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Abstract: A novel and an efficient rescue system with a multi-agent simultaneous localization and
mapping (SLAM) framework is proposed to reduce the rescue time while rescuing the people trapped
inside a burning building. In this study, the truncated signed distance (TSD) based SLAM algorithm
is employed to accurately construct a two-dimensional map of the surroundings. For a new and
significantly different scenario, information is gathered and the general iterative closest point method
(GICP) is directly employed instead of the conventional TSD-SLAM process. Rescuers can utilize a
total map created by merging individual maps, allowing them to efficiently search for victims. For
online map merging, it is essential to determine the timing of when the individual maps are merged
and the extent to which one map reflects the other map, via the weights. In the several experiments
conducted, a light-detection and ranging system and an inertial measurement unit were integrated
into a smart helmet for rescuers. The results indicated that the map was built more accurately than
that obtained using the conventional TSD-SLAM. Additionally, the merged map was built more
correctly by determining proper parameters for online map merging. Consequently, the accurate
merged map allows rescuers to search for victims efficiently.
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1. Introduction

It is essential to reduce the rescue time when rescuing the people trapped inside a burning building
because the difference between life and death can be a matter of hours. In particular, in disasters such
as earthquakes or fires, the goal of search and rescue operations is to rescue the largest number of
people in the shortest time, while minimizing risk to rescuers [1]. Location related information and
a map of the surroundings are critical for rescuers to navigate the environment safely and to search
victims quickly. To provide them with such information, there have been increasing demands for
rescue systems or smart helmets in recent years. In particular, the smart helmet with sensor systems
or networks [2] can help the rescuers see clearly in the dark during rescue missions. For example,
rescuers must keep their hands in contact with the walls or crawl on the ground while carrying the
traditional hand-held equipment, which can slow the rescue process. This study proposes a smart
helmet as a vital component in the rescue system to search for victims efficiently while building a map
of the surrounding environment and localizing the rescuer.

Jeong et al. [3] developed a smart helmet for disaster and safety, which has a novel software
framework enabling it to integrate a wide range of devices and services and efficiently manage
resources. However, the helmet targets single rescuers instead of a team, with the location of the rescuer
being estimated by a global positioning system. Therefore, it is unsuitable for internal environments.
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The C-Thru smoke diving helmet designed by Haciomeroglu [4] provided a wire frame vision of the
interior geometry, helping firefighters identify their surroundings easily and find victims. However,
the global localization system is not connected to the helmet. Stefan et al. [5] presented the Hector
open source modules for autonomous mapping and navigation with rescue robots. They provided
Hector simultaneous localization and mapping (SLAM) modules, which are implemented using an
extended Kalman filter and an elevation map, respectively. Their modules were verified in the RoboCup
Rescue competition. Nabil et al. [6] conducted rescue missions using two Khepera III robots, called
the range-bot and the eye-bot, which were responsible for active SLAM and detecting objects and
sending video streams of the objects, respectively. These studies were performed with multi-robot
systems, but localization was not considered in detail. Head-SLAM was suggested in [7], which
was implemented by GMapping [8,9]. Sensor data were obtained from a two-dimensional (2D) laser
scanner and an inertial measurement unit (IMU) on the helmet. The range scan data were projected
onto a horizontal plane in the global coordinate system. This approach is similar to the proposed
study owing to the application of 2D-SLAM and data projection. However, they did not deal with the
multi-agent system for more time-saving strategies. Pascucci et al. [10] suggested an indoor localization
framework for hybrid rescue teams using RFID tags. This study focused on a conceptual framework
and its performance was verified by the simulation. In [11], wearable technology incorporating novel
electrochemical sensors capable of monitoring and detecting the presence of dangerous gases near
the firefighter was developed. The authors used a state-of-the-art wireless indoor location tracking
system using ultra-wideband (UWB) localization [12] and the hybrid inertial, positional and navigation
module. In this study, victims and humans were detected by the UWB and cameras; however, this
study focused primarily on online multi-agent SLAM.

Pirkl et al. [13] presented a wearable sensor system that supports construction site workers in
work documentation and accesses digital information. This study focused on self-localization using an
IMU and light-detection and ranging (LiDAR) in a smart helmet. For a smart helmet, cameras were
considered in [14]. The sensors worn by the rescuers were deployed on the helmet, including a GoPro
Hero camera and an Xsens AHRS. The helmet highlighted the advantages of a human-robot interaction
framework. A team of researchers from Sheffield Robotics invented a helmet fitted with numerous
ultrasound sensors used to detect the distances between the helmet and the nearby obstacles [15].
These signals were directly transmitted to vibration pads attached to the inside of the helmet, which
were in contact with the wearer′s forehead. Although these systems had their own advantages, they
did not consider the SLAM approach; thus, the localization error can significantly increase over time.

Recently, the SLAM approach based on a truncated signed distance function (TSDF) has been
proposed for rescue scenarios [16–18]. Although the obstacles on the map can be represented accurately
using the TSDF, gathering data on a new location can be tedious, e.g., when a door opens or closes
abruptly. In addition, it is tedious to apply the TSDF to multi-agent systems directly because all the
agents do not share a common coordinate frame and procedure for updating the global map.

To establish a common coordinate frame among the agents, map matching and merging approaches
have been investigated [19–22]. In [19], Carpin used a Hough spectrum to compute the rotation matrix.
A translation matrix was computed using the cross-correlation between the x and y spectra. This
approach fitted in indoor environments because lines features were easily extracted in the structured
environments. Saeedi et al. [21] improved on the work of Carpin [20] by obtaining more sophisticated
translations. Lee et al. [22] proposed a sinogram-based method to simulate offline occupancy grid
maps. Sinograms were extracted using Radon transformation which is more accurate but slower than
Hough transformation. These studies focused on offline map matching and map merging from the
given maps or extended for spaces of higher dimensions [23–25].

The present paper proposes a novel and an efficient online rescue scheme that consists of an
advanced SLAM framework for a single rescuer and an online Hough spectrum-based map matching
and merging method for multiple rescuers. It provides an accurate map to the rescuers using the
TSD-based SLAM (TSD-SLAM), in addition to a generalized iterative closest point (GICP) in an abruptly
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changing environment. Furthermore, the map is a merged map rather than a single map, which helps
the rescuers realize which areas have already been covered by others. The proposed framework is
connected to a smart helmet equipped with an IMU and a LiDAR sensor through wireless links. In
several experiments, rescuers equipped with smart helmets entered test buildings and searched all the
rooms using a merged map that was built accurately via the proposed approach.

2. Proposed Method for a Single Agent

2.1. TSD-SLAM

To cope with dangerous situations, it is important to provide rescuers with accurate maps.
A popular map-construction algorithm currently in use is TSD-SLAM, which was developed by Team
AutonOHM. It generalizes the Kinect Fusion approach [16]. The TSD-SLAM computes a transformation
Tk using a model Mk = {mi | i = 1, . . . , nm} reconstructed from the TSD grid at the last-known position
and a new scene Dk = {di | i = 1, . . . , nd} obtained from the current laser measurements. This is
incrementally computed as follows:

Tk = Tk−1T∗, T∗ =


cosα sinα tx

− sinα cosα ty

0 0 1

, (1)

where T∗ is the transform between Mk and Dk. It consists of a translational vector and a rotation matrix.
For position estimation, the iterative closest point (ICP) algorithm is used together with random

sample consensus (RANSAC) based matching [26] for improving the robustness. After the matching
process, the truncated signed distance grids TSDFk(x) at time k can be updated as follows:

TSDFk(x) =
Wk−1(x) × TSDFk−1(x) + wk(x) × tsd fk(x)

Wk−1(x) + wk(x)
, (2)

Wk(x) = Wk−1(x) + wk(x), (3)

where tsdfk(x) represents the truncated signed distance computed at position x in the TSD grid. This
update process is similar to the first order low-pass filter. However, because the model was extracted
from the TSD grid, the algorithm can deteriorate in situations where a new scene significantly different
from the previous one is to be gathered.

2.2. Advanced TSD-SLAM

As discussed previously, the TSD-SLAM algorithm is highly useful for constructing complex
maps because it generates a model scan from the TSD grid in the matching procedure. However,
the SLAM performance with regard to the position and the map accuracy is degraded in reactive
situations in which the surrounding environments change significantly. For example, when a rescuer
opens a door and enters a room, a significantly different new scene is introduced. In this case, the
conventional TSD-SLAM may encounter a matching failure because the existing TSD grid does not
reflect the new scene quickly using its weight update process. Subsequently, the TSD grid cannot be
updated properly, which may cause the estimated results to diverge. In rescue scenarios, such reactive
events occur frequently. To overcome this issue, such events are detected and the GICP method, which
is a probabilistic scan-matching method, is used directly [27]. This method is suitable in the case of
reactive events, because it only depends on the successive scans and does not require a model extracted
from the TSD grid. The event can be detected using Algorithm 1.
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Algorithm 1 Event Detection

DetectionResult ← false
Obtain the size nm of model Mk
Di f f ← T∗[Mk 1nm ]

T
−Dk,c

T //Difference between model and corresponding scene
ETF ← 0
for all indices i in Diff do
ETF ← ETF + sqrt

(
Di f f (1, i)2 + Di f f (2, i)2

)
//Accumulated matching error calculation

end for
If (nm < nmin | ETF > ETF0) then
DetectionResult ← true
end if

In Algorithm 1, Mk and Dk,c represent the k × 2 matrices. Dk,c is obtained from Dk, which has a set
of nm corresponding point pairs from the matching result. Here, 1nm represents the nm × 1 matrix filled
with 1 s. nmin represents the minimum size of the model and ETF0 represents the minimum matching
error. These values are specified in the point cloud library [28]. If the DetectionResult is true, Mk is
redefined as follows:

Mk = Dk−1 , (4)

where Dk−1 represents the scene at k− 1.
Figure 1 shows the advanced TSD-SLAM process. When a matching failure is detected using

the DetectionResult, scan-to-scan matching is performed instead of a map-to-scan matching, which is
the original TSD process. Scan-to-scan matching describes the GICP. Map-to-scan matching refers to
matching between the new scene and the model extracted from the TSD grids.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 17 

 

for all indices i in Diff do 
ி்ܧ ← ி்ܧ  + ,1)݂݂݅ܦ)ݐݎݍݏ ݅)ଶ + ,2)݂݂݅ܦ ݅)ଶ)//Accumulated matching error calculation 

end for  
If (݊ < ݊ | ்ܧி >   ி) then்ܧ

DetectionResult ← true 
end if 

In Algorithm 1, ࡹ and ࢉ,ࡰ represent the k × 2 matrices. ࢉ,ࡰ is obtained from ࡰ, which has 
a set of ݊ corresponding point pairs from the matching result. Here,  represents the ݊ × 1 
matrix filled with 1 s. ݊  represents the minimum size of the model and ்ܧி  represents the 
minimum matching error. These values are specified in the point cloud library [28]. If the 
DetectionResult is true, ࡹ is redefined as follows: 

ࡹ  =   , (4)ିࡰ 

where ିࡰ represents the scene at  − . 
Figure 1 shows the advanced TSD-SLAM process. When a matching failure is detected using the 

DetectionResult, scan-to-scan matching is performed instead of a map-to-scan matching, which is the 
original TSD process. Scan-to-scan matching describes the GICP. Map-to-scan matching refers to 
matching between the new scene and the model extracted from the TSD grids. 

 
(a) (b) (c) 

Figure 1. Advanced TSD-SLAM process: (a) gathering a significantly different new scene; (b) detecting 
the matching failure point; (c) scan-to-scan matching is performed instead of map-to-scan matching 
at the point. 

When ࡹ is aligned with ࡰ using the GICP, the initial coordinates of ࡹ are usually set as a 
zero vector 0. However, if the motion of the rescuer changes continuously, the initial coordinates 
,ݔ] ,ݕ ,[ߠ

்  are represented as follows: 

ቈ
ݔ
ݕ
ߠ


,

 =  
ିଵ,௫ݐ∆
ିଵ,௬ݐ∆
,ఏݓ∆



,

, (5) 

where ∆ݐିଵ,௫ and ∆ݐିଵ,௬ represent the x and y translations, respectively, computed at k − 1. ∆ݓ,ఏ  
represents the difference between the consecutive yaw angles at k. The yaw angles are obtained from 
the equipped sensors, such as the IMU. Using the initial coordinates, the GICP can converge with 
high speed and accuracy. Subsequently, the TSD grid can be updated using the TSDF. 

3. Proposed Method for Multiple Agents 

When two or more rescuers enter an unsafe building, they need a common map; that is, their 
individual maps should be merged. The Hough spectrum-based method [19] as a popular map-
matching and map-merging method, is suitable for indoor maps with a large number of lines, such 
as walls or doors. This is the scenario in most indoor environments. The method can obtain various 
candidates by finding the maximum cross-correlation in the two spectra and compare them to obtain 
a more accurate solution. Therefore, the spectrum-based approach was selected for map-matching. 

3.1. Transform from TSD Grids into Occupancy Grid Map 

Figure 1. Advanced TSD-SLAM process: (a) gathering a significantly different new scene; (b) detecting
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When Mk is aligned with Dk using the GICP, the initial coordinates of Mk are usually set as a zero
vector 0. However, if the motion of the rescuer changes continuously, the initial coordinates [x, y,θ]Tm,0
are represented as follows: 

x
y
θ


m,0

=


∆tk−1,x
∆tk−1,y
∆wk,θ


m,0

, (5)

where ∆tk−1,x and ∆tk−1,y represent the x and y translations, respectively, computed at k − 1. ∆wk,θ
represents the difference between the consecutive yaw angles at k. The yaw angles are obtained from
the equipped sensors, such as the IMU. Using the initial coordinates, the GICP can converge with high
speed and accuracy. Subsequently, the TSD grid can be updated using the TSDF.

3. Proposed Method for Multiple Agents

When two or more rescuers enter an unsafe building, they need a common map; that is,
their individual maps should be merged. The Hough spectrum-based method [19] as a popular
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map-matching and map-merging method, is suitable for indoor maps with a large number of lines, such
as walls or doors. This is the scenario in most indoor environments. The method can obtain various
candidates by finding the maximum cross-correlation in the two spectra and compare them to obtain a
more accurate solution. Therefore, the spectrum-based approach was selected for map-matching.

3.1. Transform from TSD Grids into Occupancy Grid Map

Map matching algorithms such as the spectrum-based approach used in this study typically
depend on the type of the built maps. The type is set as an occupied grid map consisting of free cells,
occupied cells, and unknown cells. In the occupancy grid representation, all the cells are populated
according to their probability. The TSD grids are transformed into the occupancy grid map as follows:

Occ(x, y) =
occupied if TSD(x± 1, y) × TSD(x, y) < 0 or TSD(x, y± 1) × TSD(x, y) < 0

free else if TSD(x, y) > 0
unknown otherwise

, (6)

where an occupied cell can be identified using the change in the signs of consecutive grids. Free and
unknown cells are identified by checking whether TSD(x, y) is positive or negative.

3.2. Pre-Processing

To enhance the occupancy map quality, a low-pass filter is applied to the map as shown in Figure 2.
Noise can arise owing to the small occupied cells surrounded by the large free cells or vice versa. The
cells, which are called the noise, are reclassified via a simple majority vote of the nearest neighbors
of each cell. Additionally, to complement the result of the map transform, the occupied cells are
augmented and all the boundary cells between the unknown cells and the free cells are assigned to the
occupied cells.
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cell generation).

3.3. Map Merging Algorithm

According to the pre-processing, a high-quality occupancy grid map can be obtained. When two
occupancy grids are obtained from two rescuers, the map-matching process can be performed. The
occupancy grid maps are input into the Hough spectrum, which is an extension of the Hough transform.
A suitable rotation θ that produces several solutions can be found between the two occupancy grid
maps. After the two maps are aligned using the rotation θ, the x and y spectra are computed to obtain
a translation between the two maps. Finally, the map-aligning transform TG = [x, y,θ]T is obtained
and the occupancy grid maps are merged using the transform as follows:

OccM(x, y) = Occ1(x, y) + TGOcc2(x, y) for all x, y, (7)
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where OccM(x, y) represents the map merged using the two occupancy grid maps. Occ1(x, y) represents
the occupancy grid map of the first rescuer with the reference coordinate system, OccM(x, y). Occ2(x, y)
represents the occupancy grid map of the second rescuer, which is transformed using TG.

Using the transformation TG, the TSD grid of a rescuer can be updated from the other TSD grid.
If TSDFk,1(x) and TSDFk,2(x) represent the TSD grid of the first and second rescuers, respectively, the
two TSD grids can be updated as follows:

TSDFk,1(x) = wT,1TSDFk,1(x) + wT,2TGTSDFk,2(x) , for all x, (8)

TSDFk,2(x) = wT,1TSDFk,2(x) + wT,2T−1
G TSDFk,1(x), for all x, (9)

wT,2 = 1−wT,1, (10)

where TGTSDFk,2(x) indicates that all the points in TSDFk,2(x) are transformed using TG. In
addition, T−1

G TSDFk,1(x) indicates that all the points in TSDFk,1(x) are transformed using T−1
G .

As indicated by Equation (8), TSDFk,1(x) is determined using the sum of wT,1TSDFk,1(x) and
wT,2TGTSDFk,2(x).TSDFk,2(x) is also determined by the sum of wT,1TSDFk,2(x) and wT,2T−1

G TSDFk,1(x).
wT,1 and wT,2 are the weighting factors ranging from 0 to 1.

3.4. Timing for Online Map Merging

In the real time approach, the map matching and merging process should be performed at a
suitable time. Matching and merging the maps too early may lead to the maps not being merged
properly. Additionally, maps may not be merged until the mission is complete. Thus, it is essential to
determine when the individual maps are to be merged. The sum of the number of free and occupied
cells in an individual occupancy grid map is one of the important criteria for the timing decision. The
following inequality should be satisfied by taking the specific threshold β into account:

β <

∑
cell = f ree or occupied Occ(x, y)

gridx × gridy
× 100 (%), (11)

where gridx and gridy denote the x and y scales of a grid map, respectively. The proper β is empirically
determined. If β is too small or large, the maps are not matched completely or not merged until the
rescue mission is complete.

If there are several rescuers, Equation (11) should be satisfied for all the occupancy grid maps.
Then the map matching process can be performed. However, if the matching quality is low at a certain
transform, the transform for map merging cannot be selected. Thus, the overlapped score can be
computed as follows:

Soverlapping =
agr(Occ1, Occ2)

gridx × gridy
, (12)

where agr() represents the number of overlapped grids when the two maps are merged via the TG.
gridx and gridy represent the height and width of the merged map, respectively. Soverlapping must to be
larger than the empirically defined score so.

Soverlapping is the absolute indicator for detecting the matching possibility. In addition, the relative
indicator proposed in [20] is employed. The acceptance indicator ai() is defined as:

ai(Occ1, Occ2) =
agr(Occ1, Occ2)

agr(Occ1, Occ2) + dis(Occ1, Occ2)
, (13)

where dis() represents the number of mismatched grids in the merged map. If ai(Occ1, Occ2) is
approximately 1.0, there is an overlap between a region of Occ1 and a region of Occ2; thus, dis() is
equal to zero. In [20], it was reported that successful runs had an ai() approximately more than 98%
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while the ”best” failed attempt had an ai() approximately below 90%. However, in practice, it can be a
value below 90%.

3.5. Overview of Rescue System

Figure 3 presents the proposed rescue scheme. LiDAR and IMU data for all the rescuers including
a lead rescuer are measured using their smart helmets. Using the data, the advanced TSD-SLAM is
performed, which estimates the rescuer’s current position and produces a map by updating the TSD
grids. At a suitable time to match and merge the maps, the occupancy grid maps are generated using
the TSD grid maps. The Hough and x-y spectra are generated on the occupancy grid maps and a
transformation matrix is produced by determining the local maxima of the spectra cross-correlation.
The transformation matrix applies to the individual TSD grid map update, in addition to the occupancy
grid map merging process. In the merging process, the map of the leader rescuer is matched and
merged with the others one by one. The total map merged from the individual occupancy grid maps is
transferred through the wireless network to all the rescuers. Finally, all the rescuers can view the total
map in their head-up displays (HUDs). This can help them search for the victims more efficiently.
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4. Experiments

4.1. Smart Helmet

A smart helmet equipped with SLAM Tech’s laser range scanner RPlidar A3 and an attitude
heading and reference system (AHRS) was used, as shown in Figure 4. The RPlidar A3 was located
at the top of the helmet. The AHRS, which is a three-axis sensor system that provided the real-time
three-dimensional (3D) attitude position, was located on the same side. Thus, the 2D scan data (ri, θi)

in the 3D space were projected onto a plane at the rescuer’s height level h1, as follows:

rnew,i = ricosφ, if sin−1
(

h1

ri

)
< φ < sin−1

(
hc − h1

ri

)
for all i, (14)
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where rnew,i represents the projected range, hc represents the height of the ceiling from the floor, and φ
represents the pitch angle. If Equation (14) was not satisfied, rnew,i was assigned to an invalid value,
indicating that a ray is on either the ceiling or the floor. In the experiments, h1 and hc were defined
according to the height of the rescuer and the floor-to-ceiling height, respectively. The maximum
number of iterations of the GICP and the grid size were set as 100 and 0.05 m, respectively.Sensors 2020, 20, x FOR PEER REVIEW 8 of 17 
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4.2. Experimental Results

4.2.1. Comparison of Conventional TSD-SLAM and Advanced TSD-SLAM

In the first experiment, the conventional TSD-SLAM and the advanced TSD-SLAM were tested
in test bed environments (approximately 14 m × 14 m in size). The performance of the advanced
TSD-SLAM is shown in Figure 5. The rooms in the red boxes in the map of Figure 5a,b were built
differently. However, they corresponded to the same room. In the conventional TSD-SLAM, there
were orientation errors as the door was opened. However, the orientation was estimated correctly
via the advanced TSD-SLAM, as shown in Figure 5b. Finally, the merged map was obtained via the
proposed rescue scheme, which enabled the rescuers to choose non-overlapped paths, as shown in
Figure 6. The TSD grid update was not considered after the map matching process. Thus, multiple
overlapping lines can represent one wall. The overlapped lines can end up with distorting results such
as mapping failures.
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Figure 6. Results for the individual occupancy grid maps and the merged map (the routes of the first
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4.2.2. Consideration of TSD Grid Update

In the second experiment, the artificial walls were moved and all the rooms in the building
were rearranged as shown in Figure 7. The size of the test indoor environment was approximately
14 m × 14 m. There were several rooms, corridors, and walls. The people who played the role of
victims stayed in certain rooms. First, βwas changed in the tests in order to determine the proper β.
Figure 8 shows the test results. When βwas very small, i.e., β = 0.28%, the maps were not aligned
well because there were many candidates for merging. However, when βwas set as 5%, the maps were
merged more accurately. In several experiments, βwas determined, ranging from 2% to 5% because
typical buildings have only one entrance. If there are several entrances, β should be large enough to
search the same structure in the maps. Two rescuers using three different methods built the whole
map. The map merging process was included in the first method without any update procedures. In
the second and the third methods, the TSD grids were updated after the map merging, however, the
weight, wT,1 was different. In the tests, wT,1 was set as 0.95 in the second method and 0.5 in the third
method, respectively.
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With regard to the TSD grid update, the second and third methods performed better than the 
first method. Figure 10 shows the map merging results of the second and third methods. As the 
second method had a low ratio of one TSD grid being reflected in the other TSD grid update, several 
parts did not overlap perfectly, as shown in Figure 10a. However, the merged map in the third 
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Figure 8. Qualitative comparison of the merged maps according to β.

Figure 9 shows the result of the first method. The blue and red lines represent the trajectories
of rescuers 1 and 2, respectively. The green arrows represent the UWB results, and the cyan arrows
represent the results for the detection of humans and victims in the room. The first method, however,
did not update the individual TSD grids even after the occupancy grid maps were merged. In the
merged map, it was evident that the two occupancy grid maps are different in terms of the free
cells represented by the white and light grey colors and it was difficult to understand the whole
map correctly.
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Figure 9. Map merging result without the TSD grid update; the two maps were imperfectly merged.

With regard to the TSD grid update, the second and third methods performed better than the first
method. Figure 10 shows the map merging results of the second and third methods. As the second
method had a low ratio of one TSD grid being reflected in the other TSD grid update, several parts
did not overlap perfectly, as shown in Figure 10a. However, the merged map in the third method is
apparently represented as shown in Figure 10b. Thus, in the third approach, the merged map was
more accurately built by comparing several parts with other methods.
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Figure 10. Map merging results with the TSD grid update. By comparing the two maps, a more correct
map was built as shown in (b).

The third experiment was conducted in a public indoor environment with many meeting rooms,
as shown in Figure 11. In contrast to the second environment, it consisted of glass doors and windows,
which may cause errors in the SLAM. First, the performance of the advanced TSD-SLAM was compared
with that of the conventional one, as shown in Figure 12. In particular, the left part of the map was
built accurately as shown in Figure 12b, whereas the conventional TSD-SLAM accumulated orientation
errors over time. The difference between results of the conventional and advanced TSD-SLAM methods
was clearly observed in the environment with many rooms.
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Figure 12. Comparison of the conventional TSD-SLAM and the advanced TSD-SLAM. The left part of
the map was not built accurately in (a), but the matching errors were reduced in (b).

Figure 13 shows the comparison results. The quality of the merged map with the TSD grid update
using a large weight wT,1, was low, indicating that it is tedious to reduce the errors that occur in
the SLAM. This is because one rescuer’s TSD grid map rarely affects the other rescuer’s TSD grid
map, as shown in Figure 13a. In contrast, if the maps are merged using the TSD grid update process
with a weight wT,1 equal to the other weight wT,2, a more accurate map can be obtained, as shown
in Figure 13b. As indicated by the figures, the errors that occurred in the SLAM were significantly
reduced. Thus, an individual SLAM can be enhanced using the results of accurate map merging.

In the fourth experiment, a karaoke venue called Noraebang in Korea was tested, as shown in
Figure 14. It consisted of several rooms with glass doors and different floor-to-ceiling heights, which
could induce errors in the SLAM. Figure 14a shows the blueprint of the experimental environment;
it was approximately 18 m × 18 m in size. The performance of the advanced TSD-SLAM is shown
in Figure 15. In the conventional TSD-SLAM, (Figure 15a) there were orientation errors, particularly,
in the area marked by the red box. However, the orientation was estimated correctly in Figure 15b
even though the rescuers frequently opened and closed doors to search for victims.
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Figure 15. Comparison of the conventional TSD-SLAM and the advanced TSD-SLAM: (a) bent map in
the red box (matching failure occurs in reactive situations); (b) issue resolved.

Figure 16 shows the comparative results where the shape of the rooms can be recognized in
the map merging result. However, in some areas, the rooms and the corridors were not separated.
Additionally, errors due to the matching or the update were observed. As shown in Figure 16b,c,
there were matching errors, which were not removed until the end of the experiment. However, in
Figure 16d, all the rooms can be easily recognized and clearly separated. This indicates that if there are
errors in map matching, it is more beneficial to update the merged map with a larger weight wT,1 than
to use a weight wT,1 equal to the other weight wT,2.
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4.3. Discussion: Analysis of Results

In the several indoor environments, the proposed approach was verified by comparing it with
the conventional TSD SLAM and by changing parameters such as, wT,1 and wT,2. With regard to the
SLAM result, a more accurate map was achieved when a rescuer abruptly opened or closed the doors,
thereby reducing the orientation error. In the map merging, it was beneficial to update the TSD grid
with wT,1 = 0.5, indicating that the other map information was highly reflected in the map update.
However, if errors occur in a complex environment before and after the map matching, it is advisable
to assign wT,1 with a larger weight. In the map comparison, it was complex to show the quantity
evaluation because a global reference system could not be applied. Nevertheless, the methods were
compared graphically and analyzed. To obtain an accurate map, the timing of the online map merging
was critical. Table 1 presents the parameters used in all the experiments. βwas the criterion for the map
merging. As mentioned previously, it ranged from 2% to 5%. In experiments 1 and 2, β was relatively
large because it was beneficial to take more time for accurate map merging rather than to increase
the individual SLAM accuracy resulting from the map-merging. However, in experiments 3 and 4, β
decreased because the environments were complex, and the SLAM could fail. Once the criterion β
was satisfied, the two values for ai() and Soverlapping were checked, which were closely related to the
map merging quality. ai() was set as 0.95, in accordance with [20]. A larger value can ensure the map
merging quality. Soverlapping was set as 0.03, which was used for the minimum criterion. When the grid
number of the merged map was 360,000 (600 × 600), more than 11,000 matched grids satisfied this
criterion. In the complex environments, i.e., experiments 3 and 4, since the SLAM could fail, ai() and
Soverlapping were reduced to 0.85 and 0.02, respectively. If we reduced these values significantly, the
quality of map merging could not be ensured. All the experimental results indicated that the maps
were merged properly in real-time.

Table 1. Parameters for online map merging.

Parameters Experiment 1 Experiment 2 Experiment 3 Experiment 4

β 5% 5% 4% 2.5%
ai() 0.95 0.95 0.85 0.85

Soverlapping 0.03 0.03 0.02 0.02

5. Conclusions

We propose a novel and an efficient rescue scheme using the online multi-agent SLAM framework.
In a rescue scenario, the proposed framework provides the rescuers with accurate maps. Technically,
it produces a merged map to avoid the overlapping paths of individual maps. This reduces time
and saves lives. Several experiments were performed using smart helmets equipped with IMU and
LiDAR sensors. The sensors were connected to the proposed framework via a wireless network. The
results indicated that the performance of the proposed method was superior to that of the conventional
TSD-SLAM, with regard to the map-construction accuracy. The map was constructed accurately even
when a significantly different new scene was to be gathered. The merged map was obtained via a
Hough-spectrum based method by transforming the TSD grids into an occupancy grid map. For online
map merging, the time when the individual maps were merged, and the amount of one map reflected
in the other map via the weights, were determined. In several experiments, the proposed approach
exhibited significantly higher performance than others, and suitable parameters for obtaining a more
accurate map were discovered.

Author Contributions: Conceptualization, B.L.; methodology, S.L. and H.K.; software, S.L. and H.K.; validation,
S.L.; funding acquisition, B.L.; writing–original draft, S.L.; writing–review & editing, H.K. and B.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Field-oriented Support of Fire Fighting Technology Research and
Development Program funded by the National Fire Agency (MPSS-fire safety-2015-69).



Sensors 2020, 20, 235 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1. FEMA. Available online: www.fema.gov (accessed on 17 December 2019).
2. NFPA. Available online: www.nfpa.org/SmartFireFighting (accessed on 17 December 2019).
3. Jeong, M.; Lee, H.; Bae, M. Development and Application of the Smart Helmet for Disaster and Safety. In

Proceedings of the International Conference on Information and Communication Technology Convergence
(ICTC), Jeju Island, Korea, 17–19 October 2018; pp. 1084–1089.

4. QWaketech. Available online: www.qwake.tech (accessed on 17 December 2019).
5. Kohlbrecher, S.; Meyer, J.; Graber, T.; Petersen, K.; Klingauf, U.; Stryk, O. Hector Open Source Modules for

Autonomous Mapping and Navigation with Rescue Robots. In Proceedings of the RoboCup 2013: Robot
World Cup XVII, Eindhoven, The Netherlands, 26–30 June 2013; pp. 624–631.

6. Nabil, M.; Kassem, M.H.; Bahnasy, A.; Shehata, O.M.; Morgan, E.-S.I. Rescue Missions Bots using Active SLAM
and Map Feature Extraction. In Proceedings of the 4th International Conference on Control, Mechatronics
and Automation, Barcelona, Spain, 7–11 December 2016; pp. 31–35.

7. Cinaz, B.; Kenn, H. Head SLAM—Simultaneous localization and mapping with head-mounted inertial and
laser range sensors. In Proceedings of the 12th International Symposium on Wearable Computers, Pittsburgh,
PA, USA, 28 September–1 October 2008; pp. 9–13.

8. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with Rao-Blackwellized
particle filters. IEEE Trans. Robot. 2006, 32, 16–25. [CrossRef]

9. OpenSLAM. Available online: www.openslam.org (accessed on 17 December 2019).
10. Pascucci, F.; Setola, R. An Indoor localization Framework for Hybrid Rescue Teams. In Proceedings of

the 18th World Congress the International Federation of Automatic Control, Milano, Italy, 28 August–2
September 2011; pp. 4765–4770.

11. O’Flynn, B.; Walsh, M.; Fuchs, T.; Braun, T.; Lang, K.D. SAFESENS—Smart Sensors for Fire Safety: First
Responders Occupancy, Activity and Vital Signs Monitoring. In Proceedings of the Eleventh International
Conference on Sensor Technologies and Applications, Rome, Italy, 10–14 September 2017; pp. 51–57.

12. Ye, T.; Walsh, M.; Haigh, P.; Barton, J.; O’Flynn, B. Experimental impulse radio IEEE 802.15. 4a UWB based
wireless sensor localization technology: Characterization, reliability and ranging. In Proceedings of the 22nd
IET Irish Signals and Systems Conference, Dublin, Ireland, 23–24 June 2011; pp. 23–24.

13. Pirkl, G.; Hevesi, P.; Amiraslanov, O.; Lukowicz, P. Smart helmet for construction site documentation and
work support. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016; pp. 349–352.

14. Guerra, E.; Munguia, R.; Grau, A. Monocular SLAM for Autonomous Robots with Enhanced Features
Initialization. Sensors 2014, 14, 6317–6337. [CrossRef]

15. Kerdegari, H.; Kim, Y.; Prescott, T.J. Head-mounted Sensory Augmentation Device: Designing a Tactile
Language. IEEE Trans. Haptics. 2016, 9, 376–386. [CrossRef]

16. Pfitzner, C.; Fees, M.; Kuhn, M.; Schmidpeter, M.; Koch, P.; May, S. RoboCup Rescue 2016 Team Description
Paper AutonOHM. In Proceedings of the 20th RoboCup International Symposium, Leipzig, Germany,
4 July 2016.

17. Koch, P.; May, S.; Schmidpeter, M.; Kühn, M.; Martin, J.; Pfitzner, C.; Merkl, C.; Fees, M.; Koch, R.; Nüchter, A.
Multi-Robot Localization and Mapping Based on Signed Distance Functions. J. Intell. Robot. Syst. 2017, 83,
409–428. [CrossRef]

18. Ammon, D.; Fink, T.; May, S. Random Normal Matching: A Robust Probability-Based 2D Scan Matching
Approach Using Truncated Signed Distance Functions. In Proceedings of the IEEE International Conference
on Autonomous Robot Systems and Competitions, Coimbra, Portugal, 26–28 April 2017; pp. 222–227.

19. Carpin, S. Fast and accurate map merging for multi-robot systems. Auton. Robots 2008, 25, 305–316. [CrossRef]
20. Birk, A.; Carpin, S. Merging occupancy grid maps from multiple robots. Proc. IEEE 2006, 94, 1384–1397.

[CrossRef]
21. Saeedi, S.; Paull, L.; Trentini, M.; Seto, M.; Li, H. Map Merging Using Hough Peak Matching. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12
October 2012; pp. 4683–4688.

www.fema.gov
www.nfpa.org/SmartFireFighting
www.qwake.tech
http://dx.doi.org/10.1109/TRO.2006.889486
www.openslam.org
http://dx.doi.org/10.3390/s140406317
http://dx.doi.org/10.1109/TOH.2016.2554111
http://dx.doi.org/10.1007/s10846-016-0375-7
http://dx.doi.org/10.1007/s10514-008-9097-4
http://dx.doi.org/10.1109/JPROC.2006.876965


Sensors 2020, 20, 235 17 of 17

22. Lee, H.C.; Roh, B.S.; Lee, B.H. Multi-hypothesis map merging with sinogram-based PSO for multi-robot
systems. Electron. Lett. 2016, 52, 1213–1214. [CrossRef]

23. Jessup, J.; Givigi, S.N.; Beaulieu, A. Merging of octree based 3d occupancy grid maps. In Proceedings of the
2014 8th Annual IEEE Systems Conference, Ottawa, ON, Canada, 31 March–3 April 2014; pp. 371–377.

24. Jessup, J.; Givigi, S.N.; Beaulieu, A. Robust and efficient multirobot 3-d mapping merging with octree-based
occupancy grids. IEEE Syst. J. 2017, 11, 1723–1732. [CrossRef]

25. Yue, Y.; Senarathne, P.N.; Yang, C.; Zhang, J.; Wen, M.; Wang, D. Hierarchical Probabilistic Fusion Framework
for Matching and Merging of 3-D Occupancy Maps. IEEE Sens. J. 2018, 18, 8933–8949. [CrossRef]

26. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

27. Segal, A.V.; Haehnel, D.; Thrun, S. Generalized-ICP. In Proceedings of the Robotics: Science and Systems,
Seattle, WA, USA, 28 June–1 July 2009; pp. 26–27.

28. The Point Cloud Library (PCL). Available online: www.pointclouds.org (accessed on 17 December 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/el.2016.1041
http://dx.doi.org/10.1109/JSYST.2015.2422615
http://dx.doi.org/10.1109/JSEN.2018.2867854
http://dx.doi.org/10.1145/358669.358692
www.pointclouds.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Method for a Single Agent 
	TSD-SLAM 
	Advanced TSD-SLAM 

	Proposed Method for Multiple Agents 
	Transform from TSD Grids into Occupancy Grid Map 
	Pre-Processing 
	Map Merging Algorithm 
	Timing for Online Map Merging 
	Overview of Rescue System 

	Experiments 
	Smart Helmet 
	Experimental Results 
	Comparison of Conventional TSD-SLAM and Advanced TSD-SLAM 
	Consideration of TSD Grid Update 

	Discussion: Analysis of Results 

	Conclusions 
	References

