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Abstract

Commensal microbes inhabit barrier surfaces, providing a first line of defense against invading 

pathogens, aiding in metabolic function of the host, and playing a vital role in immune 

development and function. Several recent studies have demonstrated that commensal microbes 

influence systemic immune function and homeostasis. For patients with extramucosal cancers, or 

cancers occurring distal to barrier surfaces, the role of commensal microbes in influencing tumor 

progression is beginning to be appreciated. Extrinsic factors such as chronic inflammation, 

antibiotics, and chemotherapy dysregulate commensal homeostasis, and drive tumor-promoting 

systemic inflammation through a variety of mechanisms including disruption of barrier function 

and bacterial translocation, release of soluble inflammatory mediators, and systemic changes in 

metabolic output. Conversely, it has also been demonstrated that certain immune therapies, 

immunogenic chemotherapies, and checkpoint inhibitors rely on the commensal microbiota to 

facilitate anti-tumor immune responses. Thus, it is evident that the mechanisms associated with 

commensal microbe facilitation of both pro- and anti-tumor immune responses are context 

dependent and rely upon a variety of factors present within the tumor microenvironment and 

systemic periphery. The goal of this review is to highlight the various contexts during which 

commensal microbes orchestrate systemic immune function with a focus on describing possible 

scenarios where the loss of microbial homeostasis enhances tumor progression.
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1. Introduction

Commensal microbes, comprised of bacteria, archaea, viruses, and eukaryotes, inhabit all 

mucosal barrier surfaces, providing a physical barrier in defense against invading pathogens. 

Additionally, commensal microbes play essential roles in the maintenance of local tissue and 

immune homeostasis within the gastrointestinal tract [1–5], the skin [6, 7], the urogenital 

tract [8, 9] and the oral/respiratory tract [10–13]. Colonization with commensal microbes at 

birth is critical for the postnatal development and function of mucosal immunity [14, 15]. 

However, commensal-mediated immune conditioning extends beyond mucosal surfaces, 
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impacting both systemic immune function and homeostasis. Changes in commensal 

homeostasis are dynamic and occur gradually during aging or from changes in diet. Acute 

disturbances resulting from antibiotic usage, infection, or chemotherapy can also drastically 

alter established commensal equilibrium, rapidly culminating in a loss of immune 

homeostasis. Loss of commensal homeostasis, or commensal dysbiosis, can lead to 

increased inflammation and immune pathology that ultimately affects the systemic 

periphery. In this context, alterations to commensal equilibrium induce pathological 

inflammation that is supportive of tumor growth. Although we do not yet have a firm 

understanding of the precise microbial populations that associate with tumor-promoting 

inflammation, it is evident that commensal microbes influence the outcome of extramucosal 

tumors.

Over three decades ago, scientists began to observe that certain gram-negative commensal 

species influence myelopoiesis and the emergence of granulocyte precursors from the bone 

marrow [16–18], suggesting that commensal microbes influence immune function through 

undefined interactions with distal sites such as the bone marrow. Germ-free mice have a 

deficit in the myeloid compartment of bone marrow resulting in increased susceptibility to 

infection with Listeria. However, restoration of immune function is achieved through 

recolonization of germ-free mice with fecal contents from conventional mice, enabling 

clearance of Listeria [19]. Additional studies demonstrated that commensal products, such as 

lipopolysaccharide (LPS) or peptidoglycan provide a tonic level of stimulation through Toll-

like receptors (TLR) and other innate receptors expressed by myeloid cells, driving 

myelopoiesis [20] and enhancing myeloid clearance of bacterial [21] and viral pathogens 

[22, 23]. Commensal microbes are also associated with the development of mucosal-

associated and peripheral lymphocytes such as Foxp3+ regulatory T cells [24–26], IL-17-

producing αβ T cells [27, 28] and γδ T cells [29], and invariant NKT cells [30, 31]. Data 

from the Human Functional Genomics Project supports much of what has been elucidated in 

mice, demonstrating that distinct commensal or metabolic signatures are associated with 

both innate and adaptive cytokine response patterns [32]. These studies underscore the 

complex immunoregulatory influence that commensal microbes have on local and systemic 

immune homeostasis in healthy individuals.

Cancer is a systemic disease: inflammatory immune cells, chemokines and cytokines distally 

influence tumor growth and metastatic progression. Cancer can impact the composition of 

commensal microbes locally within affected tissues [33–36] or distally within the intestines 

[37, 38], altering the immune environment in favor of tumor growth and global immune 

suppression [39]. The relationship between commensal microbes, inflammation, and 

oncogenesis is well-documented for colorectal cancer [40–42], which is locally influenced 

by dysregulation of commensal homeostasis as a result of chronic antibiotic exposure, diet, 

age, infection, and genetic polymorphisms that drive inflammation and oncogenesis. Cancer 

patients may also have disruptions in commensal homeostasis as a result of chemotherapy, 

administration of antibiotics, whole body irradiation, cachexia, and/or systemic tumor-

promoting inflammation (Figure 1). Several recent studies have begun to link changes within 

the composition of commensal microbes to global modulation of tumor-promoting 

inflammatory cytokines [39] and have identified certain microbes that facilitate enhancement 

of anti-tumor immune responses during immunotherapy [43–45] and chemotherapy [43, 46]. 
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Thus, patients with extramucosal tumors, occurring distal to mucosal surfaces, are also 

influenced by alterations in commensal composition. In this review, we will highlight 

mechanisms associated with commensal-induced pathological inflammation with a focus on 

detailing how microbes, microbial products, and/or disruptions in commensal homeostasis 

impact extramucosal cancer progression.

2. Alterations to microbiome associated with inflammation and cancer

In healthy adults, the abundance of certain commensal species is associated with the 

functional ability of both myeloid and lymphoid cells to produce inflammatory cytokines 

such as TNFα, IL-6, IL-1β, IFNγ, IL-17 and IL-22 [32]. These cytokines are all capable of 

influencing tumor progression through multiple mechanisms, including the promotion of 

tumor growth through the recruitment of suppressive immune cells into the tumor 

microenvironment via TNFα, IL-6, IL-1β or facilitating enhanced tumor immune 

surveillance via IFNγ and IL-17. However, microbial populations associated with 

inflammation may be altered during states of dysbiosis, defined as an imbalance of 

commensal homeostasis and resultant outgrowth of pathological microbial species. It is 

well-accepted that commensal dysbiosis can drive pathologies within barrier surfaces, but 

dysbiosis also results in systemic damage to distal organs due to aberrant inflammation and 

metabolic dysregulation [47]. Dysbiosis can be induced by multiple mechanisms, including 

diet or genetic-induced dysbiosis, antibiotic-induced dysbiosis, and dysbiosis due to tumor-

promoting chronic inflammation, all of which associate with a more unfavorable outcome 

during cancer.

2.1 Inflammation, dysbiosis, and cancer

There are several studies linking dysbiosis with cancer and inflammation, although it 

remains relatively undefined whether dysbiosis directly impacts tumor progression or serves 

as a biomarker of oncogenesis. Dysbiosis has been demonstrated in patients with advanced 

breast cancer, with breast tumors having reduced microbial diversity compared to normal 

breast tissue [34]. In these patients, reduced diversity of tumor-associated commensal 

species corresponds with reduced expression of inflammatory innate signaling receptors 

such as TLR2, TLR5, and nucleotide-binding oligomerization domain–containing protein 

(NOD)1 and NOD2 [34]. These innate recognition receptors may serve a protective role in 

breast tissue, as TLR5 signaling and activation of MAIP1S has been shown to inhibit breast 

tumor growth through the induction of autophagy and tumor cell death [48, 49]. These 

studies suggest that dysbiosis within the breast tissue may occur through dysregulation of 

innate signaling receptors, promoting the outgrowth of inflammatory or DNA-damaging 

bacterial species. Indeed, Urbaniak et al. determined that Escherichia coli and 

Staphylococcus epidermidis isolates from dysbiotic breast tissues are able to directly induce 

DNA damage in a tumor cell line [50]. Microbial sequencing of an additional cohort of 

breast tissue specimens found a tumor-specific increase in Fusobacterium [51], a genus of 

bacteria which harbors the species F. nucleatum, a bacterium directly associated with driving 

inflammation and carcinogenesis in colorectal cancer [52, 53].
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Changes in the composition of commensal microbes within the reproductive tract are also 

associated with increased inflammation. Women with endometrial cancer have dysbiosis in 

the vagina, cervix, and endometrium that is associated with malignant progression [54]. 

Protein analysis of cervical samples revealed that severe cervical dysbiosis correlates with 

elevated levels of both proinflammatory cytokines and enzymes associated with proteolysis 

and alterations to the cervical mucosa and cytoskeleton [55]. Furthermore, alterations in the 

composition of bacteria within the reproductive tract are associated with increased levels of 

GM-CSF, TNFα, IFNγ, and IL-1β [56]: cytokines that promote myeloid infiltration within 

tumor beds. Together, these studies suggest that severe dysbiosis within the reproductive 

tract leads to an increase in inflammation and pathology, resulting in damage to mucosal 

surfaces. Importantly, these studies highlight that the location, composition and function of 

the normal microflora within each unique niche serves a specific homeostatic role.

2.2. Diet-induced dysbiosis and cancer

Diet-induced dysbiosis and obesity are prevalent health issues in developed countries. 

Morbidities associated with obesity include insulin resistance, cardiovascular disease, and an 

increased incidence of several types of cancers [57–60]. In a healthy individual, commensal 

metabolic byproducts help to stabilize commensal equilibrium, preventing the growth of 

inflammatory species which compete with the host for nutrients. In homeostatic conditions, 

commensal microbes also salvage potentially toxic nutritional byproducts such as bile, 

which can accumulate, cause toxicity, and in some instances, induce DNA damage leading 

to oncogenic transformation [61]. A previous study comparing the bacterial composition of 

obese and non-obese individuals found that obese individuals have significantly reduced 

gene richness and compositional diversity within their microbiota, with a predominance of 

Bacteroides spp. occurring within the dysbiotic gastrointestinal tract [62]. Functionally, this 

study found that commensal bacteria from obese individuals have microbial gene signatures 

associated with inflammation and mucosal damage, including increased proportions of 

inflammatory bacterial species, a reduced capacity to produce immune regulatory butyrate, 

an increase in mucus degrading proteins, and an increased capacity to handle oxidative stress 

[62]. Diet-induced changes in microbial diversity can therefore result in systemic 

inflammation and a disruption in homeostasis due to altered metabolite output and/or a 

disruption in mucosal integrity, leading to bacterial translocation and systemic distribution of 

shed microbial products (Figure 1), which we will discuss in greater detail below.

In mice, a high-fat diet results in changes within the composition of commensal microbes, 

promoting decreased production of immunoregulatory metabolites and localized 

inflammation within the stomach epithelium, leading to cancer [63]. Fecal transplant 

experiments have demonstrated that transfer of the microbiome from mice fed a high-fat diet 

was sufficient to increase cancer incidence in recipient animals [63], providing evidence that 

diet-induced changes to the composition of commensal microbes is sufficient to influence 

cancer progression independent of the physiologic manifestations associated with obesity. 

Administration of the immune regulatory short-chain fatty acid butyrate, which was reduced 

in people and animals with diet-induced changes to commensal equilibrium [62, 63], was 

also sufficient to reduce histopathology and tumor progression in animals fed a high-fat diet 

[63]. Butyrate directly inhibits the growth of multiple tumor types through inhibition of 
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histone deacetylases and potent anti-inflammatory activity [64], suggesting that dietary 

intervention through consumption of fiber-rich foods could provide therapeutic benefit 

during tumor progression. The effects of butyrate will be discussed in further detail in 

section 4.1.

Diets high in fat and low in fiber also result in the accumulation of metabolites associated 

with increased toxicity. For example, obesity has been linked to increased systemic levels of 

deoxycholic acid [61]. Mechanistically, circulation of deoxycholic acid through the hepatic 

portal vein induces an inflammatory and pro-tumorigenic senescence-associated secretory 

phenotype in hepatic stellate cells, resulting in inflammation-induced damage of adjacent 

hepatic cells and resultant oncogenesis [65]. Supporting a role for this DNA-damage 

inducing metabolite, rats fed a diet containing high amounts of deoxycholic acid developed 

pre-neoplastic liver lesions [66]. Alterations in commensal microbe composition resulting 

from dietary changes may also influence additional bacterial metabolites as highlighted in 

Table 1.

2.3 Antibiotic-induced dysbiosis

Although antibiotics have significant health benefits for individuals with microbial 

infections, excessive antibiotic exposure can negatively impact commensal biodiversity and 

immune function [67–69]. According to the CDC, greater than 5 out of 6 individuals are 

prescribed antibiotics annually in the United States [70], often unnecessarily. Additionally, 

cancer patients are frequently prescribed prophylactic antibiotics due to severe immune 

suppression and susceptibility to infectious diseases. Several studies have demonstrated 

associations between chronic/prolonged antibiotic use and increased cancer risk. In one 

study, women prescribed 11 or more courses of the same antibiotics had an increased 

association with developing breast cancer [71]. While a large-scale retrospective study of 

over 2 million women found only a slight increase in hazard risk of breast cancer in women 

using all classes of antibiotics for more than 101 days, women prescribed 3 or more courses 

of tetracyclines over a span of more than 101 days have a significantly greater risk of breast 

cancer than women given other types of antibiotics [72, 73]. Similarly, in a large multi-

cancer health database survey, it was found that the risk for lung, esophageal, gastric and 

renal cancers significantly increases in individuals prescribed penicillins more than 5 times. 

The risk for lung and renal cancers is significantly associated with multiple courses of 

macrolides [73]. This study also confirmed that long-term exposure to tetracyclines 

increases the risk of breast cancer [73]. Overall, these retrospective studies suggest that 

although a single exposure to antibiotics does not significantly influence cancer risk, 

multiple and long-term exposures to single classes of antibiotics increase the incidence of 

numerous cancers. Although the mechanisms linking antibiotic use and cancer development 

and progression are unknown, one might speculate that chronic antibiotic exposure drives 

prolonged dysbiosis, inflammation, and tissue damage that leads to an increased risk for 

oncogenic transformation in susceptible tissues. However, undefined host or environmental 

factors may result in the need for frequent antibiotic courses and may also be associated with 

an increased risk of cancer. Further studies are necessary to determine whether there is a 

direct relationship between antibiotics and cancer.
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Antibiotics, especially tetracyclines [74], are also capable of directly influencing tumor 

progression through the induction of mitochondrial dysfunction, increased production of 

reactive oxygen species (ROS), and corresponding DNA damage [75]. Antibiotics have been 

shown to directly influence immune cell function in addition to modulating the composition 

of commensal microbes, resulting in the attenuation of immune surveillance. Metastatic 

growth of Lewis lung carcinoma and B16F10 melanoma is enhanced in the lungs of 

antibiotic-treated mice which is mediated by a reduction in lung-protective IL-17-producing 

γδ T cells. This increase in metastatic growth was lost upon administration of recombinant 

IL-17 [76], demonstrating that the systemic influence of commensal microbes on the 

induction of immunoregulatory IL-17 T cells can serve a protective role in the establishment 

of anti-tumor immunity. However, other studies have demonstrated that antibiotic treatment 

induces the production of immune-suppressive and tumor-promoting mediators, through the 

induction of dysbiosis. Antibiotic-induced dysbiosis promotes the outgrowth of Candida 

species in the lungs, resulting in an increase in prostaglandin E2 (PGE2) production and 

polarization of macrophages into an M2 suppressive phenotype [77]. These studies highlight 

the contextual relationship between commensal microbes and the immune system. By 

further understanding the functional consequences of alterations to microbial diversity, we 

may be able to develop unique probiotic cocktails to attenuate various pathological 

conditions, especially in immune compromised patients that require antibiotic treatment.

2.4 Genetic mutations associated with effects on bacterial composition/tumorigenesis

Analysis of data from the Human Microbiome Project demonstrated a significant association 

between certain single nucleotide polymorphisms (SNP) and the composition of commensal 

microbes at several barrier sites [78]. Polymorphisms associated with immunological 

pathways and commensal-driven diseases significantly impact microbial composition [78]. 

This human data supports several mouse studies demonstrating that single genes associated 

with microbial sensing are significantly able to impact the composition of commensal 

microbes and overall host physiology [79–81].

Approximately 7% of the general population harbors a dominant-negative SNP mutation 

within the flagellin-binding domain of TLR5, resulting in ablation of TLR5 signaling [82]. 

This polymorphism was shown to have an influence on the outcome and survival of patients 

with various extramucosal malignancies [39]. Mechanistically, TLR5 signaling through 

interactions with commensal microbes results in systemic elevation of IL-6 and the 

recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. 

MDSCs secreting adenosine induce galectin-1 expression in γδ T cells, resulting in 

cumulative suppression of tumor-associated immune responses and more rapid progression 

of ovarian tumors and sarcomas [39]. This study was the first to suggest that genetic 

polymorphisms present within the human population, mediated through interactions with 

commensal microbes and the immune system, could influence the outcome of extramucosal 

cancers.

A recent study has demonstrated that retinoic acid-inducible gene-I (RIG-I), a viral RNA 

receptor capable of recognizing double-stranded RNA viruses, regulates the composition of 

commensal microbes through the production of IgA and the downstream induction of 
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Reg3γ, an antimicrobial peptide important in controlling the composition of commensal 

microbes [83]. RIG-I-deficient mice have increased dysbiosis and emergence to colorectal 

cancer upon treatment with AOM/DSS. Clinically, these findings are relevant, as human 

colorectal cancer specimens have significantly reduced levels of RIG-I, suggesting that 

downregulation of this receptor results in dysbiosis and susceptibility to colorectal cancer 

[83]. Expression of NOD2 on the colonic mucosa was also found to influence the 

composition of commensal microbes and the inflammatory microenvironment within the 

intestines, leading to an increased incidence of colitis-associated cancer in NOD2-deficient 

mice [84]. Although most studies have focused upon the role of NOD receptors in 

modulating intestinal malignancies, a study using NOD-deficient breast tumor cell lines 

demonstrated that breast tumors lacking NOD were more resistant to TNFα-induced 

apoptosis and were more sensitive to estrogen-mediated tumor growth [85]. Thus, similar to 

what has been reported in colorectal cancer, NOD expression on the tumor epithelium may 

have a protective role in extramucosal cancers, such as breast cancer. However, the 

attenuation of tumor growth in this model is primarily mediated through NOD-dependent 

activation of caspase 8, resulting in apoptosis [85, 86]. Because these studies were 

performed using in vitro models, this mechanism may be mediated independently of 

commensal microbiota within the breast tissue.

3. Microbial products associated with inflammation and tumor 

progression

While most bacteria comprising the human microbiota are compartmentalized on the skin 

and in the gastrointestinal and female reproductive tracts, recent studies have demonstrated 

that additional sites contain regional microbiota. Organs previously considered to be sterile 

in healthy individuals, such as lymph nodes [87–89] and the bladder [90–93], are now 

known to contain bacteria under homeostatic conditions without any observable pathological 

consequence. Additionally, some bacterial-derived products reach systemic circulation [94, 

95], which may influence tumor progression. For example, disruption in the 

compartmentalization of commensal microbes or enhanced microbial shedding of 

inflammatory ligands during pathological conditions has the potential to drive systemic 

tumor-promoting inflammation, induce DNA damage, and promote cellular proliferation; all 

of which promote the progression of extramucosal tumors.

3.1 Bacterial components circulating in the periphery

Bacterial LPS, also known as endotoxin, is the best-characterized bacterial component found 

in systemic circulation. A cell wall component of gram negative bacteria, LPS is the major 

ligand for TLR4 and stimulates proinflammatory cytokine production through binding the 

receptor. Additionally, LPS has pro-angiogenic effects [96–98]. In the context of wound 

healing, pro-inflammatory and pro-angiogenic functions of acute LPS exposure are 

considered beneficial, but chronic LPS-mediated inflammation could be detrimental during 

tumorigenesis and metastasis. Importantly, though gram negative bacteria shed LPS as a 

normal part of cell division, antibiotics further promote LPS shedding through their 

bactericidal effects [99, 100], suggesting that during dysbiosis, LPS levels may be elevated 

in the periphery.
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In addition to promoting proinflammatory cytokine production, LPS also drives myeloid 

cells to produce ROS [101, 102]. The superoxide radicals produced by this process cause 

direct DNA damage, potentially contributing to mutations leading to cellular transformation 

[103]. The resultant inflammation from LPS exposure contributes both to hepatic injury and 

the induction of acute pancreatitis in mice [104, 105]. This inflammation accelerates the 

development of pancreatic cancer in mice with a genetic driver mutation in K-ras [106, 107]. 

As mutated K-ras has been identified in a substantial proportion of healthy individuals, 

increased levels of circulating endotoxin may synergize with K-ras induced transformation, 

driving tumorigenesis [108, 109]. Furthermore, systemic exposure to LPS enhances 

metastasis to both the lungs and liver in several different tumor models [110–112]. LPS may 

act directly on tumor cells, eliciting production of mediators that influence epithelial 

mesenchymal transition and promote enhanced metastasis through the induction of cell 

adhesion molecules that facilitate invasion, as demonstrated using in vitro cell culture 

spheroid models [113, 114]. Additionally, TLR4 expression associates with metastasis to 

distal lymph nodes in patients with breast cancer [115]. In vitro stimulation of breast tumor 

cell lines with LPS induces a significant increase in tumor-specific production of matrix 

metalloproteinases and cytokines associated with angiogenesis, such as VEGF and IL-6. In 

immunocompromised mice, this ultimately results in increased metastatic dissemination to 

the liver [115].

Another bacterial product associated with systemic inflammatory effects is flagellin. The 

only known ligand for TLR5, flagellin is the main protein component of flagellum on 

flagellated bacteria. Though it has been reported to be detectable in healthy human serum, 

systemic concentrations of flagellin in the serum increase in the context of inflammation and 

injury [116–118]. Flagellin has been reported to have both pro- and anti-tumor effects. 

Multiple publications have demonstrated immunosuppressive functions of flagellin and 

TLR5 signaling through the induction of Th2 responses [119, 120]. Dendritic cells 

stimulated with flagellin secrete low levels of Th1-supportive cytokines, such as IL-12p40 

and p70, IL-6 and TNFα, resulting in Th2 polarization of CD4 T cells [119]. Additionally, 

flagellin stimulation of myeloid precursors induces the generation of CXCR4-expressing 

MDSCs [120]. These studies suggest that depending upon the cell type (mature DC versus 

immature myeloid precursor) and the immunological context of flagellin activation, 

stimulation through TLR5 may have varying immune modulatory effects. Flagellated 

bacteria are a common commensal type found on murine skin, and the presence of flagellin 

exacerbates tumor development in a model of skin cancer [7, 121]. In vitro, flagellin 

enhances proliferation and migration of several types of cancer cell lines, including multiple 

myeloma, gastric cancer, and salivary gland adenocarcinoma [122–124]. However, other 

studies have shown that flagellin promotes anti-tumor activity through suppression of cancer 

cell proliferation and migration [48, 125, 126]. These contrasting findings may depend on 

several factors, including the antigenicity of the tumor, the timing of the flagellin stimulus 

[127], the cytokine and immune composition of the tumor microenvironment, and perhaps 

even the stage of tumor initiation or progression.

Two additional bacterial components, peptidoglycan and polysaccharide A (PSA), affect 

systemic inflammation through the ligation of TLR2. Peptidoglycan is a bacterial cell wall 

component that is shed through cell division. Present in human plasma, peptidoglycan has 
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been shown to promote invasiveness, adhesion, and pro-inflammatory cytokine production 

of cancer cells in vitro [128, 129]. PSA, a capsule component of Bacteroides fragilis, drives 

the differentiation of immunosuppressive IL-10-producing Foxp3+ regulatory T cells both in 

mice and humans [130–132]. The broad expression of TLRs 2, 4, and 5 on cells of various 

human cancer types underline the potential effects of bacteria and/or their components on 

the tumor microenvironment (reviewed in [133]).

3.2 Bacterial Translocation

While resident bacterial communities are present in extramucosal organs of healthy 

individuals, intestinal barrier permeability is additionally increased in the context of 

inflammation, enhancing translocation of bacteria and bacterial components from the gut to 

distal locations [134]. For example, intestinal permeability and systemic levels of LPS are 

enhanced in cases of alcohol abuse and are often detected in patients with metabolic 

disorders influenced by obesity [95, 135–137]. Considering the strong correlations between 

obesity, alcohol use, and increased cancer risk, bacterial translocation and/or systemic 

bacterial products likely play a large role in promoting the systemic inflammation seen in 

these conditions. Cancer treatments such as chemotherapy, radiation, and checkpoint 

blockade also result in mucosal damage, increasing intestinal permeability [94]. Total body 

irradiation, used to lymphodeplete recipients of both bone marrow transplants and adoptive 

T cell therapy, results in elevated serum LPS and proinflammatory cytokines in mice [94, 

138]. Thus, while bacteria may play a role in tumorigenesis, cancer treatment may 

additionally exacerbate this effect by increasing bacterial translocation to extramucosal sites.

Bacterial translocation is not always associated with tumor-promoting inflammation, and 

may also be associated with the enhancement of anti-tumor immunity. Cyclophosphamide 

induces immunogenic cell death in cancer cells and promotes the differentiation of Th17 and 

Th1 cells which enhance therapeutic efficacy [139, 140]. Cyclophosphamide also results in 

increased intestinal permeability and the translocation of bacteria from the intestines to 

lymph organs. Unexpectedly, cyclophosphamide-induced bacterial translocation of gram 

positive bacterial species results in the generation of Th1 memory T cells and the 

differentiation of IFNγ-producing Th17 cells (Figure 1) which are critical for anti-tumor 

immune responses during therapy [46]. Because this study demonstrates that antibiotics 

diminish the efficacy of cyclophosphamide-induced tumor immune surveillance, it is 

important to consider how antibiotic administration during treatment with certain 

chemotherapies may impair therapeutic efficacy. Treatment with the checkpoint inhibitor 

anti-CTLA-4 is also known to induce mucosal pathology and disrupt commensal 

homeostasis. However, Vetizou et al. demonstrated a clear relationship between colonization 

with certain Bacteroides species, such as B. fragilis and B. thetaiotaomicron, and reduced 

mucosal pathology during treatment with a-CTLA-4. Additionally, they showed that T cells 

recognizing these bacterial species associate with responsiveness to therapy in both murine 

models and in patients with melanoma [45]. As T cells recognizing specific bacterial species 

mediate the efficacy of anti-CTLA-4 therapy, it is possible that shared antigens exist 

between commensal species and tumor neoantigens.
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4. Systemic effects of commensal metabolites during cancer

Another mechanism by which bacteria contribute to systemic inflammation is through the 

production of metabolites. The microbiome, defined as the combined genetic material of all 

microbes within the human body, outnumbers human genes by roughly 150-fold [141]. This 

vast quantity of genetic material codes for a wide variety of different proteins that impact 

bacterial metabolism. Commensal bacteria have key roles in human digestion, including the 

extraction of nutrients and the synthesis of biologically relevant metabolites (reviewed in 

[142]). Several groups have shown striking differences in the concentration and composition 

of circulating metabolites in germ-free compared to conventional mice, demonstrating the 

contributions of commensal microbes to systemic metabolic products [143, 144]. This could 

be relevant in the development of immune function as germ-free animals have poorly 

developed lymphoid structures and a defect in granulopoiesis, as discussed previously [19, 

20].

4.1 Short-Chain Fatty Acids

One of the best-studied families of microbial metabolites is the short-chain fatty acids 

(SCFA), comprised of butyrate, propionate, and acetate. Produced by anaerobic bacterial 

fermentation of dietary fiber, SCFAs are broadly anti-inflammatory. SCFAs are ligands for G 

protein-coupled receptors, and butyrate and propionate exert their anti-inflammatory effects 

through their actions as histone deacetylase inhibitors. These effects include the modulation 

of NF-кB pathways, leukocyte trafficking, and suppression of various cytokines and 

chemokines [145–153]. Additionally, SCFAs promote tight junction integrity in the 

intestines, reducing translocation of bacteria and bacterial products [154–156]. Germ-free 

mice have very low concentrations of SCFAs in their intestines, demonstrating the 

importance of commensal microbes in the production of these metabolites [157]. SCFAs 

have mainly been investigated for their anti-inflammatory effects on colitis [158]. However, 

as they reach systemic circulation after their derivation in the colon, SCFAs may have effects 

in the context of extramucosal cancers [159–161].

One well-known function of SCFAs is the effect they exert on populations of T cells. 

Butyrate promotes both the induction of regulatory T cells and their resultant production of 

IL-10 in addition to driving the elimination of activated T cells through the upregulation of 

Fas [162–166]. In the context of intestinal inflammation, these effects would be beneficial to 

the host. However, in the context of cancer, an increase in Tregs and concurrent decrease in 

effector T cells would facilitate a reduction in tumor immune surveillance and anti-tumor 

immunity. This effect of butyrate extends beyond the gut, as mice on a high-fiber or SFCA-

supplemented diet showed both suppressed colonic inflammation as well as diminished 

allergic airway disease as a result of increased suppressive activity of Tregs in the lungs 

[167]. Additionally, SCFAs induce the production of PGE2, a potent tumor-promoting 

mediator, from human monocytes. This effect is enhanced in the presence of LPS, 

demonstrating the complex effects of commensal bacteria on systemic inflammation [168].

However, other studies have shown anti-tumor effects of butyrate and other SCFAs. For 

example, oral administration of dietary fiber as a prebiotic reduced the incidence of 

carcinogen-induced mammary cancer [169]. Several potential mechanisms of SCFAs may 
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account for this effect. Butyrate exerts anti-proliferative and pro-apoptotic effects on several 

cancer cell lines in vitro [170–175], primarily through the induction of oxidative stress 

within tumor cells and modulation of the expression of genes associated with cellular 

proliferation and growth. Additionally, butyrate inhibits angiogenesis through 

downregulation of VEGF gene expression [176]. Another potential anti-tumor effect of 

butyrate is its ability to suppress CCL2 production, both in vivo and in vitro from tumor cell 

lines, through impairment of phosphorylation of the ERK1/2 and Akt inflammatory 

signaling pathways [177–179]. As CCL2 has been implicated in tumor progression and 

metastasis through recruitment of tumor-associated macrophages, SCFAs may inhibit this 

process [180]. Finally, it was demonstrated that butyrate in combination with 5-azacytidine, 

a DNA methyltransferase inhibitor, reduces the growth of breast cancer stem cells [181], 

suggesting that using probiotics to enrich for butyrate-producing bacteria or increasing the 

dietary consumption of fiber may have a protective role against certain types of cancers.

4.2 Metabolites that influence DNA damage

In the context of gastrointestinal cancers, some bacterial metabolites impact tumorigenesis 

through direct DNA damage. Commensal bacteria convert primary bile acids produced by 

the liver to secondary bile acids. As previously mentioned, the secondary bile acid 

deoxycholic acid causes DNA damage through the induction of ROS [182, 183]. Additional 

bacterial products, such as Enterococcus faecalis-derived superoxide and Escherichia coli-
derived colibactin also induce DNA strand breaks [184–187]. Repetitive DNA damage leads 

to the acquisition of mutations that can drive cellular transformation and the development of 

cancer.

Polyamines, such as putrescine, spermidine, and spermine, are additional metabolites that 

are produced by commensal bacteria. Unlike the metabolites mentioned above, polyamines 

actively protect against DNA damage by scavenging free radicals and influencing the 

structure of DNA [188–192]. However, polyamines have also been implicated in the 

suppression of anti-tumor immune responses. Polyamines are increased in the urine and 

serum of cancer patients and have been shown to promote cancer cell proliferation [193–

195]. Additionally, they suppress lymphocyte proliferation and IL-2 production, presumably 

through metabolic constraints on activated T cells, eventually resulting in decreased anti-

tumor immunity [196]. This effect can be inhibited, as depletion of polyamines restricted 

tumor growth in a T cell-dependent mechanism [197]. Antibiotic treatment decreases 

polyamine concentrations, demonstrating the impact of commensal bacteria on this 

metabolic product [198]. Polyamines can also directly enhance the production of tumor-

derived proteases and matrix metalloproteinases, resulting in increased extravasation and 

invasion of tumor cells. Combined with their function in immune suppression, polyamines 

promote enhanced tumor progression and metastasis [199].

4.3 Metabolites and hormone production

Microbes also play a significant role in the metabolism of hormones. This is particularly 

important in the context of hormone-receptor positive cancers. Estrogen, specifically, is one 

driving factor in the development of hormone-receptor positive breast cancer and promotes 

tumor growth [200, 201]. Estrogens are conjugated with glucuronic acid in the liver, 
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allowing them to be excreted. Some bacteria produce an enzyme, β-glucuronidase, that 

deconjugates estrogen from glucuronic acid, promoting its reabsorption into circulation, 

thereby enhancing estrogen levels in the host [202]. In humans, differences in estrogen 

metabolism correlate with variability in gut microbial diversity, and antibiotic treatment 

associates with an increase in excretion of conjugated estrogens [203–205]. Despite its 

significance in hormone-receptor positive cancer, estrogen has also recently been shown to 

affect the progression of different estrogen-insensitive tumor models. Svoronos et al. showed 

that estrogen drives MDSC mobilization as well as their suppressive activity, enhancing 

tumor progression [206]. This demonstrates that hormones directly impact both tumor 

growth and immune function.

Additional bacterial metabolites have potential roles in promoting systemic inflammation 

and tumor progression. These are described in Table 1.

5. Conclusions and future perspectives

The microbiome is often thought of as the “forgotten organ” [207]. Work from the last 

twenty years has demonstrated critical roles for commensal microbes in the development 

and progression of many disease states, including cancer. The widespread use of antibiotics 

in our society makes this topic relevant in the context of cancer, as cancer patients are 

frequently prescribed prophylactic antibiotics to combat infections associated with 

chemotherapy-induced immunosuppression. While chronic antibiotic exposure increases the 

risk of tumorigenesis in multiple cancer types, antibiotic use also impacts commensal 

homeostasis, decreasing circulating bacterial components and metabolites and shaping 

systemic immune function. As discussed previously, many secreted bacterial factors act in 

context-dependent mechanisms, and depending upon the type and stage of cancer, the class 

of antibiotics prescribed, the duration of antibiotic exposure, and the initial composition of 

commensal microorganisms, antibiotic use during cancer therapy has the potential to both 

promote and to inhibit cancer progression. It was recently hypothesized that the impact of 

persistent use of antibiotics is compounded across generations, resulting in the gradual loss 

of diversity and emergence into dysbiotic states [67]. Thus, further understanding of the 

potential direct effects of antibiotics during tumor progression is required to better inform 

clinical decisions for the treatment of cancer patients.

In tumor-bearing individuals, antibiotics are not the only factor influencing the composition 

of commensal microbes. Chemotherapy influences microbial composition and induces 

translocation of commensal microbes from barrier surfaces due to damage of the 

proliferating cells within the mucosal epithelium. Depending upon the chemotherapeutic 

agent and the mechanisms associated with tumor-progression, commensal microbes may 

facilitate tumor regression or result in toxicity, as discussed previously. Multiple studies have 

found that certain immune therapies enhance tumor immune surveillance through triggering 

of innate receptors and inflammasomes with microbial products, such as LPS, complexed 

DNA, and cellular RNA, whereas inhibition of TLR3 and AIM2 inflammasome activation 

are protective against radiation-induced cytotoxicity [208]. Thus, it will be critical to 

understand the relevant contexts in which commensal microbes and the activation of relevant 

signaling pathways influence tumor progression and anti-tumor immunity.
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Commensal disequilibrium results in a range of pathologies, and in the context of cancer can 

have a direct influence on tumor proliferation and cytokine secretion (Figure 1). 

Systemically, commensal products and metabolic function provoke changes to immune 

function that may result in either tumor-promoting inflammation or enhanced anti-tumor 

immunity. The role of commensal microbes during cancer is dependent upon many factors, 

demonstrating that a more comprehensive understanding of the responses of individual 

microbes and the collective ecosystem to the tumor environment is needed. Conversely, it 

will be important to understand how tumors and the tumor microenvironment are impacted 

by changes in commensal equilibrium. Several studies have already identified that certain 

commensal microbes are required to facilitate cancer therapy: through checkpoint inhibition 

of PD-1 [44] and CTLA-4 [45] and during treatment with immunostimulatory immune 

therapy [43] or chemotherapy [46]. These and future studies could pave the way for 

engineering probiotic cocktails associated with the restoration of anti-tumor immune 

responses.
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Figure 1: Loss of commensal equilibrium results in systemic inflammation and context-
dependent modulation of extramucosal tumor progression.
Factors such as antibiotic usage, diet, or genetics (black arrows) can effectively decrease the 

biodiversity of the commensal microflora, leading to a higher incidence of chronic 

inflammation. In tumor-bearing individuals, cancer therapy and tumor-derived inflammation 

(red arrows) can also modulate the composition of the commensal ecosystem. A reduction in 

commensal biodiversity (dysbiosis), antibiotics, and chemotherapy can directly damage the 

integrity of the mucosal epithelium, resulting in bacterial translocation, commensal shedding 

of inflammatory products, such as LPS, PSA, and flagellin, and a change in metabolic 

output from the commensal ecosystem. This can lead to an enhancement in tumor-promoting 

inflammation due to the induction of IL-6, GM-CSF, and TGFβ: factors which enhance the 

recruitment of immune suppressive myeloid-derived suppressor cells and regulatory T cells 

into the tumor microenvironment. In the presence of these cells, the ability of T cells to 

effectively eliminate the tumor are inhibited. Translocation of commensals from mucosal 
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surfaces can also induce the activation of IFNγ-producing Th-17 cells, which in certain 

contexts, can facilitate T cell-mediated killing of tumors.
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Table 1:

Bacteria and associated metabolites that influence cancer and anti-tumor immunity.

Bacterial metabolite Bacteria that 
produces

Function in context of cancer Reference

Short-chain fatty 
acids: butyrate, 
propionate, and 
acetate

Butyrate: Firmicutes 
Propionate and acetate: 
Bacteroidetes.

Pro-tumor: HDAC inhibitors. Suppresses inflammation. 
Induces Tregs, eliminates activated T cells through 
upregulation of Fas. Induces production of PGE2.
Anti-tumor: anti-proliferative and pro-apoptotic effects on 
cancer lines. Inhibits angiogenesis.
Suppresses CCL2 production.

[146, 148, 151, 163–
166, 168, 170–174, 
176, 177, 209]

Deoxycholic acid Many Pro-tumor: DNA damage [182, 183, 210]

Superoxide E. faecalis Pro-tumor: DNA damage [184]

Colibactin E. coli Pro-tumor: DNA damage [186, 187]

Hydrogen sulfide Sulfate-reducing 
bacteria

Pro-tumor: DNA damage [211]

Polyamines Many Pro-tumor: suppression of lymphocyte proliferation and IL-2 
production. Promote cancer cell proliferation.
Anti-tumor: protect against DNA damage.

[188, 189, 191, 195–
198, 212]

β-glucuronidase Many Pro-tumor: Increases estrogen levels, pro-tumor effects on both 
estrogen-receptor positive and negative cancers.

[202, 213, 214]

Fragilysin B. fragilis Pro-tumor: Stimulates cellular proliferation and E-cadherin 
degradation, degrades intestinal barrier function.

[215, 216]

Heptose-1,7-
bisphosphate (HBP)

Neisseria Pro-tumor: Activates NF-κB pathway and promotes 
inflammation.

[217]

Kynurenine Indole-positive 
bacteria

Pro-tumor: Tryptophan catabolite, suppresses T cell function. [218, 219]
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