amount of training data (i.e., 9600)
and time (i.e., 1000 epochs) might have been insufficient. Therefore, increasing the training data and
time might improve the general performance of this model.



Sensors 2020, 20, 172 11 of 19

Table 4. Mean RT60, source–microphone distance classes for each of the four rooms and their
distance-specific RT60 values.

Room Mean RT60 (s) Source–Microphone
Distances (m) RT60 (s)

Studio
booth

0.12
0.50 0.08
1.00 0.11
1.50 0.18

Office
room

0.43
1.00 0.37
2.00 0.44
3.00 0.48

Meeting
room

0.23

1.45 0.21
1.70 0.22
1.90 0.21
2.25 0.24
2.80 0.25

Lecture
room

0.78

2.25 0.70
4.00 0.72
5.56 0.79
7.10 0.80
8.68 0.81
10.2 0.83

Table 5. Class labels for each source–microphone distance in the public dataset.

Class Distance (m)

1 0.5
2 1.0
3 1.45
4 1.5
5 1.7
6 1.9
7 2.0
8 2.25
9 2.8

10 3.0
11 4.0
12 5.56
13 7.1
14 8.68
15 10.2

Table 6. Accuracy of the proposed method when trained and tested with the public dataset comprising
four different rooms combined.

Test Dataset Accuracy (%)

Same speakers’ utterances 85.17
Different speakers’ utterances 64.72
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Figure 10. Confusion matrices showing the performances of the model trained on the public dataset.
(a) Model’s performance on same-speaker test set; (b) Model’s performance of different-speaker test set.
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Using the public dataset, the model was also trained and tested in each room separately.
The utterances used for the training and testing datasets were taken from different speakers; hence, the
results presented are all speaker-independent. The performance of each room’s model is shown in the
form of a confusion matrix in Figure 11, and their total accuracies are reported in Table 7.

Figure 11. Confusion matrices showing the performances of models trained separately in a (a) Studio
booth; (b) Office room; (c) Stairway; (d) Meeting room; and (e) Lecture room.

Table 7. Accuracy of the proposed method when trained and tested in each public dataset
room separately.

Test Dataset Accuracy (%)

Studio booth 89.17
Office room 87.15

Stairway 77.43
Meeting room 95.29
Lecture room 92.12

3.2. Classification in Unknown Environments: Generalization Ability

In these experiments, the study sought to train the model in one environment and then test it in a
different environment afterwards (i.e., the training dataset and testing dataset are recorded in separate
environments).

3.2.1. Our Recorded Dataset

One model was trained for each possible combination of the three rooms, amounting to nine
different models. For example, using the room 1–room 2 combination, the model was first trained
with all the dataset recorded in room 1, and then the trained model was tested on the dataset recorded
in room 2. In other combinations, we combined datasets from two rooms, e.g., room 1 and 2 for the
training of the model, and then the model was tested on the dataset from room 3. Table 8 shows the
nine different room combinations and the corresponding models’ test accuracies.
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Table 8. Accuracies of the nine different models trained for the various combinations of the three rooms.

Test Number Training Testing Test Accuracy (%)

1 Room 1 Room 2 81.38
2 Room 2 Room 1 74.19
3 Room 1 Room 3 44.82
4 Room 3 Room 1 42.13
5 Room 2 Room 3 48.60
6 Room 3 Room 2 61.61
7 Rooms 1 and 2 Room 3 51.78
8 Rooms 1 and 3 Room 2 86.14
9 Rooms 2 and 3 Room 1 70.17

3.2.2. Our Dataset and Public Dataset

In this case, the model was trained with our recorded data and then evaluated on the public
dataset. Specifically, we trained the model on our combined dataset (i.e., rooms 1, 2, and 3), and then
we tested it on data from the office room and the stairway. These rooms were selected for the evaluation
because their distance classes are the same as those in our dataset. Table 9 shows the accuracy of the
model’s classification in the two rooms. Again, the classification accuracies are very low, below 50%,
which might be due to the difference in the acoustic properties of the training and testing rooms.

Table 9. Accuracy of the model trained on our recorded dataset and tested on the public dataset.

Training Test Room Accuracy (%)

Rooms 1, 2, and 3 Office room 41.67
Rooms 1, 2, and 3 Stairway 38.77

3.3. Comparison with Previous Method

In this section, we compare the performance of our proposed method to a previous single-channel
signal distance estimation method [25]. The method was based on statistical properties of speech
source excitation signal being classified into predefined distance classed using a GMM. We compare
our method’s accuracies to the accuracies reported in this previous paper. In Table 10, we show the
accuracy of our proposed method when trained and tested in an office room with an RT60 of 0.43 in
comparison to the accuracy of the previous GMM, with the statistics method also trained and tested in
a small office room with an RT60 of 0.39.

Table 10. Comparison of the proposed method to the previous single-channel distance estimation
method. GMM: Gaussian mixture model.

Method RT60 Accuracy (%)

Proposed 0.43 87.15
GMM with statistics 0.39 75.4

Both models were trained and tested with utterances from different speakers, and it can be seen
that the accuracy of our proposed method is much higher. Since it is reported that the GMM with
the statistics method performed better in rooms with lower RT60, it is possible that if tested in our
public data office room (RT60 = 0.43), the GMM method’s accuracy will further reduce. However,
in terms of method’s robustness when tested on different speaker utterances, the GMM method’s
performance remains almost the same and even slightly increases in the room with the lowest RT60,
whereas our method’s performance slightly reduces when tested on different speakers’ utterances as
compared to testing with the same speakers’ utterances. Nonetheless, the reduced accuracy of our
model with different speaker test sets is still higher than or comparable to both cases of the GMM with
the statistics method.
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4. Discussion

In this section, the results of the different experiments presented in Section 3 are discussed.
In Section 3.1, the experiments demonstrate the performance of the proposed method in known
environments. Although the results obtained with our recorded dataset are extremely high, which is
probably due to the similarity in the signals, the subsequent results obtained from the Aachen room
impulse response [55] datasets confirmed that the proposed method can classify/estimate sound source
distances in known environments. In the TSP speech dataset [56] that is convolved with the Aachen
room impulse responses, every utterance from a specific speaker is different, and repetitions were
avoided by taking only a one-second-long segment of the signal for each convolution. The average
accuracy for the five separate public dataset rooms is 88.23%, which was achieved without the need
for hand-crafted feature engineering. In comparison with a previous single-channel speaker distance
detection method, our proposed method appeared to perform better even with higher RT60 rooms,
as shown in Section 3.3. This shows that the log-scaled mel spectrograms carry rich information,
from which a deep learning model can learn distance-related features.

To examine the generalizability of the proposed method in unknown environments, various
combinations of our recorded datasets from the three rooms were made. The dimensions of the three
rooms are specified in Table 2. All three rooms have different dimensions and volumes; however,
rooms 1 and 2 are more similar than room 3 in terms of physical structure and the number and location
of windows, and the possible effect of this can be seen in the classification accuracies. Table 8 shows
the accuracies for all the models trained and tested with the different combinations of datasets. Here, it
is observed that the performance of the trained models are reduced significantly compared to known
environment scenarios. Especially, in the case of using single room datasets for training and testing,
the classification accuracies could fall below 50%. See the results for the room combinations 1 and 3,
3 and 1, and 2 and 3 in Table 8. It was noted that in all the cases involving rooms 1 and 2 as the training
and testing room respectively and vice versa, the test accuracy was always above 70%, which may be
due to the similarity between rooms 1 and 2, as noted earlier.

Furthermore, training the model with our recordings and testing it on the public dataset resulted
in similar low accuracies, as shown in Table 9. The implication of this observation is that the proposed
method does not generalize well to unknown or unseen environments, and in order to improve the
method’s generalizability, it is essential to expose the neural network to a larger amount of more
diverse data samples recorded in more rooms having similar characteristics to those of the expected
test or application environments. Moreover, due to the outstanding learning capabilities of deep
learning models, it is expected that extending the training of our model by fine-tuning the network and
increasing the training time could potentially further improve the model’s performance. In addition,
in this study, we considered only single sources, and we will require more data in order to investigate
the performance of the model on multiple sound sources. This will be included in the future work of
the study.

5. Conclusions

This paper proposed a method for estimating the distance of sound sources in rooms by using a
convolutional recurrent neural network to classify the audio signals into predefined distance classes.
We prepared an audio dataset for the purpose of sound source distance estimation and used log-scaled
mel spectrograms of the audio signals as our training input data. The proposed model consisted
of three convolution layers, followed by one recurrent layer, a fully connected layer, and an output
layer. Our experimental results show that the log-scaled mel spectrogram input features work
well in providing adequate distance-dependent information for the network to learn from. Several
experiments—grouped into known environments and unknown environments—were performed
using the same network architecture and configuration. In addition to our recorded dataset, we used
the Aachen room impulse response dataset to prepare more data for the evaluation of our method’s
generalization ability, which proved the importance of using relevant or typical data samples to train
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the neural network. Based on our experimental results, it was concluded that using the log-scaled mel
spectrograms, a deep learning model can be trained to accurately classify sounds into the appropriate
predefined distance classes, and the method works best in known environments and with similar
signal types.

In comparison to other methods, our approach of using time-frequency image representations of
the audio signals for training reduces the need for excessive hand-crafted feature engineering. Moreover,
due to the remarkable performance of CNN models in image classification tasks, our approach achieves
an average accuracy of 88.23% in estimating sound source distances by classification in separate rooms.
In our future work, we plan to enlarge our dataset by diversifying it with various kinds of sounds
and also applying data augmentation techniques. It is anticipated that in addition to fine-tuning the
proposed model, this will have a positive impact on the generalization ability and the accuracy of
the model.
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