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Abstract

Purpose—As deep neural networks achieve more success in the wide field of computer vision, 

greater emphasis is being placed on the generalizations of these models for production 

deployment. With sufficiently large training datasets, models can typically avoid overfitting their 

data; however, for medical imaging it is often difficult to obtain enough data from a single site. 

Sharing data between institutions is also frequently nonviable or prohibited due to security 

measures and research compliance constraints, enforced to guard protected health information 

(PHI) and patient anonymity.

Methods—In this paper, we implement cyclic weight transfer with independent datasets from 

multiple geographically disparate sites without compromising PHI. We compare results between 

single-site learning (SSL) and multi-site learning models (MSL) on testing data drawn from each 

of the training sites as well as two other institutions.

Results—The MSL model attains an average Dice Similarity Coefficient (DSC) of 0.690 on the 

holdout institution datasets with a volume correlation of 0.914, respectively corresponding to a 7% 

and 5% statistically significant improvement over the average of both SSL models, which attained 

an average DSC of 0.646 and average correlation of 0.871.

Samuel W. Remedios, samuel.remedios@nih.gov, 10 Center Dr, Bethesda, MD 20814. 

VII. Conflicts of Interest
The authors have no relevant conflicts of interest to disclose.

HHS Public Access
Author manuscript
Med Phys. Author manuscript; available in PMC 2020 January 27.

Published in final edited form as:
Med Phys. 2020 January ; 47(1): 89–98. doi:10.1002/mp.13880.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions—We show that a neural network can be efficiently trained on data from two 

physically remote sites without consolidating patient data to a single location. The resulting 

network improves model generalization and achieves higher average DSCs on external datasets 

than neural networks trained on data from a single source.
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I. Introduction

Automated quantitative analysis of radiological images is becoming increasingly important 

in the pursuit of imaging-based biomarkers. While many successes in medical image 

processing have involved approaches such as atlas-guided techniques1,2, statistical 

methods3,4,5,6,7,8 and classical filter-based techniques 9, deep learning has become a central 

focus of image analysis 10. Neural networks are now being applied to a multitude of 

problems in imaging fields, e.g., to segment body and head scans11,12,13, detect lesions14 

and other abnormalities15, as well as classify and diagnose pathologies16.

Deep learning-based segmentation specifically has seen a recent history of rapid 

advancement. Inception-based17, U-Net18, and ResNet19 neural network architectures have 

all seen success in the segmentation of anatomical brain structures as well as pathologies. 

Additionally, the Mask R-CNN approach has achieved very promising results for parsing 

scenes taken from traffic as well as detection of hemorrhages in head computed tomography 

(CT) scans20 and a related R-CNN has seen success with the detection of extremely small 

objects 21.

The identification and segmentation of intracranial hemorrhages is an important 

consideration for diagnosis, prediction of patient recovery, and for examining correlations 

with long-term neurologic disabilities22 such as cognitive impairment23. Improving the 

efficacy of hemorrhage segmentation will therefore assist developments in understanding 

and treating neurological disorders such as traumatic brain injury (TBI) and stroke.

However, the deployment of these neural networks is not trivial. Neural networks are 

function approximators24, and to properly design, train, and tune them requires sufficient 

data25 with appropriate preprocessing and annotation. Even under ideal conditions, deep 

learning may not perform as expected if the observed dataset is not representative of the 

original data distribution26,27. For example, if new data points deviate far from the 

distribution of the training set used to deploy and train the model, we might expect the 

model to produce sub-par results.

One method to address this problem is to acquire a large enough dataset that will sufficiently 

span the target space. This is extremely challenging with regards to medical imaging, as 

there are many scanner manufacturers, models, protocols, and contrasts28,29 in addition to 

the inherent biological variations. Single institutions are unlikely to have access to or use the 

same scanner hardware and software as another institution. Furthermore, even with respect 
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to a specific class of images, such as head CT scans, anatomical morphology and 

pathologies are highly heterogeneous; see Figure 1.

The Health Insurance Portability and Accountability Act (HIPAA) was established to guard 

protected health information (PHI) as technological advances increased the chances of 

private information leaks30. Part of this protective act includes restrictions on electronic data 

transfers and requirements for de-identification. Data transfer between medical institutions is 

often prohibited to respect patient privacy and anonymity31. Requirements for de-

identification, according to HIPAA, include either the assurance of a qualified expert that de-

identification has been done or the removal of all personally identifiable information from 

the data30.

While it is possible to obtain HIPAA-compliant health data transfer permits, this is a 

rightfully tedious process and often infeasible when considering medical institutions located 

in differing legal jurisdictions32,33,34. Thus, with the restricted ability to accrue large, diverse 

datasets, we propose to train a neural network using multi-site data without medical data 

transfer. Instead of centralizing the data at a single institution, we transfer the model which 

in turn learns in an iterative fashion from data at each site.

The distributive training of neural networks has previously been explored with a few 

different means of implementation. Federated learning aims to update a central neural model 

with distributed datasets by sending copies of the model to each institution, calculating 

gradients from that institution’s data, and sending the gradients back to a centralized 

location to update the model once more35. The motivation for its use came from the need to 

learn from user data on many independent mobile devices. Work has also been done to 

evaluate different techniques to perform distributed learning36. Somewhat related is the 

process of asynchronous stochastic gradient descent, which splits the training data set and 

calculates gradients independently on separate GPUs37 before aggregating them to a central 

model. It aims to speed up learning for deep neural networks and does not necessarily try to 

improve generalizability of the model nor is its use intended for inherently multi-site data.

Continual learning is a set of training techniques for neural networks which allows a model 

to train on new datasets without sacrificing the ability to accurately predict on old 

datasets38,39,40. Recently, distributed weight consolidation41 was proposed, considering the 

multi-site problem as a continual learning problem. The authors constructed neural networks 

which, instead of single values for parameters, used distributions of values for each 

parameter. This allowed for weight averaging of multiple neural networks and the use of a 

common network as a Bayesian prior.

Transfer learning is the process by which some neural model is trained on a different, but 

related task before being trained for the target task42,27. The goal of transfer learning is to 

better initialize the weights of a neural network using somewhat related data. An example of 

transfer learning could be training a model to segment 40 anatomical regions of the brain by 

first training a model on the coarser task of segmenting 3 classes: white matter, grey matter, 

and cerebrospinal fluid.
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Cyclic weight transfer builds upon transfer learning. Instead of a uni-directional transfer of 

weights from one dataset to another, cyclic weight transfer continues to pass a trained model 

between locations43. Chang et al. simulated a multi-site scenario for classification of retinal 

fundus and mammography images by separating an open-source dataset and applying noise 

and other transformations to make the data appear multi-institutional43. The authors 

investigated different training techniques and showed that cyclic weight transfer provided 

the best accuracy and generalizability.

Previously, we described preliminary work applying cyclic weight transfer to multi-site 

data44, utilizing data from the Center for Neuroscience and Regenerative Medicine (CNRM) 

and Vanderbilt University Medical Center (VUMC). It was shown that cyclic weight transfer 

allowed for learning between sites on a CT hemorrhage segmentation task, which was not 

necessarily guaranteed due to differences in scanners, acquisitions, and delineation 

protocols.

Here, we investigate the generalization, defined as the average performance over withheld, 

external datasets, of a multi-site U-Net model trained to segment hemorrhages in patients 

with TBI, improving on our recent results with Inception architectures44. Using head CT 

data from the CNRM and VUMC, a multi-site learning (MSL) neural network is trained to 

convergence and compared against two separate single-site learning (SSL) models. 

Performance is evaluated not only on holdout sets from the training institutions, but also on 

two outside datasets. The distribution of CT image volumes is shown in Table 1.

To the best of our knowledge, beyond our preliminary work,44 this is the first application 

and validation of cyclic weight transfer on geographically separated, multi-institutional head 

CT data with traumatic brain injury. As such, and since cyclic weight transfer is model-

agnostic, we herein do not compare to existing head CT hemorrhage segmentation methods, 

such as those by Muschelli et. al45 and Chang et al.20 We provide code for performing our 

implementation of multi-site learning and expect these other segmentation methods to also 

benefit from the proposed framework.46

II. Materials and Methods

II.A. Data

Data were obtained from five institutions: VUMC, Suburban Hospital, Washington Hospital 

Center, University of Maryland (UMD), and Virginia Commonwealth University (VCU). 

Data from Suburban Hospital and Washington Hospital Center were coalesced and referred 

to here as CNRM data for the purposes of this experiment, in order to provide the model 

with sufficient training data. Data from UMD and VCU are used as holdout datasets.

Every data sample was a de-identified 3D CT scan of a patient presenting with head injury. 

For the CNRM, VCU, and UMD data, images were acquired under the same IRB-approved 

protocol, and participants provided consent for their data to be used for research purposes47. 

For VUMC, imaging data were retrieved retrospectively in de-identified form under IRB 

supervision. Because sharing was not permitted between sites, the CNRM, VCU, and UMD 

data were housed at one site, and the VUMC data were housed at a separate site. Each CT 
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scan was acquired as DICOM and converted to NIFTI by means of dcm2niix48 with all 

intensities in Hounsfield units. Scan resolution was approximately 0.5 × 0.5 × 5 mm3, except 

data from VCU, which was approximately 0.45 × 0.45 × 2.5 mm3 and subsequently 

resampled to 0.5 × 0.5 × 5 mm3 via 3dresample, a part of the AFNI software package49.

All data underwent the same preprocessing steps:

1. Skull-stripping by CT_BET50

2. Rigid transformation to the “RAI” orientation

3. Collect 1, 000 positive and 1,000 negative 255 × 255 2D axial patches from each 

CT volume

A positive patch is one which contains at least one hemorrhage pixel, and a negative patch is 

one which contains zero hemorrhage pixels. Only patches collected from the axial plane 

were considered due to the low through-plane resolution. We did not impose a non-

overlapping constraint on the patches; although no collected patches are identical, redundant 

information in patches are supplemented by additional spatial context where patches are not 

equal. Additionally, as our model is a convolutional neural network, patches are shuffled 

each epoch during training. Patches that could have redundant information are therefore 

mixed with others in the batch, and the calculated gradient will still allow for learning of the 

recognition of hemorrhages.

Two independent raters performed manual segmentations for all data, which were 

subsequently reviewed independently by a neuroradiologist. One rater segmented data from 

VUMC, and the other rater segmented data from the CNRM, UMD, and VCU. The data 

distributions and hemorrhage volume statistics for each site are presented in Table 1.

Data from the CNRM was acquired using GE MEDICAL SYSTEMS LightSpeed VCT and 

Philips Brilliance 64 scanners, while data from VUMC was acquired using the following 

scanner models: Philips Brilliance 64, Philips Mx8000 IDT 16, GE MEDICAL SYSTEMS 

LightSpeed Ultra, GE MEDICAL SYSTEMS BrightSpeed, and MX8000IDT Philips 

Brilliance 64. At UMD, the Philips Brilliance 64 and Philips Brilliance 40 scanners were 

used and at VCU, the SIEMENS SOMATOM Definition Flash, AS, and AS+ scanner 

models were used. Note also that in addition to scanner differences, VUMC patients 

generally presented with much larger lesions (Table 1).

II.B. Model Architecture and Hyperparameters

Previously, an Inception-based architecture was shown to perform well on TBI lesion 

segmentation from magnetic resonance images51 as well as for CT hemorrhage 

segmentation44. Here, we implemented a variation of the U-Net18 architecture using large 2-

D patches, finding that it yielded fewer false positives compared to the Inception network. 

The U-Net architecture is also very commonly used in medical image segmentation. Our 

demonstration of multi-site learning is therefore likely to benefit other approaches using 

similar networks.
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Our implementation of the U-Net is illustrated in Figure 2. Training occurred on 2D patches 

extracted from the training datasets and continued to convergence, defined as improvement 

of model loss by less than 1 × 10−4 in 10 epochs on the validation patch set. This is 

visualized for all models in Figure 3. Continuous Dice coefficient 52(cDC) was used as the 

loss function due to its improved efficacy over binary crossentropy52, and the learning rate 

was set at 1 × 10−4 with the Adam53 optimizer. Due to the final sigmoidal activation 

function, the final output is a probability of hemorrhage at each voxel on [0, 1]. Therefore, to 

obtain a binary mask and measure volumes, the output was thresholded at 0.5 to form a 

mask of hemorrhage vs non-hemorrhage. Our primary focus in this work, however, is not the 

neural network architecture, but the implementation in training across multiple sites, as 

described next.

II.C. Training

To ensure patient privacy, data at each institution was never accessible to investigators 

outside that site. As such, our implementation of MSL established a tertiary secure server 

which could be accessed by the CNRM and VUMC on which only the neural network 

weights were kept. This model was loaded, trained, and saved via secure shell access by 

means of identical Python scripts installed at both institutions, permitting cyclic weight 

transfer without opening public channels to either site’s data46.

Regarding training strategies, five models were trained. First, traditional SSL was performed 

over CNRM and VUMC datasets. Next, MSL was implemented by iteratively training the 

neural network on both the CNRM and VUMC training datasets. The model would view one 

institution’s data for one epoch, and the other institution’s data on the next. Alternations 

between sites for every batch were not considered, as the additional real time overhead of 

sending weights through an SSH tunnel becomes infeasible. Finally, to further investigate 

properties of MSL, we trained two additional MSL models, labeled MSL 1/2 A and MSL 

1/2 B, using random halves of the training datasets at the CNRM and VUMC, thus 

restricting the number of training data points for the MSL model to be equivalent to that of 

the SSL models. In other words, MSL 1/2 A trained on 16 randomly selected images from 

the CNRM and 16 randomly selected images from VUMC, and MSL 1/2 B trained on the 

remaining 16 images from the CNRM and the remaining 17 images from VUMC.

III. Results

Five distinct sets of weights were present after training: CNRM SSL, VUMC SSL, MSL, 

MSL 1/2 A and MSL 1/2 B. All models converged at different epochs due to our 

convergence criteria, illustrated in Figure 3. Each of these was evaluated over the four 

holdout testing datasets, two of which were external institutions. We validated all weight sets 

with two quantitative metrics: DSC and hemorrhage volume correlation between the 

automatic and manual segmentations. Further explanation of these measurements follows.

III.A. Qualitative Evaluation

Three CT axial slices from different patients are shown in Fig. 4 alongside comparisons 

between the manual gold standard segmentation and the five network predictions. All 
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models accurately segment the larger, more apparent lesions while more false positives and 

false negatives occur on smaller lesions, particularly subarachnoid hemorrhages.

III.B. Quantitative Evaluation

The DSC was utilized to evaluate the accuracy of each network’s automatic segmentations, 

not to be confused with the cDC loss function. As an additional metric, we also computed 

the Pearson correlation coefficient between the total volume in mm3 of each model’s 

predicted segmentations and the raters’ manual segmentations. These values are reflected in 

Table 2. Overall, the MSL model performs best across all data on average, and individually 

outperforms the two SSL models significantly on the external UMD and VCU datasets, 

visible in Figures 5c and 5d

The distributions of DSCs for each model at each site are illustrated in Figure 5. 

Significance was computed via the Wilcoxon signed-rank test. For the CNRM and VUMC 

testing datasets, best performance was achieved with the corresponding SSL model. 

Sensibly, for the CNRM data the MSL model outperforms the VUMC model and for the 

VUMC data the MSL outperforms the CNRM model. Regarding the two external datasets, 

the MSL model significantly outperforms both SSL models. Note the poor performance of 

the SSL VUMC model on the CNRM and VCU datasets; this could be because VUMC data 

is clinical data, and CNRM, UMD, and VCU data are all on the same research protocol, 

which presents a specific patient selection bias. Also of note is the performance of the two 

MSL 1/2 models, in which we can see comparable performance to the MSL full model, 

though the 1/2 models appear to lack some salient features necessary for better segmentation 

in some testing datasets. This is possibly an explanation for the disparity in DSCs between 

MSL 1/2 A and MSL 1/2 B on the UMD and VCU datasets.

IV. Discussion

As expected, both SSL models perform best on their respective testing datasets, but do not 

generalize as well to the outside sources. It is worth noting that the CNRM SSL model 

performs comparably to the MSL model on the two external datasets, potentially related to 

the sizes of hemorrhage as described in Table 1, as the volumes of objects being compared 

are known to bias the DSC.

Considering both MSL 1/2 models, we find similar performance between the MSL 1/2 

models and either SSL model, but less variability. Notably, as apparent in Table 2, the MSL 

1/2 models achieve similar results to the MSL model, with disparity occurring likely due to 

the random split of data at each institution during the training phase.

Note that MSL does not outperform SSL models over each task individually. On average, 

though, when considering all datasets MSL performs the best significantly. Table 2 

demonstrates that training with MSL allows for inclusion of datasets while preserving 

patient privacy, and thus models trained in this fashion are not susceptible to overfitting a 

single institutions dataset, seen by VUMC SSL’s performance on the VCU dataset and 

CNRM SSL’s performance on VUMC and UMD datasets. We summarize this with the mean 

performance of all data in Table 2.

Remedios et al. Page 7

Med Phys. Author manuscript; available in PMC 2020 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, the evaluation of multi-site testing data is not straightforward. We take the mean of 

each model’s performance at every site and interpret models as better or worse on average 

over these sites, but there are more factors involved. For example, Table 2 shows that 

regarding the VCU data, the CNRM SSL model significantly outperforms the MSL model, 

but regarding the VUMC and UMD data, the MSL model significantly outperforms the 

CNRM SSL model, and by a much larger DSC. This suggests a couple of possibilities. First, 

it is possible that the scans in the CNRM dataset had more in common with the VCU data 

than the VUMC data (such as class, location, and size of hemorrhage, scan acquisition 

parameters, CT dosage). This could explain how the CNRM SSL model achieved a higher 

DSC on the VCU data compared to the MSL model, but significantly lower DSC on the 

VUMC and UMD data sets. Second, the epoch of convergence for the MSL model occurred 

at the VUMC site, leading to a potential shift towards increased performance for VUMC 

data and decreased performance for CNRM data. Our findings suggest that for a controlled, 

homogeneous data set, it is not necessary, and in fact may be preferable, to train a model 

only using that data. However, for deployment of the model across diverse data sets, 

improved generalization afforded by larger scale, multi-site training will yield superior 

performance on average.

Inter-rater variability was also calculated for 10 images in the CNRM dataset, also visible in 

Table 2. Although the manual segmentations were reviewed by a neuroradiologist, a 

discrepancy still exists due to the challenge of applying binary labels to a boundary that is 

not perfectly defined. This discrepancy between human raters may explain some of the 

variability in scores across the two SSL models. Regarding the CNRM dataset specifically, 

the DSC calculated between the CNRM SSL and all MSL models and the ground truth are 

comparable or more performant than the DSC calculated between the two human raters. 

Note the inter-rater correlation, however. With higher volume correlation but lower DSCs, 

the two human segmentations may have very similar masks in general, but disagree with 

regards to the edges of hemorrhages.

Despite our quantitative analysis of segmentation results, our goal is not to prove that more 

data leads to better generalization, which is well known, but rather that cyclic weight 

transfer can be applied to traditional convolutional neural networks between institutions in 

different locations. Specifically, our implementation of cyclic weight transfer does not 

detract from model performance and is a step towards multi-site data collaborations which 

cannot share patient data between sites.

Practical considerations restrict alternative multi-site training methods. Federated learning36 

is theoretically sound but has a high programming overhead, requiring manipulation of 

gradients and proper handling of asynchronous updates. Distributed weight consolidation 41 

(requires a Bayesian neural network and thus prevents use of non-Bayesian pre-trained 

networks, and also has a high programming overhead, requiring that all weights in the 

network represent probability distributions that must be sampled appropriately. Overall, both 

these methods require application-specific implementations, and therefore cannot be easily 

adapted across different types of CNN models.

Remedios et al. Page 8

Med Phys. Author manuscript; available in PMC 2020 January 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast, the main advantage of using cyclic weight transfer is its lower programming 

overhead and model agnostic approach. However, it suffers two main drawbacks: potential 

instability due to alternation of training location (converging at one institute and not the 

others) and higher real-time cost (all institutes must wait their turn). Our results for TBI 

lesion segmentation show that the potential instability did not significantly limit 

performance when applied to a real, multi-site dataset. Regarding real-time cost, our training 

alternated between sites every epoch instead of every batch, resulting in a training time of 

approximately 200 hours. With the added overhead of network data transfer, an alternating 

batch approach would have required an estimated four to six months to achieve convergence.

V. Conclusions

From this work, we conclude that multi-site training of a neural network model is feasible 

and exhibits improved generalization to external datasets. With our implementation of cyclic 

weight transfer, CNN models can be constructed with traditional means and can learn from 

patient image data that is never transferred, preserving PHI confidentiality. Recently, there 

have been efforts towards ensuring neural network models are differentially private54, such 

that examining the model weights after training reveals no information regarding the training 

dataset. Our MSL models are trained with 2D patches extracted from axial slices, alleviating 

some concerns. However, future work will consider implementations that guarantee 

differential privacy as well as explore comparisons to federated learning and other 

asynchronous gradient averaging methods for distributed learning.
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Figure 1: 
Representative 5.0 mm thick transverse CT sections through the head in 10 subjects with 

TBI. In-plane resolution is approximately 0.5 × 0.5 mm. In each case, the hemorrhagic 

lesions appear intermediate density between normal brain tissue and bone. Note the 

heterogeneity of size, location, density and configuration.
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Figure 2: 
The U-Net18 architecture is illustrated above. Downsampling convolution and upsampling 

convolution blocks are indicated in red and blue with their constituent parts outlined below 

the model architecture diagram. Convolution layers are indicated in yellow, with notation n 
@ k2 representing n 2D kernels of size k × k. The activation for all convolution layers is 

ReLU, except for the final 1 @ 12 convolution which uses a sigmoid activation. Up @ k2 

and Max @ k2 respectively correspond to upsampling and max pooling with kernels of size 

3 × 3 and strides k × k. Feature concatenation occurs at each up convolution block where 

indicated.
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Figure 3: 
Comparison of training curves for multi-site learning (MSL) vs single site learning (SSL) for 

each of the five models. Since convergence is defined as improvement of model loss by less 

than 1 × 10−4 in 10 epochs on the validation patch set, the curves between models above 

terminate at different epochs. Note how MSL and MSL 1/2 B exhibit oscillating loss values, 

yet still see convergence for both sites. Convergence still occurs between oscillations 

because the criteria only considers loss values at sites independently. It is interesting that 

MSL 1/2 A does not observe the same jumps in loss between institutions; this may be due to 

similarities in the randomly chosen datasets between sites.
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Figure 4: 
Results of automatic segmentations compared with manual gold standard for each training 

method for 3 cases representing a range of DSCs (top quartile - Case 1 (VUMC dataset), 

median - Case 2 (CNRM dataset), and bottom quartile - Case 3(VCU dataset)). For each 

case, manual segmentation only (FN) is green, automatic segmentation only (FP) is red, and 

the overlap of manual and automatic segmentations (TP) is yellow. Black is TN. 

Corresponding DSC are overlaid. As we aim to show that MSL generalizes across different 

institutions on average, we encourage consideration of DSCs as a whole rather than the 

individual cases.
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Figure 5: 
Model DSCs over each dataset. Regarding significance tests, * corresponds to p < 0.05, ** 

corresponds to p < 0.01, and * * * corresponds to p < 0.001, according to the Wilcoxon 

signed-rank test. For p >= 0.05, no comparison brackets are drawn.
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Table 1:

Distribution of CT image volumes and hemorrhage volume statistics between training and test sets for each 

data set. Data from UMD and VCU were not used to train any model. Note the disparity in hemorrhage size 

for each data set, particularly between VUMC data and the rest.

Location # Training Images # Testing Images Median Hemorrhage Volume Mean Hemorrhage Volume

VUMC 33 29 25.3 mm3 38.4 mm3

CNRM 34 34 11.2 mm3 18.6 mm3

UMD Holdout 11 9.9 mm3 18.3 mm3

VCU Holdout 20 9.2 mm3 12.7 mm3
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Table 2:

Average DSCs and Pearson correlation coefficients for the five trained models. Inter-rater metrics are 

calculated from 10 images segmented by two independent raters. Excluding inter-rater metrics, an asterisk 

indicates significant improvements in DSC (p < 0.05) between the MSL and each of the CNRM SSL and 

VUMC SSL models as evaluated by the Wilcoxon signed-rank test, and bold text indicates the highest Pearson 

correlation coefficient between automatic and manual segmented hemorrhage volumes.

CNRM Data VUMC Data UMD Data VCU Data Mean of all data

DSC Correlation DSC Correlation DSC Correlation DSC Correlation DSC Correlation

Inter-Rater 0.687 0.996 n/a n/a n/a n/a n/a n/a n/a n/a

CNRM SSL 0.734* 0.955 0.684 0.863 0.670 0.927 0.631* 0.814 0.680 0.890

VUMC SSL 0.582 0.952 0.737 0.888 0.666 0.989 0.458 0.575 0.612 0.851

MSL 0.684 0.953 0.748* 0.889 0.705* 0.988 0.621 0.826 0.690* 0.914

MSL 1/2 A 0.670 0.887 0.746 0.870 0.655 0.979 0.586 0.898 0.664 0.909

MSL 1/2 B 0.660 0.912 0.719 0.804 0.701 0.969 0.571 0.760 0.663 0.861
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