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SUMMARY

Methods for single-cell RNA sequencing (scRNA-seq) have greatly advanced in recent years. 

While droplet- and well-based methods have increased the capture frequency of cells for scRNA-

seq, these technologies readily produce technical artifacts, such as doublet cell captures. Doublets 

occurring between distinct cell types can appear as hybrid scRNA-seq profiles, but do not have 

distinct transcriptomes from individual cell states. We introduce DoubletDecon, an approach that 
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detects doublets with a combination of deconvolution analyses and the identification of unique 

cell-state gene expression. We demonstrate the ability of DoubletDecon to identify synthetic, 

mixed-species, genetic, and cell-hashing cell doublets from scRNA-seq datasets of varying cellular 

complexity with a high sensitivity relative to alternative approaches. Importantly, this algorithm 

prevents the prediction of valid mixed-lineage and transitional cell states as doublets by 

considering their unique gene expression. DoubletDecon has an easy-to-use graphical user 

interface and is compatible with diverse species and unsupervised population detection algorithms.

Graphical Abstract

In Brief

Multiplets are a source of confounding gene expression in single-cell RNA sequencing (scRNA-

seq) that result from the simultaneous capture of multiple cells in a droplet. DePasquale et al. 

introduce DoubletDecon to identify putative doublets and to consider unique gene expression 

inherent to transitional states and progenitors to “rescue” singlet captures from inaccurate 

classification.

INTRODUCTION

Single-cell genomics provides a powerful means to derive and ultimately characterize novel 

cell populations and transitional states (Olsson et al., 2016; Velten et al., 2017; Villani et al., 

2017; Yanez et al., 2017). While single-cell profiling technologies continue to evolve at an 
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astonishing pace, many challenges remain, including the separation of biological signal from 

technical noise. A common source of confounding gene expression in single-cell RNA-

sequencing (scRNA-seq) is the occurrence of multiplet cell profiles that result from the 

simultaneous capture of multiple cells in a single well or droplet (Kang et al., 2018).

As demonstrated by species mixing experiments, the frequency of mutliplets increases with 

greater loading of cells for droplet-based scRNA-seq platforms (Goldstein et al., 2017; Gong 

and Szustakowski, 2013; Macosko et al., 2015; Stoeckius et al., 2018). As a result, 

researchers are often advised to load fewer cells to decrease the occurrence of multiplets, 

hence limiting the cellular depth afforded by these technologies. Beyond the simultaneous 

capture of multiple cells due to a high concentration of cells, insufficient dissociation will 

increase the frequency of aggregates and subsequently multiplet captures. Doublets, 

multiplets with two captured cells, can be grouped into two main classes: (1) those that 

occur between transcriptionally distinct cell types (heterotypic) and (2) those that occur 

within the same cell type (homotypic), with multiplets of more than two cells being 

exceedingly rare (0.36%, assuming a doublet rate of 8%). Experimental methods, such as 

Cell Hashing, aim to address the challenge of doublet identification by labeling cells with 

different oligonucleotide bar codes to remove artifacts, but they are costly, increase the 

likelihood of cell death, and cannot be applied to previously generated datasets (Stoeckius et 

al., 2018).

Retention of doublets can significantly confound the analysis and interpretation of scRNA-

seq data, in particular the identification of novel cell states, developmental trajectories, and 

mixed-lineage progenitors (Magella et al., 2018; Olsson et al., 2016). Mixed-lineage cells 

include multi-lineage progenitors, which coincidently prime markers for multiple lineages 

and that exist at bifurcations within in silico developmental trajectories (Chen et al., 2019; 

Lu et al., 2018; Olsson et al., 2016). As such, the spatial location and shared gene expression 

of these cells with others complicate doublet detection methods that rely solely on their 

similarity to synthetic doublets for identification. Hence, the erroneous exclusion of such 

mixed-lineage populations can hinder the unbiased evaluation of progenitor hierarchies in 

healthy cells and disease states. Conversely, the inappropriate retention of doublets can 

confound single-cell analyses in which refined clustering is used to establish novel cell states 

(i.e., doublet cell clusters).

While the need for specialized in silico doublet removal methods is evident, there remain 

many biological and computational challenges. First, multiplet detection is confounded by 

varying degrees of sparsity of the transcriptomic data, with as little as a few hundred unique 

molecular identifiers (UMIs) for a single-cell transcriptome, resulting in poor correlation to 

comparable bulk RNA-seq profiles (Kashima et al., 2018; Mantsoki et al., 2016). Although 

multiplets should have a distinct global distribution of genes and UMI counts, with twice the 

RNA content, these variables are insufficient to accurately predict which cells are doublets 

on their own (Stoeckius et al., 2018). Furthermore, differing RNA abundance and/or 

technical variation in cDNA generation may result in uneven contribution from each cell. 

Hence, modeling doublets as an equal contribution of two different cells is likely to be 

overly simplistic. Two recently developed methods, DoubletFinder and Scrublet, approach 

the problem from a synthetic doublet nearest-neighbor strategy to find hybrid transcriptomes 
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(McGinnis et al., 2019; Wolock et al., 2019). While these methods have high reported 

accuracy, the authors note that algorithm performance is highly dependent on the selection 

of appropriate parameters, such as the expected doublet rate, which is not always known. 

Additionally, these methods do not explicitly consider the added complication of transitional 

and mixed-lineage cell states, which can possess hybrid transcriptomes.

Here, we describe a deconvolution-based strategy to remove heterotypic doublets while 

preserving transitional and progenitor cell states. Our approach, DoubletDecon, applies 

nonnegative decomposition, a deconvolution method originally designed to estimate cell-

type proportions in bulk RNA-seq data, to single-cell datasets to assess the underlying 

contribution of concurrent gene expression programs within a single-cell library. This 

approach compares the proportional makeup of each cell, termed here as the deconvolution 

cell profile (DCP), to all cell clusters in the dataset to find those that match one of many 

possible synthetic doublet combinations. DoubletDecon employs marker genes and cell 

clusters from well-established unsupervised scRNA-seq workflows, including Iterative 

Clustering and Guide-gene Selection (ICGS) and Seurat, as reference states for 

deconvolution (Olsson et al., 2016; Satija et al., 2015). To overcome the specific 

computational challenges associated with the detection of doublets, DoubletDecon includes 

three approaches not present in alternative tools. To account for unequal contribution of the 

originating cell transcriptomes during doublet formation, synthetic doublets are generated by 

either an average of two cells from distinct clusters in the dataset or with an additional set of 

weighted synthetics with 30%/70% contribution from the cells. DoubletDecon also accounts 

for the presence of transcriptionally similar clusters, an often unintended result of 

unsupervised clustering methods, by cluster merging to define discrete cell types for use as 

deconvolution references. Finally, to improve the accuracy of its predictions, DoubletDecon 

considers unique gene expression inherent to biologically valid transitional states and 

progenitors to “rescue” singlet captures from inaccurate classification as doublets.

We demonstrate the power of this approach to identify real, synthetic, and biologically 

confounding doublet cells in diverse scRNA-seq datasets of varying size and complexity. We 

further provide guidelines to users for best-practice application of this this software and 

discuss its applicability to diverse scRNA-seq datasets. Finally, we performed 

comprehensive benchmarking of multiple doublet detection algorithms to provide guidance 

on the choice of appropriate tools and parameters for doublet removal.

RESULTS

Overview

To detect heterotypic doublet captures and distinguish them from gradual cellular transitions, 

we developed a multi-step analysis strategy that identifies an initial set of putative doublets 

based on deconvolution analysis, then rescues erroneously predicted doublet clusters that 

have unique gene expression (STAR Methods; Figure 1A). The program first calculates 

centroids based on previously defined cell clusters from supervised or unsupervised methods 

to create distinct deconvolution references. During the creation of references for 

deconvolution, DoubletDecon accounts for the presence of transcriptionally similar cell 

clusters through cluster merging (Figure 1B). Next, DoubletDecon creates a deconvolution 
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cell profile, or DCP, containing the percentage estimates of the contribution of each 

reference cell state, each of which sums to 100% (Figure 1C). In the initial “remove” step, 

cells whose DCP is most similar to the DCP of generated synthetic cell clusters are 

considered putative doublets. These cells are removed from their original clusters and 

regrouped by their top deconvolution contributors in the “recluster” step. Finally, putative 

doublet clusters that have gene expression patterns not prevalent in the original clusters are 

returned to their initial clusters, with the remaining cells being labeled as doublets in the 

“rescue” step. To evaluate the performace of DoubletDecon in diverse use cases, we selected 

test datasets with distinct biological and technical challenges (Figure 1D). We used input 

data from both ICGS and Seurat workflows, in which unique cell states and cell-state-

associated genes sets were already defined or re-derived, with a variety of cell filtering 

options and parameters. In the evaluation of these datasets we optimized selection of the 

cluster merging statistic (ρ′) to visually merge similar clusters in the DoubletDecon 

graphical interface prior to optimizing synthetic doublet creation. A detailed description of 

the DoubletDecon algorithm is included in the STAR Methods, along with information on 

datasets, evaluations, parameter tuning, possible limitations of the approach, and instructions 

for using the graphical user interface (Figure S1).

Identification of Doublets from Species Mixing Experiments

As a first evaluation of DoubletDecon’s ability to identify doublets, we considered a mixed-

species scRNA-seq experiment. Analysis of a publicly available dataset of murine NIH 3T3 

and human HEK293 cells, mixed at roughly equal proportions and profiled by 10× 

Genomics produced ~6% heterotypic doublets that are clearly separable from their single-

species counterparts by principal-component analysis (PCA) (Figure 2A). Output of the 

deconvolution step in DoubletDecon can be summarized as a value between 0% and 100% 

for each original cluster, in this case mouse and human, for each cell. Visualization of the 

deconvolution results within the original PCA shows an expected selective enrichment for 

each of the single-species clusters and overlapping intermediate results within mouse-human 

hybrid cells (Figure 2B). When only the mouse-human hybrids are considered, we observe a 

bimodal distribution of deconvolution with peaks at 30% human and 70% mouse, instead of 

the expected 50% split (Figure 2C). As anticipated, the deconvolution results for single-

species mouse or human cells were heavily skewed toward 100% (Figure 2D). As expected 

from the distributions of these DCPs, using synthetic doublets with a 30/70 weighted 

average detects mixed-species cells with a relatively high accuracy (~95% sensitivity and 

~97% specificity), whereas use of 50/50 synthetic doublets alone results in close to 100% 

specificity at the cost of reduced doublet sensitivity (~70%) (Figures 2E and 2F). We note 

that cells that were incorrectly classified as mouse-human doublets in the 30/70 analysis 

have ~30% fewer expressed genes (normalized counts/gene > 1, t test p < 0.001) than other 

single-species cells, indicating that poorly sequenced singlets have an increased likelihood to 

be called doublets.

Evaluation of Synthetic Doublets from Complex Tissue

While DoubletDecon accurately identified doublets in a mixed-species dataset, this example 

is not representative of typical scRNA-seq data, which frequently has subtle cell-state 

differences and more than two populations. To assess the ability of DoubletDecon to detect 
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homotypic and heterotypic doublets in a more realistic example, we produced a synthetic 

doublet evaluation dataset in which both heterotypic and homotypic doublets could be 

generated and separately assessed. This dataset comprised four human immune and three 

melanocyte tumor populations (SMART-Seq2 protocol, index sorting) (Tirosh et al., 2016), 

with synthetic doublets integrated into existing cell clusters using the recently developed 

label projection approach, cellHarmony (STAR Methods, Evaluation Dataset Processing 

Parameters). Consistent with the mixed species results, heterotypic synthetic doublets were 

identified with high sensitivity (average 90.7% ± 1.2%) and moderate-to-high specificity 

(average 82.7% ± 0.9%) (Figure S2A), while synthetic homotypic doublets could not be 

effectively detected (average sensitivity of 5.6% ± 0.2%) (Figure S2B). Though homotypic 

doublets are not detected using DoubletDecon or alternative methods, the presence of these 

artifacts does not appear to impede the identification of valid cell populations, making 

homotypic doublets less problematic than heterotypic doublets. Importantly, false positives 

in this analysis will be overestimated, contributing to the relatively lower specificity, as real 

doublets exist in this dataset but are not annotated as doublets by the original dataset authors.

Rescue of Transitional Cell States Predicted as Doublets

As previously demonstrated, developmental and progenitor cell specification hierarchies 

inherently contain cells with transitioning gene expression and mixed-lineage cell states (Lu 

et al., 2018; Magella et al., 2018; Olsson et al., 2016). We postulate that such states may 

result in frequent false-positive doublet predictions when the unique gene expression 

intrinsic to those populations is not considered during doublet identification. Analysis of a 

published hematopoietic dataset of 383 cells over eight independent cell captures using the 

Fluidigm technology in parallel with microscopic doublet cell exclusion was used as 

validation of DoubletDecon’s ability to retain these transitioning and mixed-lineage cells. 

Importantly, this dataset is enriched in experimentally validated transitional and multi-

lineage cell populations, appearing as hybrids, representing a continuum of divergent 

differentiation cell states in mouse bone marrow. Given the high similarity of clusters called 

by ICGS, we selected a cluster merging threshold (ρ′) that led to merging of the HSCP-1 

and HSCP-2 (HSCP-merged) and the monocyte and macrophage-dendritic cell precursor 

(MDP-Mono) clusters (Figure 3A; STAR Methods). Using a 50/50 average for synthetic 

doublet generation, as recommended for datasets with a small percentage of expected 

doublets, this evaluation results in 80.7% specificity in the initial doublet detection step, 

which increases to 95.0% when unique gene expression is considered (Figure 3B). These 

data suggest that rescue of erroneously predicted doublets is necessary to retain transitional 

cell states.

Identification of Experimentally Verified Doublets from Mixed-Donor PBMCs

As further validation of DoubletDecon, we analyzed two recently described human 

peripheral blood mononuclear cell (PBMC) datasets in which multiplets were 

experimentally defined using either (1) donor SNP information with the software Demuxlet 

(Kang et al., 2018) or (2) through selective antibody-mediated oligonucleotide labeling via 

Cell Hashing (Stoeckius et al., 2018). In these experiments, the research teams intentionally 

overloaded a single 10× Chromium port with cells from eight independent donors to yield a 

high proportion of doublet cell captures (> 10%). For both datasets, we only considered 
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cellular bar codes with a minimum number of genes and UMIs expressed consistent with 

well-accepted guidelines in the field (STAR Methods, Evaluation Dataset Processing 

Parameters). When evaluated by DoubletDecon, analysis of the Demuxlet-annotated dataset 

identified verified doublets with a mean (SD) sensitivity of 56.9% (2.1%) and a specificity 

of 81.2% (1.2%) over 10 independent trials. Specificity in the Cell Hashing dataset was 

similar to that in Demuxlet, 82.4% (0.6%), while sensitivity averaged 38.1% (1.2%) (Figures 

4A and 4B; Table 1). Though the recall in these datasets is relatively low, this result is 

expected, as homotypic doublets are prevalent in this dataset and experimentally 

indistinguishable from heterotypic doublets. Comparison of our doublet predictions to those 

from two other doublet detection tools, Scrublet and DoubletFinder, reveals that 

DoubletDecon uniquely identifies hundreds of true-positive doublets (Figures 4C and 4D), 

with improved sensitivity and slightly decreased specificity when using default parameters 

and suggested filtering (Table 1). As the authors of Scrublet, and DoubletFinder have 

reported different doublet exclusion performance on this Demuxlet dataset, we reanalyzed 

this dataset with a range of software parameters and dataset filtering options. While the 

performance of DoubletDecon remained largely stable across the evaluated parameters (ρ′ 
and min_uniq), DoubletFinder and Scrublet varied widely in reponse to different UMI 

filtering cutoffs, expected doublet rate, and non-default programmatic options (Table S1). 

While varying these options significantly improves sensitivity for Scrublet and 

DoubletFinder, without a priori knowledge of known doublets for parameter tuning, 

obtaining such results would remain extremely problematic for the end user.

An alternative to running independent doublet detection methods is a consensus approach, in 

which the results from multiple algorithms are compared or a single method is rerun 

multiple times. Such approaches can in principle be used to favor higher sensitivity or higher 

specificity, depending on the specific goals of the analysis. To test this assertion, we use the 

F1 score as a measure of overall performance given the uneven class distribution in these 

evaluation datasets. We find that the union of all three doublet detection algorithms 

(DoubletDecon, DoubletFinder, and Scrublet) increases sensitivity and gives the highest F1 

score (0.52 and 0.50) when compared with any two methods combined or individual 

methods alone (Table 2). Specificity can be further improved by intersecting doublet calls, 

which results in lower sensitivity than each method applied on its own. Alternatively, 

specificity can be increased by performing multiple runs of DoubletDecon with the same 

parameters. Because of the random nature of synthetic doublet generation, not every run of 

DoubletDecon will produce exactly the same doublet calls. By running the algorithm 20 

times and selecting only those cells that are predicted as doublets all 20 times, specificity 

nears 90% at a moderate loss of sensitivity (Table 2). This provides another option for users 

who wish to prioritize higher specificity.

Resolving Disease-Associated Cell States

An important application of doublet removal is the identification of biologically valid 

cellular heterogeneity among transcriptionally related cell types. One such example is the 

identification of discrete cell states within healthy or diseased tissue. The presence of 

heterotypic doublet cells directly impedes this process, as unsupervised analysis tools cannot 

easily distinguish between valid cellular heterogeneity and contamination. To this end, we 
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performed overloaded droplet-based single-cell profiling on ~13,000 heart cells from a 

surgical model of heart failure (transverse aortic constriction). Our initial analysis with the 

software Seurat identified eight transcriptionally distinct clusters corresponding to well-

defined heart populations, with the exception of cardiomyocytes not effectively captured by 

droplet-based methods due to size (Figure 5A). DoubletDecon predicted 1,170 doublets, 

localized to the peripheries of the major cell clusters. Notably, similar doublet-enriched 

populations were observed with the tools Scrublet and DoubletFinder in this dataset, though 

DoubletFinder erroneously predicted epicardial cells as a doublet cluster (Figure S3A). To 

explore the specific impact of doublets on the identification of cell states within a well-

defined cell type, we focused on the largest cluster of cells (endothelial, n = 4,411), with 375 

DoubletDecon-predicted doublets. Prior to removal of these predicted doublets, a distinct 

doublet cluster was identified, marked by high Postn gene expression, a specific marker of 

injury-associated profibrotic fibroblasts (Figure 5B). However, when Seurat was rerun on the 

endothelial cell cluster without predicted doublets, this same doublet population was not 

observed, as evidenced by no consistent Postn expression among the identified clusters, 

which resulted in more accurate cell-state predictions (Figure 5C). These data empirically 

demonstrate the importance of accurate heterotypic doublet exclusion on identifying cell 

identity programs without prior knowledge. Finally, to assess the stability of 

DoubletDecon’s predictions, we re-analyzed the same heart scRNA-seq dataset using lower 

and higher Seurat resolutions to generate fewer (5) and more (11) clusters with the same 

cluster merging threshold (ρ′ = 1.5). Importantly, the majority of the detected doublets were 

retained across these different resolutions, indicating that such predictions are largely stable 

for different unsupervised clustering solutions (Figure 5D).

DISCUSSION

As the number and size of single-cell datasets increases, standardized multiplet discovery 

workflows are necessary to remove technical artifacts that can confound the identification of 

valid cell states. DoubletDecon takes advantage of existing unsupervised population 

detection approaches, such as Seurat and ICGS, to model doublet gene expression profiles. 

Our approach is applicable to both large and small datasets with both discrete cell 

populations and gradual cellular transitions, by automatically grouping correlated cell states. 

This approach is methodologically distinct from alternative solutions by considering each 

cell as the decomposition of all possible reference cell populations. Given that valid hybrid 

transcriptomic states exist throughout development, such as transitional cell states and bi-

potential intermediates, DoubletDecon includes specialized methods to rescue preliminarily 

removed cell clusters that include unique gene expression patterns. As demonstrated here, 

this method can significantly reduce the number of doublets that are known false positives.

Although DoubletDecon is able to effectively identify and exclude a high proportion of 

multiplet captures, we believe that this method can be further exploited to identify additional 

unwanted and desired sources of variation. False negatives with this approach currently 

include extremely rare multiplets of more than two cells, as well as doublets of highly 

similar cell states. We aim to enable the discovery of such multiplets in the future, which 

theoretically should be identifiable using our existing deconvolution-based strategy. These 

analyses demonstrate the importance of doublet exclusion in diverse biological use cases, 
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from clarifying population heterogeneity to protection against removal of transitional cell 

states. As with other computational doublet exclusion methods, proper parameter tuning 

remains a critical determinant of performance. Here, we comprehensively benchmark 

multiple doublet detection algorithms, providing the user with guidance on the choice of 

tools and associated parameters. We further provide guidelines to users for best-practice 

application of this software and discuss its applicability to diverse scRNA-seq datasets and 

research questions (STAR Methods; Parameter Tuning and Potential Limitations). 

DoubletDecon’s parameters can be easily tuned through an intuitive graphical user interface 

to iteratively evaluate the impact on putative doublet cells. As noted in these 

recommendations, while this tool performs well in diverse test datasets, DoubletDecon relies 

on a number of assumptions that may not hold true in all applications. These assumptions 

include the required presence of appropriate reference cell states from which to model 

doublets, accurate clustering of the data, that homotypic doublets are relatively benign, and 

that mixed-lineage or transitional cell states will have unique gene expression. Strategies to 

address these concerns are further discussed in the STAR Methods. While our method 

performed comparably to alternative approaches, these algorithms appear to be quite 

complementary in identifying distinct subsets of experimentally validated doublets. Using a 

combination of doublet detection algorithms gives the user the ability to prioritize sensitivity 

or specificity, depending on the properties of the data and the research question. For many, a 

loss of true singlets is a reasonable trade-off for excluding unwanted contaminants. For other 

applications the exclusion of singlets could hinder the identification of rare cell populations 

or transitional states. The information in Table 2 provides users a basis for informed 

application of multiple doublet detection tools. Ultimately, additional optimization and 

improvement of these methods will enable greater precision in the characterization of cells 

from samples with frequent doublets in diverse single-cell platforms and studies.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to the Lead 

Contact, Nathan Salomonis (nathan.salomonis@cchmc.org). This study did not generate 

new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Single-Cell RNA-Sequencing—Transverse aortic constriction (TAC) was performed on 

C57BL6/J wild-type (WT) 8–10-week-old male mice (The Jackson Laboratories and 

confirmed via echocardiographic analysis, similar to previously described; Duan et al., 

2017). Mice with an estimated pressure gradient across the aortic constriction below 40 

mmHg were not included in the experiments. Hearts (n = 4, pooled) were collected at 14 

days post-TAC, perfused with ice-cold PBS to remove red blood cells followed by perfusion 

with 50 mM KCl to arrest the heart in diastole and then fixed for 4 hours in freshly prepared 

4% PFA at 4°C, rinsed with PBS and cryoprotected in 30% sucrose/PBS overnight before 

embedding in OCT (Tissue-Tek). DropSeq was performed as previously described (Macosko 

et al., 2015). The quantity and quality of cDNA was measured using an Agilent Bioanalyzer 

hsDNA chip. To generate a library cDNA was fragmented and amplified (12 cycles) using 
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the Nextera XT DNA Sample prep kit with three separate reactions of 600, 1,200 and 1,800 

pg input cDNA. The libraries were pooled and purified twice using 0.7X volume of 

SPRIselect beads. The purified libraries were quantified using an hsDNA chip and were 

sequenced on an Illumina HiSeq 2500 using the sequencing parameters described in the 

DropSeq protocol. Reads were aligned to the mm10 mouse genome using Bowtie2 

(Langmead et al., 2009) and tagged with the gene name of the overlapped exon. Gene reads 

were counted by unique UMIs per cell and a digital expression matrix was created. All 

animal procedures were performed and approved according to the Department of Laboratory 

Animal Medicine and the University Committee on Animal Resources at Cincinnati 

Children’s Hospital Medical Center.

METHOD DETAILS

Algorithm Description

Data Input: DoubletDecon accepts simple-tab-delimited cell cluster and marker gene result 

text files produced from the Iterative Clustering and Guide Gene Selection (ICGS) and 

Seurat workflows, as well as other tools when properly reformatted (Olsson et al., 2016; 

Satija et al., 2015). The software ICGS is a component of the easy-to-use AltAnalyze toolkit 

(http://www.altanalyze.org) (Emig et al., 2010). ICGS has been previously demonstrated to 

have excellent sensitivity to detect rare and transitional populations not identified by other 

approaches from scRNA-Seq data (Churko et al., 2017; Hay et al., 2018; Hulin et al., 2019; 

Lu et al., 2018; Magella et al., 2018; Meyer et al., 2016; Olsson et al., 2016; Yanez et al., 

2017). The outputs of ICGS that are used as inputs for DoubletDecon are: 1) the clustered 

expression file containing only the selected discriminating genes and ordered cells, with cell 

cluster and gene cluster labels, 2) the groups file containing all cells with labels for cell 

cluster, and optionally 3) the full expression matrix containing all cells and all genes (with 

optional filtering for minimum number of expressed genes). The first two should be in tab-

delimited text format, which is standard from ICGS, or the location and file name for these 

same files, while the full expression matrix must be location and file name only. Cells 

typically excluded as low expression outliers should be removed prior to analyses.

DoubletDecon can also accept files generated from the Seurat analysis pipeline through the 

built-in function Seurat_Pre_Process(). This function takes as input: 1) the normalized 

expression matrix or counts file that can be generated through Seurat’s NormalizeData 

function, 2) the top discriminating (marker) gene list from Seurat’s top_n function, with n 

selected by the user, and 3) cluster identities from the final Seurat object, which is accessed 

using @ident for the object. These inputs are transformed into the three ICGS-format files 

that can be used as input for DoubletDecon.

While ICGS and Seurat are directly supported, example input files are located in the GitHub 

repository associated with this project and similar inputs can be created with clustering and 

feature selection information from a wide variety of supervised and unsupervised methods. 

Please note, standard quality control methods for each scRNA-Seq platform as 

recommended by the manufacturer should be followed.
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Processing and Optional Cell-Cycle Removal: Processing of the input data includes label 

standardization and optional cell-cycle gene removal. Cell-cycle removal may enable the 

software to better identify similar cell clusters if such gene expression profiles are present in 

the input dataset. All cell or gene cluster names are converted to numeric identifiers in 

ascending order. It should be noted that this does not change the original data but does 

change the cluster labels used for the outputs of DoubletDecon. If gene clusters are provided 

(versus simply using the top 1,000 variably expressed genes, for example) and cell-cycle 

gene removal is indicated, each gene cluster is examined separately for enrichment of 

KEGG cell-cycle gene sets using clusterProfiler package. If significant enrichment is 

discovered Benjamini-Hochberg adjusted p ≤ 0.05), these genes are removed from all 

downstream analyses. Cell-cycle removal requires the input of species and an internet 

connection.

Cluster Merging: Prior to the creation of synthetic doublets, DoubletDecon attempts to join 

transcriptionally similar cell clusters. This step is necessary to maintain distinct cell 

references for subsequent deconvolution steps and can be visually evaluated and optimized 

in the software from the cluster merge plots and visualized heatmaps (see below). Related 

clusters can result from various biological and technical factors, including transcriptionally 

similar but distinct cell populations, patient/donor differences, or cells with few genes 

expressed. DoubletDecon measures similarity between cell clusters using Pearson 

correlation of either centroids (default) or medoids of the cell clusters. Medoids would be 

advisable only in cases where the frequency of doublets significantly contributes to the 

average gene expression profile in the cluster.

This process can be explained by the following method. Let {C1, C2,…, CK} represent the 

cell clusters after processing the input data. Let {θi i = 1:k} denote the centroids or medoids, 

of the cell clusters based on the supplied marker genes. Let rij be the Pearson correlation 

between θi and θj. A binary correlation matrix B is derived from {rij }, with Bij = 1 if rij ≿ 
ρT and 0 otherwise, where

ρT = mean rij + ρ′ × sd rij ∀i, j

The correlation scaling parameter ρ’ (rho prime) is user-defined, with a default value of 1. 

Lower values of ρ’ will result in more clusters being combined and higher values of ρ’ will 

retain more of the original clusters. The binary correlation matrix B is output as a heatmap to 

aid visual assessment. Additionally, the Shiny application enables the user to input all other 

parameters to generate a list of cluster merging heatmaps and associated valid ρ’ values for 

easier selection of this parameter. If high cluster similarity is detected, i.e., at least one rij is 

≿ ρT, Markov clustering with the mcl() function from the R package ‘MCL’ is used to define 

new clusters so that the similarity between clusters is minimized (Figure 1D). This clustering 

method finds the optimal number of cell clusters in the binary correlation heatmap to 

represent the dataset based on overlapping similarities. By using this approach, 

DoubletDecon is able to effectively handle datasets with ambiguous clustering, which can 

result from too many cell clusters in the input dataset. Let {A1, A2,…, An} represent the cell 
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clusters after the (possible) Markov clustering and {αi i = 1:n} the corresponding centroids 

(medoids). These serve as reference clusters and centroids in subsequent steps.

The purpose of the next two steps in DoubletDecon is to determine if the gene expression 

profile of a cell is more similar to cells from an individual cell-population or synthetic 

doublets from two distinct cell-populations.

Synthetic Doublet Generation: Sets of synthetic doublets are generated for each of the n-

choose-2 unique pairwise combination of clusters in {Ai; i = 1:n}, with cells randomly 

sampled within each cluster and the resulting gene expression averaged. For this reason, 

results from DoubletDecon are expected to vary slightly from run to run, based on the 

selection of reference cells. An option is provided to create synthetic doublets with either a 

50%/50% contribution from two individual cells (default) or a weighted average for 

30%/70% and 70%/30% synthetic doublets, with the former option referred to as “50–50” 

throughout the paper and the latter as “30–70.” If this option is chosen, a total of 3 × n-

choose-2 synthetic doublet sets will be created. The number of synthetic doublets created 

per set is user-defined (default = 100). We recommend selecting the number of synthetic 

doublets per cluster set based on both the number of cells in the dataset and the 

heterogeneity within the clusters. There should be enough synthetic cells created to represent 

the diversity of gene expression profiles within each cluster for best doublet identification. 

For datasets larger than 1000 cells, a rough estimate of the ideal number of synthetic 

doublets would be 10% of the total cell number. Let {Di; i = 1:m} denote the clusters of 

synthetic doublets and {δi; i = 1:m} the corresponding centroids (or medoids).

Remove Step: The “Remove” step of DoubletDecon uses deconvolution with the R package 

‘DeconRNASeq’ and function DeconRNASeq()(Gong and Szustakowski, 2013) to estimate 

the relative plausibility of a cell’s membership to each of the reference clusters {Ai; i = 1:n}

(default parameters). Gong et al. proposed the use of quadratic programming to find the 

optimal solution to the non-negative least-squares constraint problem in microarray data, 

then refined the method to account for the added variation and bias in mRNA-seq data. 

DeconRNASeq performs deconvolution on each cell expression profile, using the reference 

cluster centroids {αi i = 1:n} as the references for the deconvolution. The result, which we 

term a Deconvolution Cell Profile (DCP), is a vector of length n containing the percentage 

estimates of the contribution of each reference cell-state (cluster centroid) for queried cell 

(sums to 100%) (example in Figure 1C). While it seems logical that a doublet will consist of 

a perfect 50% contribution from each cell within the droplet, this is not always the case due 

to differing levels of transcriptional activity between cells and drop-out, particularly in 

datasets of low sequence depth. Each synthetic doublet profile in {δi; i = 1:m} also 

undergoes deconvolution with {αi i = 1:n} as the references. Finally, the DCP of each cell in 

the dataset is compared to: 1) the centroid DCP for cells in each cluster in {Ai; i = 1:n} and 

2) the average DCP of each of the synthetic doublet cluster, using Pearson correlation for 

more than 2 clusters (Euclidean when the number of clusters = 2). If a cell’s DCP is most 

strongly correlated or has the smallest distance to a synthetic doublet DCP, it is labeled as a 

putative doublet, with results of the “Remove” step provided in the “DRS_doublet_table” 
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output file and the deconvolution estimates for each real cell given in the “DRS_results” 

output file.

The purpose of the next two steps in DoubletDecon is to determine if any of the putative 

doublet cells have sufficiently unique gene expression to warrant their reclassification to 

non-doublets.

Recluster Step: Cells that are labeled as putative doublets in the “Remove” step are 

reorganized into new doublet clusters in DoubletDecon’s “Recluster” step, while also being 

removed from their original clusters. This is done by grouping together cells which have a 

similar DCP. Specifically, putative doublets that share the same two highest predicted 

contributing clusters are grouped together. In the final groups and expression files, the DCP 

group labels indicate the two highest correlated DeconRNASeq reference cell-types, 

alphabetically sorted (e.g., cluster-1 | cluster-2). If the option to include synthetic profile 

references with 30–70 was selected, there will be three possible group suffixes for each pair 

of original clusters: “even” for 50%/50%, “one” for 70%/30%, and “two” for 30%/70%, 

which allows for more granular recovery of non-doublet cells in the next step. We denote the 

doublet clusters formed in this step by {Zj; j = 1:k}.

Rescue Step: In the “Rescue” step of DoubletDecon, unique gene expression present in 

doublet clusters is identified based on gene-by-gene comparisons. Let {A*i; i = 1:n} denote 

the reference cell clusters after removal of any putative doublets. For each doublet cluster Zj, 

a composite dataset {Zj, A*i; i = 1:n} is created and a 1-way ANOVA (factor is cluster 

identifier) is conducted for each gene. The p value corresponding to the n degree of freedom 

overall test for cluster differences and the p values for pairwise comparisons with Zj (Tukey 

post hoc adjustment) are captured. If 1) the p value for the overall test is ≤ 0.05, 2) Zj is 

significantly different from each cluster in {A*i; i = 1:n} on the basis of the n Tukey-

adjusted p values each being ≤ 0.05, and 3) Zj has higher mean expression of the gene than 

each cluster in {A*i; i = 1:n}, then the doublet cluster Zj is said to uniquely express that 

gene. This procedure is repeated for each doublet cluster Zj j = 1:k.

If a doublet cluster Zj has fewer than U unique genes identified through this process, all cells 

in the cluster are flagged as doublets and are written to the “Final_doublets_groups” and 

“Final_doublet_exp” files. If, on the other hand, a doublet cluster Zj has ≥ U unique genes, 

the cells initially clustered as doublets (e.g., B cell | NK-cell) with a minimum number of 

unique genes expressed relative to the original clusters are re-assigned as singlets and 

reincorporated into the non-doublet expression matrix. The value of U is user defined, with 

the default value of 4, which was chosen as it performed well in both the gold-standard 

Demuxlet peripheral blood mononuclear cell (PBMC) dataset (GEO: GSE96583) and in an 

evaluated mouse dataset of verified non-doublets (GEO: GSE70245). When choosing to run 

DoubletDecon without the “Rescue” step, the final doublets are defined as those putative 

doublets identified through deconvolution.

The “Rescue” step can also quickly and efficiently evaluate all genes in the expression 

dataset, versus only the “marker” genes, for unique gene expression regardless of the 

number of cells included in the input data file (suggested minimum number of unique genes 
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for use with the full gene list is 30, which was guided by the verified mouse non-doublet 

evaluation dataset). Both ANOVA and Tukey post hoc tests are performed on 1,000 gene 

subsets, making it possible to process any file, regardless of the original size, within the 

memory constraints of the machine on which it’s operating. Additionally, both of the above 

statistical tests were written to only require the total sums (TS) and sum of squares (TSS) for 

each cell cluster. Tukey tests were performed by comparing every doublet cluster to all 

original clusters using this aggregation technique to quickly calculate the means and total 

cells per cluster needed for the whole gene block at once. Testing was performed on a 

machine with 8GB of RAM and 4 cores, each processing a block of 1,000 genes (i.e., rows) 

for 12,000 cells (i.e., all columns) in parallel. The traditional approach would run out of 

memory or take > 24h to run, but using the approach above, DoubletDecon is able to 

perform the “Rescue” step on a test file of ~750MB containing an 22,000 × 12,000, matrix 

and 120 cell clusters in 2.7 minutes.

Outputs and Visualization: The intermediate and final results from DoubletDecon are 

optionally visualized via heatmap within the R console to help the user evaluate the 

exclusion of visually distinct doublet gene expression signatures. Tabular outputs of 

DoubletDecon include the cleaned and processed original expression and groups files, as 

well as separate groups and expression files for the final doublets and non-doublets. The 

results of the “Remove” and “Rescue” steps are also saved, as well as the deconvolution 

values for the synthetic doublets to assist with quality control. When running the user-

interface of DoubletDecon (via Shiny), the tabular output and graphs from the command-line 

version are provided in an interactive environment within the application as well as saved to 

the given directory. Additional outputs of the Shiny application include interactive and 

downloadable heatmaps for initial, intermediate, and final steps of DoubletDecon, UMAP 

representation of original clustering with doublet overlays, and graphical displays of doublet 

proportion within cell clusters.

Parameter Tuning and Potential Limitations—A key determinant of the performance 

of DoubletDecon to detect doublets is the selection of optimal parameters. Varying these 

parameters can be evaluated in the DoubletDecon graphical user interface to visually assess 

predicted doublet cell exclusion. Notably, different datasets have different caveats requiring 

parameter tuning to optimize doublet removal. The following recommendations are intended 

to guide the user in the selection of optimal parameters for applying DoubletDecon.

Assumptions of the Approach: While this tool performs well in diverse tested datasets, it is 

important to note that it relies on a number of assumptions which may not hold true in all 

cases. First, the program assumes doublets can be identified by modeling the combination of 

two cell-type or cell-state expression profiles that are frequently observed in the analyzed 

dataset. This assumption is not true for homotypic doublets, extremely similar cell states, or 

when doublet cells are uniquely captured in an experiment without distinct contributing 

clusters. The latter can occur in rare cases when insufficient dissociation prevents isolation 

of a pure population of cells or where flow cytometry is used to select cells with a specific 

surface marker. Furthermore, although we demonstrate that transitional and mixed lineage 

progenitors in mouse bone marrow are defined by unique gene expression, allowing their 
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“rescue” by DoubletDecon, this assumption may not hold in all situations. An additional 

caveat of our approach is the requirement of previously identified cell clusters. While, such 

unsupervised results could be problematic if clustering predictions are ambiguous or if 

cellular trajectories exist as a continuum rather than as discrete cell states, we note most all 

datasets have clearly defined cell populations. The use of varying synthetic proportions is 

among one of the most important variables in the detection of doublets with our approach 

(50/50 versus 30/70+50/50). Indeed, varying such proportions is important in the analysis of 

different dataset types, where the user may wish to conservatively remove possible doublets 

(e.g., global unsupervised clustering) or carefully ensure all such possible doublets are 

removed at the cost of some singlets (e.g., focused cell-type heterogeneity analyses). 

Interestingly, false positive doublet predictions were associated with cells which had lower 

sequencing depth, suggesting that poor quality cells are more likely to be considered 

multiplets due to weaker similarity to reference cell cluster centroids. Finally, DoubletDecon 

relies on the modeling of synthetic doublets from transcriptionally distinct cell populations, 

which often requires that clusters are merged, using the ρ’ parameter. If clusters with highly 

similar transcriptomes are not merged, over-calling of doublets can occur, whereas over-

joining of clusters can under-call doublets by combining distinct cell-states (see below). 

Importantly, if distinct doublet clusters are present, the program may not effectively identify 

these cells unless they are merged with similar larger clusters. Although defined ground-

state truths do not exist for most datasets, as shown in the analysis of over-loaded scRNA-

Seq, the reanalysis after doublet removal can be used to verify the removal of confounding 

doublets within a datasets (Figure 5).

Doublet Visualization: Users can interactively adjust software parameters and evaluate the 

success of doublet removal empirically through the graphical user interface and associated 

programmatic outputs (Figure S1). Likely doublets can be visually observed within a dataset 

in multiple ways, including visual inspection of presumed population-specific marker genes 

(heatmap, UMAP/PCA projection), 2) cells oriented between clusters via low-dimensional 

visualization (UMAP/PCA visualization), or 3) the appearance of obvious cell-state hybrid 

expression profiles within a heatmap. DoubletDecon contains interactive options to 

determine if likely doublets are removed and adjust parameters to further monitor their 

exclusion or inclusion. The primary parameters to adjust in DoubletDecon are: 1) the 

merging of similar clusters (ρ’) for synthetic doublet creation, 2) choice of centroid or 

medoid for reference cluster comparison and 3) choice of 50/50 versus 30/70+50/50 

synthetic doublets. Coupled with secondary unsupervised analyses (see Figure 5), users can 

effectively monitor the impact of doublet exclusion on datasets in which cell-types can be 

discerned. Note, different datasets will be subject to different variances that are likely to 

impact parameter selection and different parameters should be tuned accordingly.

Expression Clustering: DoubletDecon critically depends on the supplied unsupervised or 

supervised clustering results and basic quality control filtering (see STAR Methods, Data 

Input). First, we recommend applying standard quality control metrics, such as removal of 

cellular barcodes with few genes expressed (< 200 or 500, depending on the experiment and 

cell-type), log normalization, scaling, regression of artifacts and exclusion of cells with high 

mitochondrial content to eliminate unwanted confounding variables that impact clustering. If 
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the user does not account for these effects, artifacts can drive the clustering or result in poor 

cluster homogeneity, negatively impacting doublet detection and overall interpretability. 

DoubletDecon provides the option to calculate reference expression profiles as centroids or 

medoids (centroids by default). While the choice of centroids or medoids does not typically 

impact doublet detection (Figure 4C), in cases were visible doublets are retained in the 

resulting doublet excluded heatmap, users should try the medoid option as an alternative. In 

such cases, the use of medoids is recommended only for datasets in which the frequency of 

the majority of marker genes reported is greater 50% and for data in which greater than 200 

genes are expressed for cell populations. In general, including poor quality cellular barcodes 

will hinder doublet detection in the “Remove” step and rescue fewer singlets in the “Rescue” 

step, due to a lack of consistent population-specific expression. The use of centroids may not 

be optimal when the frequency of doublets is very high (> 25%) within a reference 

cluster(s), as these can result in averaged hybrid expression profiles.

Cluster Merging: The resolution of clustering performed can impact the stability of 

doublets predicted as shown in Figure 5D. When the resolution of clustering is high or a 

single cell type is analyzed, multiple similar gene-expression defined clusters will be 

produced (i.e., same cell lineage). If DoubletDecon is not parameterized to merge 

transcriptionally similar clusters, the program will attempt to create synthetic doublets 

between similar cell populations. Such synthetic doublets have an increased probability to 

look like singlets and can results in over-prediction of doublets. To deal with redundant 

clusters, DoubletDecon includes a cluster merging parameter called rho prime (ρ’), which 

varies the threshold for cluster merging prior to synthetic doublet creation. Rho prime values 

typically range from 0.5 to 1.5 with the default = 1 (STAR Methods, Cluster Merging). 

Lower values of ρ’ will result in more clusters being combined and higher values of ρ’ will 

retain more of the original clusters. When ρ’ is high (e.g., 1.5), no clusters from the input 

cluster file should be merged, whereas the maximum number of similar clusters will be 

joined lower ρ’ values (e.g., 0.5). The impact of inappropriately joining clusters will be a 

loss of transcriptional heterogeneity and loss of sensitivity to detect doublets from those 

distinct cell populations. Likewise, retaining transcriptionally similar clusters can result in 

decreased specificity. Similar problems can arise if independent observed doublet clusters 

(frequently occurring doublet cells that are identified as a distinct doublet cell cluster by 

ICGS or Seurat), are present and not effected merged in DoubletDecon with adjacent 

cluster(s). If not joined, such doublet clusters can reduce specificity, as synthetic doublets 

will be mapped to this presumably valid cell population and annotated as singlets. Where 

clusters are highly distinct, apply lower ρ’ values to prevent unnecessary merging of 

clusters. Hence, each set of clustering results used by the user should be individually 

examined using the Markov clustering results to select an optimized ρ’ and visually assessed 

in the full marker heatmap (Figures S1A and S1B). The user can select such a threshold in 

two ways: 1) by visually inspecting the original gene expression heatmap from ICGS or 

Seurat and 2) noting which clusters appear to be similar using the Markov clustering 

heatmap, which shows a binarized pairwise correlation plot of the gene expression centroids 

or medoids from each cell cluster at the selected ρ’. To assist with the selection of the ρ’ 

parameter, the DoubletDecon user-interface contains a “Cluster Similarity Viewer” that 
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shows each valid Markov clustering heatmap (Figure S1B), along the spectrum of nearly all 

clusters merged to no cluster merged, with the associated ρ’ value. To use this option:

1. Run the DoubletDecon graphical user interface from the Shiny app (see GitHub 

repository).

2. Input remaining parameters and files as required.

3. Enter higher or lower value ρ’ value (ρ’): “Input rhop value” option.

4. Select “Test for rho-prime values”

5. When the calculations are complete, the binarized pairwise correlation heatmaps 

will be displayed in the ‘Cluster Similarity Viewer’ tab.

6. Restart the DoubletDecon UI application and run the full workflow with the 

selected ρ’.

Synthetic Doublet Weighting: An important additional consideration for parameter tuning 

of DoubletDecon is the selection of either conservative (50/50 contribution of different cell-

types) or relaxed (30/70 + 50/50 + 70/30) synthetic doublets. As noted in the Methods, 

DoubletDecon attempts to identify heterotypic doublets based on their Deconvolution Cell 

Profile (DCP) similarity to synthetic doublet DCPs and real cell DCPs. When doing so, 

synthetic doublets can be derived that are an equal mix of cells from two clusters (biased 

toward specificity) or a weighted mix, including 30%/70% and 70%/30% averages in 

addition to an equal mix (biased toward sensitivity). In general, the use of 50/50 doublets is 

recommended when the user aims to maximize specificity over sensitivity, as this option will 

decrease the number of doublets predicted by restricting the diversity of possible doublets to 

those with an equal contribution of two transcriptomes. The use of 30/70 doublets will 

increase sensitivity at the cost of specificity, resulting in increased false-positive doublet 

calls (Figure 4C). For example, if a large number of doublets are empirically observed in a 

dataset (e.g., overloading of 10× Chromium port, poor tissue dissociation), the default option 

of 30/70 is most appropriate. Alternatively, if few cells have been captured and no clear 

doublet populations are observed, a more conservative (50/50) option is recommended to 

decrease the removal of spurious doublets, as illustrated in the example datasets shown.

Cell Cycle Exclusion: Standard unsupervised clustering methods (e.g., Seurat, ICGS) 

include the option to exclude predominant cell-cycle effects. When no cell cycle effects are 

evident in the unsupervised clustering results, this option is not needed. We recommend 

excluding such effects prior to analysis with DeconDecon, as cell cycle gene clusters can 

divide a cell population into two or more clusters that represent a single-cell type rather than 

doublets. As noted in the cluster merging recommendations, clusters can be merged when 

they are highly similar by decreasing the ρ’ value. To maximize the merging of similar 

clusters, the cell cycle exclusion option can be set to TRUE (removeCC = TRUE) but is set 

to FALSE by default. When removeCC = TRUE, the software will remove cell cycle gene 

associated clusters through a gene set enrichment analysis procedure (Methods, Processing 

and Optional Cell-Cycle Removal), which will increase similarity of clusters for cluster-

merging. A possible negative consequence of using this option will be the removal of cell 

populations almost entirely conflated with cell-cycle, such erythroblasts. Hence, this option 
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is important to apply if cell cycle effects are evident in the unsupervised clustering results in 

order to merge redundant clusters. Application of this parameter can be monitored using the 

visualization options in the graphical user interface (Figure S1E).

Additional Considerations: Additional parameters of DoubletDecon include: 1) the 

selection of how many synthetics cells to generate for each cluster combination (default = 

100), 2) whether to include the full expression datasets (default = FALSE) and 3) number of 

unique marker genes to “rescue” initial predicted clusters (default = 4 genes). While these 

three parameters are discussed in detailed in the above sections, we would note that all 

evaluations have been tested using the default parameters for these specific options and 

varying these parameters should not significantly impact overall results but may impact a 

small set of cells of interest. While including the full expression dataset for an analysis will 

increase runtime (depending on the size), using the full dataset can improve detection 

“rescue” of initial predicted doublets, especially in datasets with transitional states, by 

accounting for all genes not just those in the input marker file. Notably, doublet predictions 

will slightly vary from run-to-run, due to random synthetic doublet generation, so multiple 

runs may be required to determine consensus.

Evaluation Dataset Processing Parameters—The following datasets were selected 

for evaluation within DoubletDecon relative to established positive (known doublets) and/or 

negatives (known singlets). Associated doublet prediction, input data files and associated 

results can be obtained at https://www.synapse.org/#!Synapse:syn18460092.

Mouse-Human Mixed Dataset: Counts matrices of human and murine genes were obtained 

from 10X Genomics (https://support.10xgenomics.com/single-cell-gene-expression/datasets/

2.1.0/hgmm_12k). This data matrix consists of cell profiles for 6,164 human, 5,915 mouse, 

and 741 human-mouse doublets, with consistent human gene symbols assigned to all genes, 

as previously described (Wolock et al., 2019).

Melanoma Biopsy Cells for Synthetic Doublet Creation: 4,645 cells from a previously 

described scRNA-Seq dataset of 19 melanoma tumors using the SMART-Seq2 protocol were 

analyzed with ICGS (AltAnalyze software version 2.1.2) to predominant identify cell 

populations (GEO: GSE72056) (Tirosh et al., 2016). Obvious doublet cell groups within 

clusters were manually removed (TreeView) prior to synthetic doublet generation, leaving 

4,320 cells for improved evaluation of synthetic doublets. To derive synthetic doublets for 

testing, the same synthetic creation pipeline used in DoubletDecon was used to create 

random doublets between distinct cell populations. Ten separate times, synthetic doublets 

were generated (n = 10% of total cells) for every pair of clusters, using the 30%–70% 

weighted doublets. To incorporate these synthetic cluster doublets into the dataset, we used 

the k-nearest neighbor scRNA-Seq alignment tool, cellHarmony (DePasquale et al., 2019).

Transitional Cell-States in Bone Marrow Progenitor Singlets: A dataset comprised of 

383 hematopoietic bone marrow progenitor cells with high-confidence assigned cell-types 

and singlet-restricted profiles (validated via microfluidics cell capture imaging) was 

obtained from the GEO database along with the published ICGS unsupervised clustering 

results (GEO: GSE70245).

DePasquale et al. Page 18

Cell Rep. Author manuscript; available in PMC 2020 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.synapse.org/#!Synapse:syn18460092
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/hgmm_12k


Cell Hashing Datasets: A large dataset of peripheral blood mononuclear cells (PBMC) 

hashed with unique cellular barcodes and isolated using 10× Chromium technology (10× 

Genomics) was acquired from GEO (GEO: GSE108313) (Stoeckius et al., 2018). The 

authors describe the run as “super-loaded” with an expected yield of 20,000 singlets and 

5,000 multiplets, i.e., an overall multiplet rate of 20%. The cell doublets were identified 

from the cell hashing counts data in which cells from each donor were assigned a distinct 

hashtag oligo (HTO). A cell barcode with two or more HTOs having > 20% of the total 

hashtag reads was considered a doublet. For the purpose of conducting primary analyses, 

8,402 cellular barcodes with > 300 genes expressed (expressed defined as counts-per-ten-

thousand ≥ 1) were retained. This primary dataset includes 1,869 doublets for a rate of 

22.2%, consistent with the authors’ expectation.

Demuxlet Datasets: A dataset containing 14,619 cells single human PBMCs isolated using 

a 10× Chromium instrument (10× Genomics) and sequenced using Illumina HiSeq2500 

Rapid Mode with approximately 25,000 reads per cell was acquired from GEO (GEO: 

GSE96583) (Kang et al., 2018). The authors report an estimated doublet rate of 10.9% based 

on their demultiplexing procedure and note that it is consistent with the expected rate (10× 

technology and number of loaded cells). Following the observation that this reported rate 

likely estimates only the heterotypic rate (McGinnis et al., 2019; Wolock et al., 2019), we 

also employ an 8/7 multiplicative adjustment to arrive at an estimated overall doublet rate of 

12.5%. Additionally, cell classifications of doublets and singlets were provided by the 

original authors, derived using Demuxlet (GEO: GSE96583). The classification for the 

barcodes in the dataset is as follows: 13,030 singlets, 1,565 doublets (10.7%) and 24 

ambiguous. The same 300 expressed gene threshold could not be applied to the Demuxlet 

dataset due to too few barcodes meeting this filtering criterion. Hence, we lowered this 

threshold to 150 expressed genes per cell for this dataset before processing in ICGS for 

unsupervised cluster identification (6,525 barcodes, 1,426 doublets, 21.9% doublet rate).

The 24 barcodes with the “AMB” determination were not in the primary 6,525 barcode 

dataset. Additional comparative analyses among doublet-removal tools were run on the set 

of 14,619 barcodes–the tools applied to the full set but calculation of sensitivity and 

specificity excluding the 24 ambiguous barcodes (Table S1).

Mouse Heart Overloaded Dataset: A new scRNA-Seq dataset was generated from a mouse 

heart injury model (transverse aortic constriction) and profiled using droplet-based scRNA-

Seq according to the protocol from Macosko et al. (see experimental details below) 

(Macosko et al., 2015). The capture was overloaded to target over 15,000 cells to identify 

doublets and normal cell heterogeneity in large well-defined cell populations (e.g., 

Endothelial). The count matrix (13,140 cells) was filtered to cells having a minimum of 200 

genes expressed and 400 UMIs. Standard Seurat processing was conducted, including log-

normalization, regressing out nUMI, mitochondrial proportion and cell cycle indicators 

(proportion of histone and Seurat G2/M transcripts), and scaling (Butler et al., 2018). PCA 

was conducted on the top 20% of Seurat-determined highly-variable genes. Clusters of cells 

were determined using the Seurat FindClusters function with 10 PCs and resolution = 0.15; 

a total of 8 clusters were identified and cell type of each was determined using previously 
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identified marker genes (Seurat FindMarkers function). Results were displayed using 

TSNEPlot and FeaturePlot functions. The dataset and associated metadata were deposited 

into the open-access Synapse data sharing platform (https://www.synapse.org/#!

Synapse:syn18459941).

Evaluation Parameters

DoubletDecon: ICGS was run using AltAnalyze version 2.1.2 from input read counts or 

normalized count matrices using the software default options(Olsson et al., 2016). For 

DoubletDecon, the ICGS primary output files (DataPlots/MarkerFinder or ICGS directories) 

were used in their native form while Seurat input files were created by applying the 

Seurat_Pre_Process function to the Seurat normalized expression data (converted to log2), 

reduced to the top 50 seurat-identified marker genes for each cluster. For all analyses, 

relevant parameters were set to PMF = TRUE, useFull = FALSE, only50 = FALSE (30–70), 

min_uniq = 3 or 4 (suggested value for useFull = FALSE), num_doubs = 100, and centroids 

= TRUE. Additionally, in the mouse Bone Marrow progenitor data, the parameters were also 

set to useFull = TRUE (along with the suggested value of min_uniq = 30) and only50 = 

TRUE (50–50) for testing, as indicated in the manuscript when applicable. The correlation 

scaling parameter ρ’ (rho prime) values varied by dataset due to differing degrees of cluster 

similarity. Selection of values was guided by the Cluster Similarity Viewer in the Shiny 

version of DoubletDecon and are as follows: Cell Hashing = 1.2, Demuxlet = 1.2, Mouse/

Human = 1.5 (no merging with only 2 clusters), Transitional Singlets = 1.2, Heart = 1.5, and 

Melanoma Synthetics = 1.3.

DoubletFinder: DoubletFinder version 2.0.1 was downloaded from https://github.com/

chris-mcginnis-ucsf/DoubletFinder on May 13, 2019 and was run in the RStudio (version 

1.1.447) environment for R (version 3.5.2) on a MacBook (High Sierra OS); functions for 

Suerat version 3 were used. We created Seurat (version 3.0.0) objects from count matrices 

following the example code provided on the DoubletFinder website, including log 

normalization, scaling, regressing out nCount_RNA, and PCA and tSNE dimension 

reduction.

Scrublet: Scrublet version 0.2 was downloaded from https://github.com/swolock/scrublet on 

May 3, 2019 and installed and run as a python 3.6.3 program on a linux computing cluster. 

Count matrices and gene lists were prepared and inputted following following the vignette 

provided on the Scrublet website.

DoubletFinder Runs on the Cell Hashing Datasets: Ten runs of DoubletFinder were 

conducted on each dataset, with a new seed set prior to each call. In all runs, the artificial 

doublet proportion pN was set to 0.25 (per authors’ recommendation) and the neighborhood 

size parameter pK was determined using the bcvm workflow as presented in the online 

vignette. Following McGinnis et al. (2019), we retained 10 PCs and set the variable gene 

expression and dispersion thresholds at 0.025 and 0.65 respectively to select 2000 variable 

genes. A Seurat analysis identified 8 cell clusters in each dataset, with resulting estimated 

homotypic doublet proportions of 0.328 and 0.254 in the filtered dataset (8,402 barcodes) 
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and 11,980 barcodes datasets, respectively. The doublet rate was set to 0.20 for the primary 

analyses (Table 1).

DoubletFinder Runs on the Demuxlet Datasets: Ten runs of DoubletFinder were 

conducted on each dataset, with a new seed set prior to each call. In all runs, pN was set to 

0.25 and pK was determined using the bcvm workflow. Following McGinnis et al. (2019), 

we retained 10 PCs and set the variable gene expression and dispersion thresholds at 0.05 

and 0.85 respectively to select 2000 variable genes. Consistent with the authors’ report, a 

Seurat analysis identified 8 cell clusters in each dataset, with resulting estimated homotypic 

doublet proportions of 0.244 and 0.260 in the filtered dataset (6,525 barcodes) and 14,619 

barcodes datasets, respectively. The doublet rate was set to 0.125 for the primary analyses 

(Table 1) and ranged from 0.10 to 0.219 for alternative dataset filtering options (Table S1).

Scrublet Runs on the Cell Hashing Datasets: Ten runs of Scrublet were conducted on 

each dataset. Following the online vignette (https://github.com/swolock/scrublet/blob/

master/examples/scrublet_basics.ipynb), the following values were used for pre-processing: 

min_counts = 2, min_cells = 3, min_gene_variability_pctl = 85 and n_prin_comps = 30. 

Following Wolock et al. (2019), we set the parameters k = 50 and r = 5. For the primary 

analysis of the filtered dataset (8,402 barcodes), the doublet rate rho-hat was set to 0.20 and 

the mean-centering and variance normalization options produced a bimodal synthetic 

doublet score distribution and a common value of theta = 0.37 suitably separated the two 

distributions across all runs.

Scrublet Runs on the Demuxlet Datasets: Ten runs of Scrublet were conducted on each 

dataset. Following Wolock et al. (2019), we set the parameters min_counts = 2, min_cells = 

3, min_gene_variability_pctl = 75, n_prin_comps = 25, k = 50 and r = 5. For the primary 

analysis of the filtered dataset (6,525 barcodes), the doublet rate rho-hat was set to 0.125 and 

the mean-centering and variance normalization options produced a bimodal synthetic 

doublet score distribution for all runs. Automatic estimation of the theta parameter by 

Scrublet was found to be reasonable based on visual inspection of all runs. For the 

supplemental analyses (Table S1), rho-hat was varied between 0.10 and 0.219 and the z-

score and log data transformations were both run. If upon review of the synthetic doublet 

score histograms it was found that the automatic determination of theta was reasonable, 

performance was calculated on the basis of the predicted doublets. If however the automatic 

determination of theta did not perform well (typically an estimated theta in the extreme right 

tail of the distribution and/or lack of bimodality of the distribution), a consensus value of 

theta was determined based on inspection of all 10 histograms in a set of runs.

QUANTIFICATION AND STATISTICAL ANALYSIS

For datasets in which there is knowledge of true doublet and singlet cells (Synthetic, Mouse-

Human, Cell Hashing, and Demuxlet), measurements for the performance of DoubletDecon, 

Scrublet and DoubletFinder are reported in terms of sensitivity and specificity. Sensitivity is 

calculated as the number of true doublets called by the doublet detection tool divided by the 

total number of known doublets. Specificity is calculated as the number of true singlets 

called as such by the doublet detection tool divided by the total number of known singlets in 
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the dataset. For the Fluidigm hematopoietic progenitor dataset, with microscopy validated 

singlets, only specificity has been calculated. The ANOVA in the “Rescue” step is 

considered significant with a p value for the overall test ≤ 0.05 and with all Tukey post hoc 

adjusted pairwise p values ≤ 0.05.

DATA AND CODE AVAILABILITY

Melanoma (GEO: GSE72056), Bone Marrow Progenitor (GEO: GSE70245), Cell Hashing 

(GEO: GSE108313), and Demuxlet (GEO: GSE96583) data files were downloaded from the 

Gene Expression Omnibus. Mouse-Human hybrid data was downloaded from the 10× 

Genomics Website (https://support.10xgenomics.com/single-cell-gene-expression/datasets/

2.1.0/hgmm_12k). Mouse heart cell data were generated at Cincinnati Children’s Hospital 

Medical Center and deposited at Synapse (https://www.synapse.org/#!

Synapse:syn18459941) and Gene Expression Omnibus. The accession number for the 

Mouse heart cell data reported in this paper is GEO: GSE128934. Accession information for 

the datasets used within this manuscript can be found in the Key Resources Table. 

DoubletDecon is provide as both a command-line R package and as a Shiny application for 

interactive analysis and data visualization (RStudio and desktop application for Mac). 

DoubletDecon is available from https://github.com/EDePasquale/DoubletDecon with a 

vignette on its use and optional user-defined parameters (requires R version 3.5.0 or later). 

The Shiny application can optionally produce the function calls to reproduce the same 

functions on the command-line.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DoubletDecon uses deconvolution to identify and remove doublets in scRNA-

seq data

• Retention of doublets can confound data analysis and cell population 

identification

• DoubletDecon limits erroneous removal of transitional and progenitor cells

• The algorithm identifies unique doublets relative to alternative approaches
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Figure 1. Deconvolution and Detection of Cell Doublets with DoubletDecon
(A) Outline of the broad steps employed by DoubletDecon, including cluster merging, 

synthetic doublet generation, deconvolution, and rescue of initially predicted doublets 

through unique gene expression identification. The principal file inputs and sources are 

indicated along with distinct tabular and graphical outputs from the DoubletDecon package 

in R or through an easy-to-use graphical interface.

(B) Illustration of cluster similarity determination from DoubletDecon to determine the 

threshold for cluster merging prior to synthetic doublet creation and deconvolution. Each 

centroid is calculated from the average gene expression of each separate cell state for all 

algorithm-selected cell-state marker genes (e.g., Seurat, ICGS). Initially, a centroid or 

medoid correlation matrix is created (left). Next, a threshold for centroid or medoid 

similarity is defined by the formula for ρ (outlined in the STAR Methods), with the user-

defined value of ρ′ used to set the level of similarity required for a cluster to be considered 

correlated (middle). Finally, this new binary correlation matrix is visualized with a heatmap 

and Markov clustering is used to determine which sets of clusters should be merged for 

multiplet detection (right).
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(C) The frequency of cell-state deconvolution profiles is shown for a dataset without 

doublets (microscopy validated) (Olsson et al., 2016). Each column represents a different 

cell, in which each color indicates the percentage contribution of a reference cell type for 

that cell. Note, the majority are predicted to be composed principally of a single-cell-type 

reference.

(D) Datasets evaluated to assess DoubletDecon’s accuracy on gene expression evidenced 

doublets with the number of cells and method of single-cell capture.
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Figure 2. DoubletDecon Readily Distinguishes Experimentally Validated Doublets in Species-
Mixing scRNA-Seq
(A) Separation of mouse, human, and mixed-species doublet scRNA-seq profiles by 

principal-component analysis (PCA) of ICGS variable genes. Species assignments are 

defined by the total number of aligned reads to either human (yellow), mouse (blue), or both 

(red) genomes.

(B) Projection of species-specific deconvolution results (against human or mouse ICGS 

clusters) are displayed along the same PCA plot. Cells in gray indicate <10% identify to the 

indicated cluster, >90% in dark red, and lighter shades of red indicating intermediate scores.

(C) Histogram of the mouse (blue) and human (yellow) DCP results (x axis) for known 

species mixed cells, indicating a bi-modal distribution for deconvolution scores peaking at 

30% and 70%.

(D) The same histogram is shown for deconvolution scores in only human cells (left) and 

only mouse cells (right), indicating a skewed distribution toward the correct species.

(E) The accuracy of DoubletDecon doublet predictions using synthetic reference doublets 

derived from either a 50/50 equal contribution of cell transcriptomes (“only50” parameter) 

or from weighted averages of 30/70 and 70/30, in addition to the 50/50 synthetic doublets.

(F) Projection of final called doublets (black) in the PCA, using 30/70 synthetic doublets.
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Figure 3. Recovery of Rare Transitional Cell States through Singlet Rescue
Evaluation of a scRNA-seq dataset of mouse hematopoietic progenitors, with rare 

transitional states, is shown. All initially detected multiplets were removed through a 

microscopy validation step to selectively evaluate specificity for doublet detection.

(A) Identification of highly related clusters for DoubletDecon reference creation from the 

original ICGS unsupervised population predictions (Olsson et al., 2016). (Left) Highlighted 

ICGS cell populations within a t-Distributed Stochastic Neighbor Embedding (t-SNE) before 

cluster merging. (Middle) DoubletDecon cluster similarity heatmaps indicating similarity 

and clustering merging. (Right) t-SNE plot of the merged cell populations.

(B) Bar graph displaying number of cells within each cluster that were never removed (dark 

gray, “predicted singlets”), removed during the “remove” step but were subsequently 

rescued (light gray, “rescued singlets”), and removed during the “remove” step and were not 

rescued (white, “final doublets) per total cells in each cluster (left) and percentage of cells in 

each cluster (right).
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Figure 4. Detection of Experimentally Validated Doublets from Peripheral Blood Mononuclear 
Cells (PBMCs)
(A and B) The analysis schema is shown for the evaluation of DoubletDecon on in silico 
identified doublet cell profiles obtained from the (A) Dexmulet software and (B) the Cell 

Hashing protocol. Demuxlet identifies cells with a combination of genomic variants 

associated with the eight profiled single-cell donors to find cellular bar codes with hybrid 

genotype profiles, whereas Cell Hashing selectively labels all cells from a single sample 

(donor) using different oligonucleotides conjugated to a common antibody. (Left) A 

Uniform Manifold Approximation and Projection (UMAP) plot of the de novo clusters 

obtained from analysis with ICGS. (Middle) UMAP projection of Demuxlet called doublets 

are indicated in blue. (Right) UMAP projections of DoubletDecon-classified doublets are 

highlighted in blue. Labels for each cell population were independently derived through 
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ICGS version 2.0 using a published database of hematopeotic and immune markers via GO-

Elite gene set enrichment analysis (Hay et al., 2018).

(C and D) Venn diagrams representing the number of overlapping doublet predictions from 

the software packages DoubletDecon, Scrublet, and DoubletFinder on two previously 

published datasets of overloaded donor PBMCs using the (C) Demuxlet or (D) Cell Hashing 

protocols using the same filtered datasets described above. Hashing doublets, doublets 

defined from distinct hashtag oligo (HTO). If two or more HTOs had >20% of the total 

hashtag reads, they were considered multiplets (4,200 out of the initial total 12,000 cellular 

bar codes). Demuxlet doublets, doublets identified by Kang et al. (2018) using the software 

Demuxlet.
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Figure 5. Empirical Removal of Confounding Doublet-Cell Populations for Unsupervised 
Subtype Detection
(A) t-SNE visualization of the predominant cell populations identified from Seurat of 

~13,000 heart cells collected via Drop-Seq. (Left panel) Cell-type predictions are based on 

established heart marker genes (literature) and gene set enrichment in the software GO-Elite 

(cellular biomarker database). (Right panel) DoubletDecon doublet predictions overlaid on 

top of the Seurat t-SNE plot, localized to the periphery of the major Seurat clusters. The 

dashed circle highlights endothelial-specific predicted doublets adjacent to fibroblasts.

(B and C) Secondary analysis of all Seurat-identified endothelial cells with (B) all doublets 

included and (C) doublets excluded with DoubletDecon prior to clustering. The left panel 

indicates distinct endothelial cell clusters with the doublet-enriched fibroblast cells 

highlighted (dashed circle), while the right panel visualizes expression of a fibroblast-

specific marker.

(D) Venn diagram of DoubletDecon doublet predictions with three sepearte Seurat clustering 

resolutions of the entire heart dataset. The numbers of doublets identified were 1,251 (5 

clusters), 1,170 (8 clusters), and 1,189 (11 clusters), with 790 (63%) in common.
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KEY RESOURCES TABLE

REAGENT OR RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Chemegenes Drop-Seq beads Chemgenes CSO-2011

Droplet Generation Oil for Probes Bio Rad 1863005

Nextera XT DNA Library Preparation Kit Illumina FC-131–1096

Maxima H Minus Reverse Transcriptase (200 U/
μL)

ThermoFisher EP0753

SPRIselect Reagent Beckman Coulter B23318

Deposited Data

Single cell RNA-seq raw data Synapse GEO https://www.synapse.org/#!
Synapse:syn18459941 GEO: GSE128934

Experimental Models: Organisms/Strains

Black 6 mice (C57BL6/J) The Jackson Laboratories 000664 | Black 6

Software and Algorithms

DoubletDecon This paper https://github.com/EDePasquale/
DoubletDecon

AltAnalyze Olsson et al., 2016 http://altanalyze.org/

cellHarmony DePasquale et al., 2019 http://altanalyze.org/

Seurat Satija et al., 2015; Butler et al., 2018 https://satijalab.org/seurat/

DoubletFinder McGinnis et al., 2019 https://github.com/chris-mcginnis-ucsf/
DoubletFinder

Scrublet Wolock et al., 2019 https://github.com/AllonKleinLab/scrublet

Other

scRNA-seq UMI counts of PBMCs demultiplexed 
using Demuxlet

Kang et al., 2018 GEO: GSE96583

scRNA-seq UMI counts of PBMCs demultiplexed 
using Cell Hashing

Stoeckius et al., 2018 GEO: GSE108313

1:1 mixture of fresh frozen human (HEK293T) 
and mouse (NIH 3T3) cells

10X Genomics Single Cell Gene 
Expression Datasets

https://support.10xgenomics.com/single-cell-
gene-expression/datasets/2.1.0/hgmm_12k

Single cell RNA-seq analysis of melanoma Tirosh et al., 2016 GEO: GSE72056

Single-cell RNA-Seq for unbiased analysis of 
developmental hierarchies

Olsson et al., 2016 GEO: GSE70245
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