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The pathological hallmark of synucleinopathies, including Lewy
body dementia and Parkinson’s disease (PD), is the presence of
Lewy bodies, which are primarily composed of intracellular inclu-
sions of misfolded α-synuclein (α-syn) among other proteins.
α-Syn is found in extracellular biological fluids in PD patients
and has been implicated in modulating immune responses in the
central nervous system (CNS) and the periphery. Natural killer (NK)
cells are innate effector lymphocytes that are present in the CNS in
homeostatic and pathological conditions. NK cell numbers are in-
creased in the blood of PD patients and their activity is associated
with disease severity; however, the role of NK cells in the context
of α-synucleinopathies has never been explored. Here, we show
that human NK cells can efficiently internalize and degrade α-syn
aggregates via the endosomal/lysosomal pathway. We demon-
strate that α-syn aggregates attenuate NK cell cytotoxicity in a
dose-dependent manner and decrease the release of the proin-
flammatory cytokine, IFN-γ. To address the role of NK cells in PD
pathogenesis, NK cell function was investigated in a preformed
fibril α-syn–induced mouse PD model. Our studies demonstrate
that in vivo depletion of NK cells in a preclinical mouse PD model
resulted in exacerbated motor deficits and increased phosphory-
lated α-syn deposits. Collectively, our data provide a role of NK
cells in modulating synuclein pathology and motor symptoms in a
preclinical mouse model of PD, which could be developed into a
therapeutic for PD and other synucleinopathies.
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The pathological hallmark of synucleinopathies, including de-
mentia with Lewy bodies (DLB), Parkinson’s disease (PD),

and multiple system atrophy, is the presence of aggregated forms
of α-synuclein (α-syn) in Lewy bodies (LBs) (1, 2) that can induce
pathology in healthy cells (3–5). α-Syn is a 140-amino acid (aa)
natively unfolded endogenous protein, comprising 1% of total
cytosolic proteins (6). This small protein is primarily located in
neuronal presynaptic terminals (7) and in the nucleus (8). α-Syn
can self-assemble to form ordered fibrillary aggregates charac-
terized by a cross β-sheet structure (9). In the process of fibril
formation, various intermediate forms of α-syn develop, in-
cluding initially soluble oligomeric forms of α-syn that gradually
become insoluble and coalesce into fibrils and then into LBs (6).
The general consensus in the field is that aggregation is the main
pathogenic feature of α-syn (6). While α-syn is typically consid-
ered an intracellular protein, it is normally present in extracel-
lular biological fluids, including human cerebrospinal fluid (CSF)
and blood plasma (10–14). LB-like pathology has also been
found in various peripheral neurons, including in the enteric
nervous system in premotor phases of the disease (15). In the
central nervous system (CNS), extracellular preformed fibrils

of α-syn (PFF α-syn) act as a damage-associated molecular
pattern (DAMP) and activate microglia (16). Microglia are ca-
pable of clearing extracellular α-syn aggregates through Toll-like
receptor (TLR) 2 (17) and TLR4 pathways (18). However, α-syn
mediates activation of microglia and triggers the secretion of
proinflammatory cytokines and reactive oxygen species (18, 19).
Natural killer (NK) cells are granular lymphocytes of the in-

nate immune system that serve as the first line of defense. NK cells
selectively recognize and destroy tumor cells or virus-infected cells
without prior sensitization via the interplay between the inhibitory
and activating receptors (reviewed in ref. 20). Recently, it has been
shown that NK cell function extends beyond merely the recogni-
tion and elimination of transformed cells with several studies in-
dicating diverse roles for NK cells in antimicrobial defense (21,
22), senescent cell clearance (23), resolution of inflammation (24,
25), and modulation of adaptive immunity (26, 27). NK cells have
been utilized for immunotherapy in the cancer field because of
their capacity to selectively target malignant cells (28–30). Par-
ticularly, the human NK cell line, NK92, has been safely infused in
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patients with cancer as an allogeneic cell therapeutic (28, 30–32)
and was not tumorigenic (33, 34). Recently, NK92 cells that are
genetically modified to express chimeric antigen receptors have
been generated to target human glioblastoma (35–37), highlight-
ing NK cells’ potential as a promising therapeutic strategy for
brain disorders. The role of NK cells in neurological disorders has
been investigated in experimental autoimmune encephalomyelitis,
a mouse model of multiple sclerosis (38). These studies revealed
that NK cells homing to the CNS were essential in ameliorating
disease in experimental autoimmune encephalomyelitis (38),
suggesting that NK cells exert protective effects. The presence of
NK cells in the brain has been described by recent transcriptomic
analyses of mouse brain myeloid cells in both healthy and disease
states (39, 40), implicating their potential role in homeostasis and
neurological disorders in the CNS.
The number of NK cells is increased in the blood of PD pa-

tients and have increased expression of the inhibitory recep-
tor NKG2A, and no modifications of the activating receptor
NKG2D (41–43). However, there have been no further efforts
made to investigate the role of NK cells in PD. Here, we aimed
to evaluate the bidirectional effects between extracellular α-syn
and NK cells. Our data demonstrate that NK cells are able to
internalize and degrade extracellular α-syn without becoming
aberrantly activated. Next, we evaluated the effect of NK cell
depletion on synuclein pathology in vivo. Our data demonstrate
that systemic depletion of NK cells results in exacerbated motor
symptoms and synuclein pathology in a preclinical mouse model
of synucleinopathies.

Results
NK Cells Are Found in the Brains of Synucleinopathy Patients and the
PFF α-Syn Mouse Model. To determine if NK cells are present in
the brains of healthy control or synucleinopathy patients, we
performed immunohistochemistry (IHC) for a human NK cell
marker, 2B4, in the substantia nigra (SN). We confirmed robust
levels of staining for α-syn phosphorylated at serine 129 (p-α-syn)
within the SN of PD and PD/DLB but not in age-matched controls
(Fig. 1A and SI Appendix, Fig. S1). Importantly, we illustrated the
presence of 2B4+ NK cells within the SN of both healthy and PD/
DLB brains (Fig. 1A and SI Appendix, Fig. S1). Of 11 synuclein-
opathy patient samples analyzed, 8 revealed positive staining for
the NK cell marker 2B4 (Fig. 1A and SI Appendix, Fig. S1). Three
age-matched control samples were analyzed and 1 showed positive
2B4 staining (Fig. 1A and SI Appendix, Fig. S1). To determine if
NK cells are present in mouse brain with synuclein pathology, we
utilized an intrastriatal injection of PFF α-syn in M83 transgenic
(Tg) mice overexpressing the human α-syn transgene with an
A53T point mutation (44). To do so, we generated recombinant
human α-syn (monomer α-syn), assembled the protein into PFF
α-syn, and then sonicated immediately prior to addition in neu-
ronal cultures or stereotaxic injections, as described previously (45,
46). The conformations of PFF α-syn and sonicated PFF α-syn
were confirmed by transmission electron microscopy (Fig. 1B).
The seeding and transduction of p-α-syn inclusions by sonicated
PFF α-syn but not PBS and monomer α-syn was confirmed in
primary mouse hippocampus neuronal cultures (Fig. 1C). Non-
sonicated PFF α-syn also has the capacity to transduce p-α-syn
inclusions but to a lesser extent (Fig. 1C). Intrastriatal injection of
sonicated PFF α-syn in M83 Tg mice induced robust p-α-syn in-
clusions in the SN pars compacta (SNpc) compared to the
monomer or uninjected animals (Fig. 1D). We observed low levels
of p-α-syn+ staining within the SNpc of uninjected M83 Tg con-
trols as M83 Tg mice intrinsically develop α-syn pathology. No-
tably, we performed IHC for a mouse NK cell marker, NK1.1, in
the SNpc of PFF α-syn injected M83 mice and confirmed the
presence of NK cells (Fig. 1E). To further confirm the presence of
NK cells, we performed flow cytometry analysis and observed a
5-fold increase of NK cell infiltration into the CNS of the PFF

α-syn–injected mice compared to monomer α-syn–injected control
mice (10.19% vs. 2.19%) (Fig. 1F).

NK Cells Efficiently Internalize and Degrade Extracellular α-Syn. In
addition to antitumor and antiviral functions, NK cells are in-
volved in antimicrobial defense and the clearance of senescent
cells (21–23). To assess whether NK cells internalize extracel-
lular α-syn species, we utilized NK92 cells and primary human
NK cells from healthy individuals. NK cells were treated with
various concentrations of α-syn aggregates and the internaliza-
tion of insoluble α-syn species in NK cells was analyzed by im-
munoblot analyses. We noted that there was no detectable
endogenous α-syn in NK cells. Our results showed that NK92
cells efficiently internalized various sizes of α-syn (monomers,
oligomers, and higher molecular weight fibrils) in a dose-dependent
manner (Fig. 2 A and B). Importantly, we also showed that pri-
mary human NK cells from healthy individuals could internalize
α-syn (Fig. 2C). To investigate the mechanism by which NK cells
internalized α-syn, we tested if TLR2, TLR4, or heparan sulfate
proteoglycans (HSPGs), which have been shown to mediate α-syn
uptake by microglia and other cells (17, 18, 47), mediated α-syn
uptake by NK cells. As TLR4, TLR2, and HSPGs are expressed on
NK cells (48–50), NK92 cells were preincubated with neutralizing
antibodies against TLR4, TLR2, or heparan for 1 h prior to α-syn
treatments and then incubated with α-syn aggregates for 1 h. We
observed antibodies against human TLR4 blocked α-syn uptake in
a dose-dependent manner (Fig. 2D). Antibodies against human
TLR2 also inhibited α-syn uptake but to a lesser extent. Heparan
treatment did not affect α-syn uptake (SI Appendix, Fig. S2). Al-
though NK cells are not professional phagocytic cells, their en-
docytosis machineries are highly functional (51). To explore the
endocytosis mechanism of α-syn, we tested inhibitors that are in-
volved in various endocytosis mechanisms: Rottlerin (30 μM; an
inhibitor of protein kinase C [PKC]), cytochalasin D (1 μM; an
actin polymerase inhibitor), and dynasore (80 μM; a dynamin in-
hibitor). Rottlerin and dynasore significantly inhibited α-syn up-
take, while cytochalasin D-treated cells showed α-syn uptake
similar to that of vehicle treated controls, implicating a mechanism
by which the NK cells internalize α-syn is mediated by PKC-
dependent, dynamin-mediated endocytosis (Fig. 2 E and F).
To monitor the degradation of α-syn within NK cells, we in-

cubated NK92 and primary human NK cells with extracellular
α-syn species for 1 h, and then cells were washed 3 times and
incubated additional times as indicated. Internalized α-syn species
were rapidly degraded by as early as 1 h and completely degraded
by 24 h in both NK92 cells and primary human NK cells (Fig. 3
A–C). To determine whether internalized α-syn was detected in
the cytoplasm and the pathways of degradation, we performed
immunocytochemistry using a Ras-related protein Rab7 antibody
(endosomal marker) (52) and a microtubule-associated protein
1 light chain 3β (LC3B) antibody (lysosomal/autophagy marker)
(53). Our data showed that internalized α-syn was found within the
cytoplasmic compartment of NK cells. Furthermore, α-syn was
colocalized with both Rab7 and LC3B, implicating that NK cells
degrade α-syn via the endosome and lysosome pathways (Fig. 3 D
and E). Taken together, these data strongly implicate that NK cells
are able to scavenge extracellular α-syn and may be critical for
regulating and restraining synuclein pathology in synucleinopathies.

Extracellular α-Syn Aggregates Attenuate Cytotoxicity and IFN-γ
Production of NK Cells. Microglia and macrophages are able to in-
ternalize and degrade extracellular α-syn (18, 19) and present α-syn
peptides to T cells to mount an adaptive immune response (54).
However, this results in increased release of proinflammatory cy-
tokines and increased oxidative stress (55). To examine whether
extracellular α-syn species modulate NK cell functions, we exam-
ined NK cell cytotoxicity and cytokine production. We measured
NK cell cytotoxicity against fluorescently labeled K562 leukemia
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target cells in the presence of various concentrations of α-syn
species. Our results demonstrated that only α-syn aggregates sig-
nificantly attenuated NK cell cytotoxicity in a dose-dependent
manner (Fig. 4A), while monomeric α-syn alone had no effect
on NK cell cytotoxicity (Fig. 4B). NK cells mainly produce the
proinflammatory cytokine IFN-γ, which is a critical regulator of
both innate and adaptive immune responses (reviewed in ref. 56).
We measured IFN-γ production by NK92 cells treated with ex-
tracellular α-syn aggregates and found that extracellular α-syn
aggregates significantly decreased IFN-γ secretion and mono-
meric α-syn inhibited IFN-γ secretion to a lesser extent (Fig. 4C).
We showed that there was no cell death or additional prolifer-
ation upon α-syn treatments (Fig. 4 D and E).

Here, we also examined whether α-syn altered surface ex-
pression levels of NK cell receptors including CD107 (NK acti-
vation marker), NKG2A (an inhibitory receptor), and NKG2D
(an activating receptor) that show altered expressions in PD
patients (41, 42). The levels of CD107, NKG2A, and NKG2D
receptors on NK cells were not altered by extracellular α-syn
aggregate treatments (SI Appendix, Fig. S3).

NK Cell Depletion Augments Motor Symptoms and Disease Incidence
in a Preclinical Mouse Model of PD. To address the role of NK cells
in vivo, we systemically depleted NK cells by utilizing an anti-
NK1.1 monoclonal antibody (mAb) (PK136 clone) (57), as de-
scribed in SI Appendix, SI Materials and Methods. Depletion of NK
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cells (CD45+CD3−NK1.1+) was determined by flow cytometry
analysis (Fig. 5A and SI Appendix, Fig. S4). Our data confirmed a
significant reduction of NK cells within the brain, spleen, and
inguinal lymph nodes of animals treated with anti-NK1.1 mAb
(Fig. 5B). Multiplex proinflammatory cytokine analysis showed
that NK1.1 mAb-injected mice displayed significantly decreased
IFN-γ levels in serum compared to IgG controls, further validating
our systemic NK cell depletion method (Fig. 5C). Our data also
showed that the levels of TNF-α and IL-10 were lower in NK cell-
depleted mice; however, there were no additional significant al-
terations in the serum cytokine profile (Fig. 5C).
To determine the role of NK cells in a mouse model of PD, we

utilized a systemic NK cell-depletion strategy in PFF α-syn M83
Tg mice. To generate this model, we injected PFF α-syn or
monomer α-syn as a control into the dorsal striatum of M83 Tg
mice as described previously (45). To deplete NK cells, mice
began receiving injections of mAbs to NK1.1 or IgG2a 2 d prior
to stereotaxic inoculation of PFF or monomer α-syn. Mice were
aged for 10 wk while behavioral tasks were performed through-
out. To evaluate motor and postural abnormalities as a basic
neurological assessment, we conducted the clasping task (Fig.
6A). PFF α-syn–injected M83 Tg mice, but not monomer α-syn–
injected M83 Tg mice, displayed observable deficits in hind limb
clasping as early as 3 wk after inoculation and continued to
display increased motor deficits evidenced by increasing clasping

scores coinciding with progression of the disease (Fig. 6B).
Monomer α-syn–injected M83 Tg mice did not develop deficits
in motor coordination. Importantly, NK cell depletion signifi-
cantly increased hind limb clasping and therefore exacerbated
motor deficits and motor function in PFF α-syn–injected M83 Tg
mice compared to PFF α-syn IgG control (Fig. 6B). Nine to
10 weeks after α-syn inoculations we observed obvious clinical
motor deficits: That is, unstable gaits and hunched posture with
extensive hind limb retraction in some of the PFF α-syn–injected
mice. We assigned animals clinical symptom scores from 0 (no
symptoms) to 5 (dead) as described in the SI Appendix, SI Ma-
terials and Methods. Representative examples of mice with clin-
ical scores of 2 and 4 are provided in Movies S1 and S2. As the
clinical symptoms progressed rapidly, all animals’ motor symp-
toms were evaluated at 10-wk postinjection and then animals
were immediately killed for further histological analysis. Here,
we showed the percentage of animals in each experimental group
assigned to each clinical score (Fig. 6C) (χ2 test, P < 0.0001). Our
data demonstrate that NK cell depletion induced significantly
more severe clinical motor deficits in PFF α-syn M83 Tg mice
compared to the IgG treated PFF α-syn M83 Tg mice (mean
scores of 2.868 ± 0.368 vs. 0.808 ± 0.237, respectively) (Fig. 6D)
(Table 1). Furthermore, overall percentages of mice showing
clinical symptoms were significantly higher in the NK cell-
depleted group compared to the IgG treated PFF α-syn M83
Tg mice (94% vs. 61%, respectively) (Table 1). We noted that
none of the monomer α-syn–injected M83 Tg mice developed any
clinical symptoms (summarized in Fig. 6C and Table 1). Overall,
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our data indicate that NK cell depletion augments motor deficits
implicating a protective role of NK cells in a PFF α-syn–induced
mouse model of PD.

NK Cell Depletion Exacerbates Synuclein Pathology and Neuroinflammation
in a Preclinical Mouse Model of PD. To examine whether NK cell
depletion alters CNS pathology, we performed immunohistological
analyses for p-α-syn inclusions throughout the CNS of these mice.
We confirmed abundant p-α-syn inclusions developed in the
striatum, SNpc, cerebellum, and brainstem of mice that received
PFF α-syn injection, as previously demonstrated (58). Impor-
tantly, NK cell-deficient PFF α-syn M83 Tg mice displayed sig-
nificantly increased p-α-syn inclusions within the striatum, SNpc,
and brainstem but not in the cerebellum compared to control IgG
treated PFF α-syn M83 Tg mice (Fig. 7A). To quantify insoluble p-
α-syn inclusions, brain sections were treated with proteinase K
(PK) and IHC analyses were performed for PK insoluble p-α-syn
inclusions in the striatum, SNpc, cerebellum, and brainstem.
Monomer α-syn M83 Tg mice did not display PK insoluble p-α-syn
inclusions at 10 wk postinjection (Fig. 7B). However, NK cell-
deficient PFF α-syn M83 Tg mice displayed significantly in-
creased number of PK-resistant p-α-syn inclusions within the
striatum, SNpc, and brainstem, but not in the cerebellum com-
pared to control IgG treated PFF α-syn M83 Tg mice (Fig. 7B).
We also interrogated the neuroinflammatory status within brain
regions where we observed pathological p-α-syn inclusions by
performing IHC analysis for astrocytes (GFAP) and microglia
(Iba1) (SI Appendix, Fig. S5). Monomer α-syn M83 Tg mice
displayed similar immunoreactivity (i.r.) for GFAP and Iba1 as
uninjected M83 Tg mice (SI Appendix, Fig. S5). NK cell-deficient

PFF α-syn M83 Tg mice displayed significantly increased i.r. for
GFAP within the striatum and the SNpc but not in the brainstem
and cerebellum compared to control IgG treated PFF α-syn M83
Tg mice (SI Appendix, Fig. S5A). Furthermore, NK cell depletion
in PFF α-syn M83 Tg mice displayed increased i.r. for Iba1 within
the striatum, SNpc, and brainstem compared to control IgG-
treated PFF α-syn M83 Tg mice (SI Appendix, Fig. S5B).

NK Cell Depletion Induces Dopaminergic Striatal Degeneration but
Not Dopaminergic Neurodegeneration in the SN in a Preclinical
Mouse Model of PD. To evaluate nigrostriatal degeneration, we
measured the optical density of tyrosine hydroxylase (TH)-positive
staining in the striatum, conductedWestern blot analysis for TH in
the striatum, and performed stereological cell counts of total do-
paminergic (DA) neurons in the SNpc. Monomer α-syn M83 Tg
mice did not display alterations of TH+ staining within the dor-
solateral striatum as measured by OD (Fig. 8A). Importantly, NK
cell-deficient PFF α-syn M83 Tg mice displayed significantly de-
creased TH+ staining within the dorsolateral striatum compared
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assays. NK92 cells were treated with indicated concentration of α-syn
monomer (D) or α-syn agg (E) for 72 h. MTS solution (Promega) was added
during the last 4 h of incubation, and cell viability was determined by
measuring the absorbance at 490 nm. Data were analyzed using one-way
ANOVA. Error bars represent ± SEM. All data shown are representative of
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to control IgG treated PFF α-syn M83 Tg mice, implicating striatal
degeneration (Fig. 8A). To further interrogate TH levels in
the striatum, Western blot analysis was performed. A significant
reduction of TH in the striatum of NK cell-deficient PFF α-syn
M83 Tg mice compared to control IgG-treated PFF α-syn M83 Tg
mice was confirmed by Western blot analysis (Fig. 8B). However,
unbiased stereological cell counts performed throughout the en-
tire SNpc did not reveal any differences in the total number of
TH+ neurons between groups (Fig. 8C).

Discussion
Although the CNS was once considered to be largely devoid of
immune entities other than microglia, the central dogma of absolute
impermeability of the CNS to immune cells has been refuted during
the last decade (59). In conditions of chronic inflammation, like PD,
the blood brain barrier becomes disrupted, thus allowing immune

cells to extravasate into the brain (60). Our data illustrate the
presence of NK cells in the brains of synucleinopathy patients in
brain regions associated with robust p-α-syn pathology. Further-
more, we detected NK cell presence in the adult mouse brain, with
the number of NK cells increasing with synuclein pathology. Our
findings compliment recent transcriptomic analyses demonstrating
the diversity of immune cells in the brain and that NK cells are one
of the distinct populations within the brain along with B cells,
T cells, and dendritic cells in both homeostatic and disease sta-
tuses (39, 40). NK cells have been suggested to be involved in
neurological diseases (reviewed in ref. 61), particularly in multiple
sclerosis (38, 62), yet the functional analysis of NK cells in other
neurodegenerative diseases remains elusive. Therefore, we aimed
to investigate the role of NK cells in the context of α-syn pathology
by utilizing in vitro NK cell culture and an in vivo preclinical
mouse model of PD. Our data demonstrate that NK cells clear
α-syn without aberrant activation. Importantly, systemic de-
pletion of NK cells led to exacerbated synuclein pathology and
motor deficits in vivo suggesting a protective role of NK cells in
LB-related neurodegenerative diseases.
Extracellular α-syn species have been detected in the plasma

and CSF of PD and multiple system atrophy patients and have
been shown to modulate immune responses in the CNS and the
periphery (12, 13, 63, 64). Possible therapeutic approaches to
stop LB formation and protect from neurodegeneration include
inhibiting the production of α-syn, preventing aggregation within
the cytoplasm, and promoting clearance in the cytoplasm. Im-
portantly, α-syn can propagate extracellularly (reviewed in refs.
4, 65, and 66), so immunotherapeutic approaches targeting ex-
tracellular α-syn aggregates might be promising therapeutic ap-
proaches for synucleinopathies. In the CNS, neurons and glial
cells can take up extracellular α-syn; however, α-syn internali-
zation will result in inclusions in neurons and a proinflammatory
response in glial cells (4, 67). Particularly, extracellular α-syn acts
as a DAMP due to its ability to induce expression of TLRs 1, 2, 3,
and 7, TNF, and IL-1 (16). Oligomeric α-syn produced by neu-
rons are phagocytosed by microglia and activate neighboring
microglia via the TLR2 signaling pathway (19), indicating that
the effect of α-syn on immune cells is not simply mediated by
phagocytosis of nonspecific protein debris but by specific re-
ceptors and their downstream pathways. Here we provide evi-
dence that human NK cells efficiently scavenge extracellular
α-syn species in a specific manner, mediated by TLR4 and TLR2
pathways. Furthermore, our data show that extracellular α-syn
aggregates do not hyperactivate NK cell effector functions, but
instead α-syn reduces the production of proinflammatory IFN-γ
and their cytotoxic activity.
To address the physiologic role of NK cells in PD, we utilized

an NK cell depletion strategy in a preclinical α-syn mouse model
of PD. The PFF α-syn non-Tg mouse model of PD exhibits many
clinically relevant hallmarks of PD, including DA cell loss, motor
deficits, and synucleinopathies (45). M83 Tg mice overexpress
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Table 1. Summary of clinical motor symptom incidences and
scores in mice

Treatment groups
Incidence of clinical

score ≥1 (%) Mean clinical score (±SEM)

Mono α-syn + IgG 0/11 (0%)a N/A
Mono α-syn + NK1.1 0/11 (0%)a N/A
PFF α-syn + IgG 8/13 (61%)b 0.808 (±0.237)
PFF α-syn + NK1.1 18/19 (94%)c 2.868 (±0.368)***

Data are pooled from 3 independent experiments. Incidence of clinical
motor symptom score. Different letters are statistically significantly different
from each other, determined by ordinary one-way ANOVA with Tukey post
hoc test. Mean of clinical score compared PFF α-syn + NK1.1 group to PFF α-syn +
IgG, ***P < 0.001, determined by Mann–Whitney U test. N/A, not applicable.
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human A53T α-syn (44) and display features of α-syn pathologies
both in the CNS and the periphery, including the enteric nervous
system, which resembles the pathophysiological conditions of PD.
However, their neurodegenerative phenotypes manifest at 8 to
12 mo of age or later and it is not clear if nigrostriatal neuro-
degeneration is linked to their pathologies [summarized by Koprich
et al. (68)]. These mice efficiently display α-syn pathology both in
the CNS and periphery in a relatively short period of time (i.e., 3 to

4 mo) (58). In this study, we induced pathology by inoculating PFF
α-syn in M83 Tg mice, as previously described (58). By utilizing
this PFF α-syn in M83 Tg mouse model of synucleinopathy, we
demonstrated that systemic depletion of NK cells leads to exac-
erbation of motor deficits and robust α-syn burden within the
CNS, implicating a protective role of NK cells. Although we could
not directly relate motor deficits to DA neurodegeneration in the
SNpc, our data clearly suggest that the depletion of NK cells
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Fig. 7. NK cell depletion exacerbates synuclein pathology of PFF α-syn M83 Tg mice. (A) Representative immunohistological images and quantitation data of
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augments the accumulation of pathological α-syn and motor def-
icits. Indeed, the spread of pathological α-syn may interfere with
neural networks, which could explain neurological decline in pa-
tients with synucleinopathies. One potential mechanism by which
NK cells exert protection is through their ability to clear α-syn
inclusions. Another potential mechanism by which NK cells ex-
ert protection could be via producing IFN-γ, the key cytokine
required for activation or differentiation of antigen-presenting
cells, including microglia, which are involved in resolving extra-
cellular α-syn burden. Our data support the notion that there
was a substantial decrease of IFN-γ in NK cell-depleted mice,
confirming that NK cells are a major source of IFN-γ. It will be
necessary to investigate the status of α-syn pathology within the
periphery, as bidirectional transfer of α-syn aggregates between
the CNS and periphery via the vagal nerve has been shown
in vivo (69–72). Furthermore, as immune cells are adept to di-
rectly communicate with neurons through the vagal nerve within
the gut (69), our future studies will be focused on how NK cells
affect α-syn pathology in the periphery, particularly within the gut.
In the cancer field, NK cells have been utilized as a promising

immunotherapy because of their capacity to selectively target
cancer stem-like cells (73, 74). In particular, NK92 cells, which
are highly cytotoxic against a broad range of malignant cells, are
infused and well tolerated in patients with cancer (31). Recently,
several studies have exploited NK cells’ cytotoxicity against brain
cancers, including neuroblastoma and glioblastoma (35, 37, 73,
74). Our data support the idea of utilizing NK cells as a potential
cell-based therapy for LB diseases. We have demonstrated that
NK cells internalize and clear α-syn without aberrant activation
and systemic depletion of NK cells led to exacerbated synuclein
pathology in vivo. Our data suggest that NK cells have the po-

tential to become the basis of a cell-therapeutic strategy to stop
or slow abnormal protein pathogenesis in PD and possibly other
synuclein-related neurodegenerative diseases.

Materials and Methods
Preparation of Recombinant Proteins and Aggregates. Recombinant human
α-syn (>98% purity) proteins were expressed in BL21(DE3)/RIL Escherichia coli and
purified by size-exclusion chromatography and Mono Q ion-exchange chroma-
tography, as previously described (46). To further remove endotoxin contami-
nation, it was purified by High S support cation-exchange chromatography, as
described previously (75, 76). Final endotoxin tests resulted in less than 0.5 EU/mg.
Detailed methods can be found in SI Appendix, SI Materials and Methods.

Animals. Transgenic mice (8- to 10-wk-old male and females) overexpressing
human A53T α-syn mutant protein (M83 Tg) were purchased from Jackson
Laboratory (004479). Experimental procedures involving the use of animals
and animal tissue were performed in accordance with NIH guidelines for animal
care and use and approved by the Institutional Animal Care and Committee at
the University of Georgia.

Stereotaxic Surgery. Animals received a unilateral injection of human PFF or
monomer α-syn (5 μg in 1 μL) into the right striatum using stereotaxic co-
ordinates relative to bregma and the dural surface at AP, +0.3 mm; ML,
+ 2.3 mm; DV, −3.5 mm bregma at the rate of 0.2 μL/min. Detailed methods
can be found in SI Appendix, SI Materials and Methods.

Primary Human NK Cell Isolation. The human subject studies were performed
following the guidelines of the World Medical Association’s Declaration of
Helsinki. Human subjects were recruited at the University of Georgia to donate
blood for NK cell preparation. The study protocol, including the human blood
protocol (UGA# 2012-10769-06) and the consent form, was reviewed and ap-
proved by the Institutional Review Board of the University of Georgia. Enrolled
healthy volunteers provided informed consent. Detailed human NK cell iso-
lation method can be found in SI Appendix, SI Materials and Methods.
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Immunohistochemistry. Postmortem human brain tissues were acquired
from Emory University Center for Neurodegenerative Disease (Atlanta, GA).
PD or PD/DLB patients and control subject did not differ significantly for
mean age at death (patients [n = 11], 72.7 ± 2.6 y: Healthy controls [n = 3],
58.7 ± 10.2 y, mean ± SEM; P > 0.05, unpaired t test). A detailed IHC
method for mouse brain can be found in SI Appendix, SI Materials
and Methods.

Additional Materials and Methods. Additional materials and methods can be
found in SI Appendix, SI Materials and Methods.

Data Availability. Additional data can be found in SI Appendix, Figs. S1–S5
and Movies S1 and S2 and raw IHC images and analysis data have been
deposited in the Open Science Framework (https://osf.io/8gqtk/).
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