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The host range for Aspergillus fumigatus is wide, in-
cluding mammals, aves, and insecta (stonebrood).
This is linked to the significant adaptability of this im-
portant fungal pathogen. It is thermotolerant, able to
grow up to 70 °C, and astonishingly also remains
viable down to −20 °C (1). It is microaerophilic and
a halophile; forms extensive biofilms, a problem for
antifungal eradication in patients; and has >20 sec-
ondary metabolite biosynthetic clusters, some of the
products of which have immunosuppressive and cy-
totoxic properties, such as gilotoxin. A. fumigatus
also produces a large number of extracellular en-
zymes, many of which are allergenic, making this or-
ganism the only common human pathogen to also
cause allergic disease. Further, its pathogenic capac-
ity includes human lungs, airways, paranasal sinuses,
and keratin-rich toenails, all in those without overt
immune deficits. In immunocompromised people,
invasion of lungs, skin, or paranasal sinuses is pro-
gressive and fatal, unless detected rapidly and opti-
mally treated. A. fumigatus produces more allergenic
proteins (n = ∼60) than any other living organism yet
found. These allergens are produced in situ (usually
in the airways) in those with asthma or cystic fibrosis,
greatly worsening the patient’s condition, i.e., driv-
ing mild asthma to severe. All of these forms of as-
pergillosis are preferentially treated with oral triazole
therapy, as the most efficacious and deliverable via in-
travenous and oral routes. With hundreds of thousands
of people with life-threatening invasive aspergillosis
and millions with chronic and allergic aspergillosis, our
dependence on triazole therapy for better health is pro-
found. Given the extraordinary range of biological at-
tributes of A. fumigatus, it is no surprise that another
adaptive mechanism of antifungal drug resistance has
been described (2).

Resistance to azoles is increasing (3). In cases of
invasive disease the majority of resistance is caused
by mutation in the gene encoding the target en-
zyme, Cyp51A. Strains with one resistant allelic vari-
ant dominate in this setting and harbor both a tandem

repeat in the cyp51A promoter (TR34) and a secondary
nonsynonymous mutation within its coding sequence
(L98H). These strains are often pan-azole resistant and
acquired from the environment (4). Importantly, how-
ever, recent work (5) has shown that themost significant
burden of disease caused by A. fumigatus relates to its
chronic forms of infection that last many months or
years. Patients with these conditions receive long-term
therapy with azole drugs and resistance usually occurs
through non–target-mediated mechanisms arising from
mutations acquired during growth of the fungus within
the lung under azole treatment pressure (6). One theory
to account for this discrepancy in resistance profiles is
that the stress responses used by the fungus to survive in
the host allow first tolerance of low azole levels and then,
after mutation, frank resistance to the drug.

A considerable body of evidence concerning
mechanisms of non–target-mediated azole resis-
tance has accumulated in recent years (Table 1). The
observed mechanisms include mitochondrial respira-
tory function, calcium signaling, cell wall processes,
and efflux pumps—a similar resistance landscape to
that observed in yeast fungi such as Candida albicans.
Several of thesemechanisms are related to environmen-
tal stress conditions such as hypoxia and oxidative
damage that may also lead directly to drug resistance
phenotypes.

In PNAS, Li et al. (2) from the Nanjing laboratory of
Ling Lu, building on considerable previous literature,
found a calcium-dependent mitochondrial mode of
action of triazoles against A. fumigatus that connects
several of the previously observed processes. Re-
duced cytosolic calcium allows the transcription factor
CrzA to up-regulate several azole transporters (and
chitin synthetases). Reduced calcium egress from the
mitochondria (mediated by SNPs in Cox10), allows
this imbalance in the cell to occur. Among the up-
regulated genes are AtrF (which our laboratory de-
scribed in 2002) (7), but not Cdr1B, the main triazole
efflux transporter in patient isolates (8). Thus calcium
signaling and mitochondrial functions such as those
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previously observed by others, including our laboratories and
those of Cramer and Steinbach (Table 1), all appear to form part
of the same global regulatory process, probably, as suggested
by Cramer and coworkers (9), a consequence of adaptation to
low oxygen levels with consequent reduction in mitochondrial
respiration. This would require down-regulation of many cyto-
plasmic cellular processes possibly via the CCAAT binding-
protein regulatory system (10). Interestingly the sterol pathway
itself is a key player in oxygen sensing in A. fumigatus (10),
controlled by the end product activation of the srbA transcription
factor.

One implication of this work may be that azole action may not
derive entirely from loss of membrane ergosterol or production of
toxic sterol intermediates but may arise from disruption of important
cellular stress responses required to limit cell self-harm during growth
in a stressful environment.

In the clinical setting, samples from patients are often culture
negative, despite the absence of antifungal therapy. This greatly
hampers the clinical laboratory’s ability to test susceptibility and
detect resistance. While the yield can be increased by high-
volume culture (11), many samples remain steadfastly negative.
Strong PCR signals from these patients could reflect residual
DNA in the airways, but are equally likely to represent “false
negative” cultures. Newly introduced commercial diagnostic
PCR assays include primers and probes to detect common
CYP51A SNPs that confer resistance (12). Unfortunately no commer-
cial assay will detect any of the non–target-based mechanisms of
resistance. Furthermore, frequently negative cultures (conceivably
because of a fitness cost related to resistance) currently prevent
any real determination of the relative incidence of these less com-
mon mechanisms of resistance, especially as some mechanisms are
probably transient and present only under triazole pressure.
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