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Abstract

Delay discounting (DD), which is the tendency to discount the value of delayed versus current 

rewards, is elevated in a constellation of diseases and behavioral conditions. We performed a 

genome-wide association study of DD using 23,127 research participants of European ancestry. 

The most significantly associated SNP was rs6528024 (P = 2.40 × 10−8), which is located in an 

intron of the gene GPM6B. We also showed that 12% of the variance in DD was accounted for by 

genotype, and that the genetic signature of DD overlapped with attention-deficit/hyperactivity 

disorder, schizophrenia, major depression, smoking, personality, cognition, and body weight.
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Delay discounting refers to the extent to which an organism devalues rewards that are 

delayed and is thus a fundamental aspect of impulse control1,2. In humans, greater delay 

discounting is associated with a number of psychiatric disorders and health conditions 

including attention-deficit/hyperactivity disorder (ADHD)3, substance use disorders4 and 

obesity5. DD is included in the Research Domain Criteria (RDoC) initiative6, which views 

psychiatric disorders as extremes of normal tendencies, and is intended to foster biological 

analyses of behavior. While numerous genetic studies have examined psychiatric diseases, 

much less work has been done on the genetic basis of RDoC traits such as DD.

In collaboration with the direct-to-consumer genetics company 23andMe, Inc., we 

performed the first genome-wide association study (GWAS) of DD by testing the 

association between millions of common single nucleotide polymorphisms (SNPs; 

Supplementary Table 1) and DD. Our sample consisted of 23,217 male and female adult 

research participants of European ancestry (see Supplementary Table 2 for demographic 

information). Participants provided informed consent and participated in the research online, 

under a protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent 

Review Services (www.eandireview.com). We measured DD using the well-validated 

Monetary Choice Questionnaire7, which generates hyperbolic discounting functions (k; 

Supplementary Tables 3 and 4). We observed strong phenotypic correlations between DD 

and demographic and substance use variables that were measured in the same cohort 

(Supplementary Table 5); however, these correlations do not differentiate genetic and 

environmental influences. Age was not significantly correlated with DD, however females 

showed greater DD compared to males (r = 0.11, P < 0.0001). BMI was positively correlated 

with DD (r = 0.11, P < 0.0001). Several measures of cigarette and cannabis use were also 

positively correlated with DD (r = 0.05–0.09, P < 0.0001); however, surprisingly, heaviest 

lifetime alcohol use in a 30-day period was negatively correlated with DD (r = −0.07, P < 

0.0001) and scores on the Alcohol Use Disorder Identification Test (AUDIT), which is used 

to screen for alcoholism, were not correlated with DD (r = 0.003, P > 0.5), perhaps due to 

low rates of alcohol use in this population.
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Twin studies of DD have shown that identical twins are more concordant than non-identical 

twins, yielding narrow-sense heritability estimates from 46% to 62%8. We used the 

phenotype and genotype data from our cohort of unrelated participants to calculate chip 

heritability (i.e., the proportion of variance accounted for by SNPs9), which was estimated to 

be at 12.2% (± 1.7%, P = 5.84 × 10−14).

To perform a GWAS, we tested each variant with a linear regression assuming an additive 

genetic model that included age, sex, the first five genetic principal components, and 

indicator variables for genotype platforms as covariates (Figure 1; Supplementary Tables 6). 

The most significant association was at the SNP rs6528024, located on the X-chromosome 

(P = 2.40 × 10−8; β = −0.10, SE = 0.02; minor allele frequency (MAF) = 0.03; 

Supplementary Fig. 1). Meta-analysis of rs6528024 using an independent cohort of 928 

participants in the Genes for Good study strengthened this association (P = 1.44 × 10−8; β = 

−0.10, SE = 0.02). rs6528024 is in an intron of the gene GPM6B (Neuronal Membrane 

Glycoprotein M6B), which has been previously implicated in the internalization of the 

serotonin transporter10. Gpm6b-knockout mice exhibit deficient prepulse inhibition and an 

altered response to the 5-HT2A/C agonist DOI11. Serotonergic signaling has also been 

extensively implicated in DD12–14. Furthermore, GPM6B mRNA levels are downregulated 

in the brains of depressed suicide victims15. Because rs6528024 is located on the X-

chromosome, we re-analyzed it separately in males and females. Although the association 

with rs6528024 was stronger in males (β = −0.11, SE = 0.02, P = 9.82 × 10−7) than in 

females (β = −0.08, SE = 0.03, P = 5.70 × 10−3), meta-analyzing males and females 

supported the original finding (β = −0.10, SE = 0.02, P = 2.81 × 10−8). Several other SNPs 

showed suggestive associations (Supplementary Table 7), including rs2665993 (P = 1.40 × 

10−7, β = −0.04, SE = 0.01; MAF = 0.38; Supplementary Fig. 2). Our results did not support 

any of the previously published candidate gene studies of DD (reviewed in16; 

Supplementary Table 8).

We used S-PrediXcan17 to test the association between predicted gene expression from the 

genetic data and DD. This approach identified a positive correlation between DD and 

predicted expression of CDK3 in the hippocampus (FDR 0.05; Supplementary Table 9); 

CDK3 is near to rs2665993 (Supplementary Fig. 2).

Whereas phenotypic correlations, which involve two traits measured in the same sample, are 

driven by both genetic and environmental factors, genetic correlations between traits can be 

obtained by exploiting genetic similarities between two different cohorts. We used LD score 

regression18 to obtain genetic correlations involving DD (Fig. 2 and Supplementary Table 

10). Phenotypic correlations between DD and ADHD were already established19; but we 

showed, for the first time, that these traits are also positively genetically correlated (rg= 0.37, 

SE = 0.11, P = 7.76 − 10−4), demonstrating that DD meets the first three criteria necessary to 

be considered an endophenotype for ADHD20. We identified an unexpected positive genetic 

correlation with major depressive disorder (MDD) (rg= 0.47, SE = 0.17, P = 6.87 × 10−3) 

and an equally unexpected negative genetic correlation between DD and schizophrenia 

(SCZ, rg= −0.22, SE = 0.07, P = 1.16 × 10−3). In contrast, ADHD and SCZ are known to be 

positively correlated (rg= 0.23, P = 9.0 × 10−3; LDHub). These results highlight an 

advantage of the RDoC approach – examining individual domains of function may reveal 
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differences between two disorders, even though part of the genetic predisposition to those 

disorders may be similar. Our interpretation is that the genetic variants that underlie the 

similarity between ADHD and SCZ have little overlap with the genetic variants that underlie 

their associations with DD.

We also observed a positive genetic correlation between DD and lifetime smoking (rg= 0.32, 

SE = 0.12, P = 7.98 × 10−3), and a negative genetic correlation with former smoker status 

(rg= −0.41, SE = 0.16, P = 8.89 × 10−3). Our interpretation of these results is that higher DD 

facilitates smoking initiation and impedes cessation, showing that DD influences multiple 

stages of drug abuse vulnerability. We identified a positive genetic correlation between DD 

and neuroticism (rg= 0.18, SE = 0.08, P = 2.25 × 10−2). DD showed negative correlations 

with three cognitive measures: college attainment (rg= −0.93, SE = 0.15, P = 3.0 × 10−10), 

years of education (rg= −0.67, SE = 0.09, P = 7.9 × 10−15) and childhood IQ (rg= −0.63, SE 

= 0.17, P = 1.63 × 10−4). It is tempting to view college attainment and years of education as 

examples of working towards delayed rewards; however, the genetic correlation with 

childhood IQ is inconsistent with this interpretation. Finally, DD was genetically correlated 

with BMI (rg= 0.18, SE = 0.07, P = 8.93 × 10−3), suggesting that higher DD may promote 

excessive eating. As expected, height, which is not strongly influenced by an individual’s 

behavior, was not genetically correlated with DD (rg= −0.08, SE = 0.06, P = 1.77 × 10−1).

We have reported the largest genetic study of DD ever undertaken. The unit of analysis in 

psychiatric genetic studies has traditionally been disease diagnosis, which cannot be easily 

mapped to discrete brain circuits. Instead, we have focused on DD, which is a fundamental 

process that can be studied at molecular, cellular and systems levels. Our results indicate that 

DD is influenced by numerous genetic variants and would likely benefit from an even larger 

sample size. Unlike studies of disease traits, which require careful diagnosis and 

ascertainment, we were able to rapidly obtain a large cohort for which genotype data were 

available. Consistent with the core goals of RDoC, our approach shows how genetic studies 

of DD can be used to gain insight into the biology of neuropsychiatric diseases.

ONLINE METHODS

Sample.

All participants were drawn from the customer base of 23andMe, Inc., a direct-to-consumer 

genetics company. Participants provided informed consent and participated in the research 

online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 

Independent Review Services (www.eandireview.com). Over the course of approximately 

four months in 2015, more than 25,000 23andMe research participants responded to survey 

questions that were part of a study of the genetics of decision-making designed by Drs. 

Abraham Palmer and James MacKillop. In this paper we examine only the 23,127 

participants who were of European ancestry (> 97% as determined through an analysis of 

local ancestry21), for whom DD data were available, and who were not excluded for any of 

the reasons described below. The concepts of randomized data collection and analysis and 

blinding of experiments do not apply to our study design. Socio-demographic details of this 

cohort are described in the Supplementary Table 2.
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Genotyping, Quality Control and imputation.

DNA extraction and genotyping were performed on saliva samples by CLIA-certified and 

CAP-accredited clinical laboratories of Laboratory Corporation of America. Quality control, 

imputation, and genome-wide analysis were performed by 23andMe.

Samples were genotyped on a 23andMe custom genotyping array platform (Illumina 

HumanHap550+ Bead chip V1 V2, OmniExpress+ Bead chip V3, Custom array V4). 

Samples had a minimum call rates of 98.5%. A total of 1,050,074 SNPs and InDels 

(Insertion/Deletion) were genotyped across all platforms (Supplementary Table 1; see22–24 

for extended genotyping and sample quality details).

A maximal set of unrelated individuals was chosen for the analysis using a segmental 

identity-by-descent (IBD) estimation algorithm25 to ensure that only unrelated individuals 

were included in the sample. Individuals were defined as related if they shared more than 

700 cM IBD, including regions where the two individuals shared either one or both genomic 

segments IBD. This level of relatedness (~20% of the genome) corresponds to approximately 

the minimal expected sharing between first cousins in an outbred population.

We imputed participant genotype data against the September 2013 release of 1000 Genomes 

phase 1 version 3 reference haplotypes. We phased and imputed data for each genotyping 

platform separately. We phased using an internally developed phasing tool, Finch, which 

implements the Beagle haplotype graph-based phasing algorithm26, modified to separate the 

haplotype graph construction and phasing steps. In preparation for imputation, we split 

phased chromosomes into segments of no more than 10,000 genotyped SNPs, with overlaps 

of 200 SNPs. We excluded SNPs with Hardy-Weinberg equilibrium P < 10−20, call rate < 

95%, or with large allele frequency discrepancies compared to European 1000 Genomes 

reference data. Frequency discrepancies were identified by computing a 2 × 2 table of allele 

counts for European 1000 Genomes samples and 2000 randomly sampled 23andMe 

customers with European ancestry, and identifying SNPs with a χ2 P < 10−15. We imputed 

each phased segment against all-ethnicity 1000 Genomes haplotypes (excluding 

monomorphic and singleton sites) using Minimac227, using 5 rounds and 200 states for 

parameter estimation. After quality control, we analyzed 11,508,756 SNPs.

For the X chromosome, we built separate haplotype graphs for the non-pseudoautosomal 

region and each pseudoautosomal region, and these regions were phased separately. We then 

imputed males and females together using Minimac2, as with the autosomes, treating males 

as homozygous pseudo-diploids for the non-pseudoautosomal region.

For tests using imputed data, we use the imputed dosages rather than best-guess genotypes. 

We imputed HLA allele dosages from SNP genotype data using HIBAG28. We imputed 

alleles for HLA-A, B, C, DPB1, DQA1, DQB1, and DRB1 loci at four-digit resolution. To 

test associations between HLA allele dosages and phenotypes, we performed linear 

regression using the same set of covariates used in the SNP based GWAS. We performed 

separate association tests for each imputed allele. HLA analysis did not identify any 

significant signal and hence are not described in the main text.
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Delay discounting.

Participants completed the online Monetary Choice Questionnaire (MCQ), a widely used 

27-item measure of monetary DD preferences7. For each item, individuals were presented 

with a choice between a smaller immediate reward and larger delayed reward at one of three 

magnitudes (small, $25–35; intermediate, $50–60; large, $75–85; see Supplementary Table 

3). The overall response pattern was used to infer temporal discounting functions (k) ranging 

from .00016–.2529, with larger values reflecting greater devaluation of delayed rewards 

(higher bias for immediate gratification). Values of k were obtained for the three reward 

magnitudes and were averaged to obtain the final dependent measure. Most research 

participants (~98%) were highly consistent, suggesting good task effort; individuals with < 

80% concordance among the three magnitudes were excluded from further analyses. In 

addition, we added three items to the 27-items that make up the MCQ that were intended to 

detect careless responding (items 8, 17 and 24 in Supplementary Table 3). Research 

participants who answered any of these items inappropriately were excluded. If subjects 

responded randomly, 87.5% would have answered one of these three items inappropriately, 

whereas the actual rate of inappropriate responses was 2.10%. A total of 550 research 

participants were excluded from our sample due to low consistency (< 80%) or inappropriate 

responses. Distributions of the DD scores are shown in the Supplementary Table 4. Visual 

inspection of the distribution revealed that k was not normally distributed; we used a log-10 

transformation, which is commonly employed to approximate a normal distribution for k. 

The ascertainment of research participants required being a 23andMe customer and 

voluntary participation in this research project; we acknowledge that these factors may have 

circumscribed the distribution of DD.

Additional demographic and phenotypic measures.

Age, sex and other demographic data about the research participants were already available. 

Additional potentially relevant variables were ascertained as part of the same survey. For 

example, to evaluate heavy drinking and/or active alcohol abuse or dependence, participants 

completed The Alcohol Use Disorder Identification Test (AUDIT)30, a ten-item 

questionnaire that screens for excessive drinking. We also collected additional measures of 

drug use quantity and frequency (alcohol, cigarettes, cannabis), and estimates of caffeine 

intake (number of coffee cups per day) by including items from the PhenX toolkit. Results 

are shown in Supplementary Table 2. Rates of current alcohol and drug use were low in this 

cohort; this is an advantage because DD has often been studied in populations with higher 

levels of drug use, raising questions about whether DD is altered by past or present drug use 

or even the need for money to buy drugs.

Genome-wide association analysis.

We performed association tests by linear regression assuming an additive model using a 

23andMe internally developed pipeline. See the Life Sciences Reporting Summary for 

extended details. Sample size was set at 25,000 because this was larger than comparable 

well-powered studies of similar phenotypes. Using Quanto (http://biostats.usc.edy/

Quanto.html) we estimated that with a sample size of 25,000, allele frequency of 0.05, mean 

trait value of −2.25 (SD= 0.73) and effect size (beta) of −0.1 to 0.1, we had 89% power to 
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detect significant (5 × 10–8) associations. We included age (inverse-normal transformed), 

sex, the top five principal components of genotype, and indicator variables for genotype 

platforms as covariates (Supplementary Table 6). We did not include substance use traits as 

covariates for two reasons. First, substance-use was very low in this population 

(Supplementary Table 2). Second, including a heritable trait such as substance use as a 

cofactor may remove genetic signal31. To derive principal components of genotype, we used 

a 23andMe internally developed pipeline that uses ~440K genotyped autosomal variants 

(minor allele frequency, MAF, in European > 0.01 and HLA/inversion removed). For quality 

control of genotyped GWAS results, we removed SNPs with minor allele frequency of 

<0.1%, a Hardy-Weinberg P <10−20 in Europeans, or a call rate of < 90%. We also removed 

SNPs that were only genotyped on the 23andMe V1 platform, due to limited sample size, 

and SNPs on chrM or chrY because currently many of these are not called reliably. Using 

trio data, we removed SNPs that failed a test for parent-offspring transmission; specifically, 

we regressed the child’s allele count against the mean parental allele count and removed 

SNPs with fitted β < 0.6 and P < 10−20 for a test of β < 1. We also tested genotyped SNPs 

for genotype date effects, and removed SNPs with P < 10−50 by ANOVA of SNP genotypes 

against a factor dividing genotyping date into 20 roughly equal-sized buckets. For imputed 

GWAS results, we removed SNPs with average r2 < 0.5 or minimum r2 < 0.3 in any 

imputation batch, as well as SNPs that had strong evidence of an imputation batch effect. 

The batch effect test is an F test from an ANOVA of the SNP dosages against a factor 

representing imputation batch; we removed results with P < 1 × 10−50. We also removed 

linear regression results for SNPs with MAF < 0.1% because tests of low frequency variants 

can be sensitive to violations of the regression assumption of normally distributed residuals. 

GWAS analysis included genotyped and imputed SNPs. We performed separate male and a 

female linear regression analyses to identify sex-specific effects at rs6528024, which was the 

most significantly associated SNP (Supplementary Fig. 1).

Replication and meta-analysis using Genes for Good.

To validate the association with rs6528024, we examined the association of that SNP with 

the DD in an independent cohort of 928 individuals of European ancestry (mean age = 

41.03, SD = 13.94, ~70% female, 89% completing at least some college) from Genes for 

Good. Participants completed a shorter version of the MCQ (nine items corresponding to the 

intermediate reward magnitude). k values were calculated as described above. Genotyping, 

quality control, imputation and GWAS analyses were performed by Genes for Good. Briefly, 

for quality control of genotyped SNPs, SNPs with minor allele frequency of <0.1%, a 

Hardy-Weinberg P < 10−4 in Europeans, or a call rate of < 99% were excluded. A set of 

unrelated individuals were used for the analyses, as determined by KING (http://

varianttools.sourceforge.net/Pipeline/KING). Participant genotype data were imputed 

against the September 2013 release of 1000 Genomes phase 1 version 3 reference 

haplotypes, phased with ShapeIt232, and imputed with Minimac327. Association tests were 

performed by linear regression assuming an additive model using EPACTS, with age 

(ordinal), sex and five principal components as covariates. We meta-analyzed rs6528024 

using an inverse variance meta-analysis in METAL33.
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Estimation of variance in DD explained by the genotyped SNPs.

To estimate the proportion of phenotypic variance explained (‘chip-heritability’; hg
2), we 

used a genomic restricted maximum likelihood (GREML) method implemented in Genetic 

Complex Trait Analysis (GCTA)34. In brief, the GREML method estimates the proportion 

of variation in a phenotype that is due to all SNPs, and exploits the fact that genotypic 

similarity (i.e., “relatedness”, measured using genotyped SNPs) will be correlated with 

phenotypic similarity for heritable traits. Distantly related individuals with pair-wise 

relationships were filtered at two thresholds (KIBS < 0.05 and KIBS < 0.025). We included 

age (inverse-normalization), self-reported sex (male/female), genotyping platform and first 

five principal components for genotype as covariates. GREML analyses were run using only 

directly genotyped SNPs to construct the GRM.

Chip-heritability using LD Score Regression.

We also used a second method to measure chip heritability of DD that is implemented by 

Linkage Disequilibrium Score Regression Coefficient (LDSC)35. To standardize the input 

file (GWAS summary statistics), we followed quality controls as implemented by the LDSC 

python software package. We used pre-calculated LD scores (“eur_w_ld_chr/” files18; MHC 

region excluded) for each SNP using individuals of European ancestry from the 1000 

Genomes Project, suitable for LD score analysis in European populations. We restricted the 

analysis to well-imputed SNPs: the SNPs were filtered to HapMap3 SNPs36, and were 

required to have a MAF above 1%. InDels, structural variants, strand-ambiguous SNPs, and 

SNPs with extremely large effect sizes (χ2 > 80) were removed. In addition, this approach 

allowed us to distinguish between genomic inflation attributed to polygenic signal and 

confounding biases such as population stratification or polygenicity (LD Score regression 

intercept > 1)18,35. As expected under polygenicity, we observed inflation of the median test 

statistic (Mean χ2 = 1.046), and adjusted for a genomic control inflation factor λ (the ratio 

of the observed median χ2 to that expected by chance) = 1.022. LD score intercept of 1.013 

(SE = 0.01) suggested that deviation from the null was due to a polygenic structure rather 

than inflation due to population structure biases37.

Phenotypic and genetic correlation analyses.

We examined two distinct types of correlations: phenotypic correlations, where both 

variables were measured in the same individuals, and genetic correlations, where we used 

DD data from this cohort in conjunction with summary statistics for GWAS conducted in 

other cohorts. The interpretation of these is different, since phenotypic correlations can be 

due to a combination of genetic and non-genetic factors, whereas genetic correlations 

measure only genetically driven correlations.

We used bivariate correlations to examine the phenotypic correlations among variables of 

interest (age, gender, race, education, annual household and drug-related phenotypes), and to 

identify significant covariates for inclusion in subsequent analyses (Supplementary Table 5).

We calculated genetic correlations (rg) between DD and 28 other traits or diseases using 

LDSC. References for the datasets used are described in the Supplementary Table 10. Files 

were standardized using the pipeline described above. We did not constrain the intercepts in 
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our analysis, as we could not quantify the exact amount of sample overlap. We used False 

Discovery Rate (FDR) to correct for multiple testing38.

Gene-based association using transcriptome data with S-PrediXcan.

Expression quantitative trait loci (eQTLs) are genomic loci that contribute to heritable 

variation in mRNA levels. SNPs or chromosomal regions might influence DD because they 

influence the expression of a particular gene (often, but not always, a nearby gene). We used 

S-PrediXcan17 to identify specific eQTL-linked genes associated with DD. This approach 

uses genetic information to predict gene expression levels in various brain tissues, and tests 

whether the predicted gene expression correlates with DD. S-PrediXcan17 uses pre-

computed tissue weights from the Genotype-Tissue Expression (GTEx) project database 

(https://www.gtexportal.org/) as the reference transcriptome dataset. As input data, we 

included our GWAS summary statistics, transcriptome tissue data and covariance matrices of 

the SNPs within each gene model (based on HapMap SNP set; available to download at the 

PredictDB Data Repository) from 10 brain tissues: anterior cingulate cortex, caudate basal 

ganglia, cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, 

hypothalamus, nucleus accumbens basal ganglia, and putamen basal ganglia. Genes were 

filtered if they did not contain SNPs from our dataset, or if the gene’s correlation with the 

predicted expression model (R2) was < 0.01. We applied FDR to correct for multiple testing 

across all brain tissues (N= 31,722)38. S-PrediXcan does not include the X chromosome; 

hence this approach could not provide insight about our strongest signal rs6528024 near 

GPM6B. Extended results are included in the Supplementary Table 9.

Data availability.

We have provided summary statistics for the top 10,000 SNPs (Supplementary Data Set, 

Supplementary Readme). Full GWAS summary statistics for the 23andMe dataset will be 

made available through 23andMe to qualified researchers under an agreement with 23andMe 

that protects the privacy of the 23andMe participants. Interested investigators should email 

dataset-request@23andme.com for more information.

URLs.

EPACTS http://genome.sph.umich.edu/wiki/EPACTS, Genes For Good https://

genesforgood.sph.umich.edu/about_study, GTEx database (http://broadinstitute.org/gtex/, 

LD Score software https://github.com/bulik/ldsc/, LDHub http://ldsc.broadinstitute.org/, S-

PrediXcan https://github.com/hakyimlab/S-PrediXcan-Working, The NHGRI GWAS 

Catalog http://www.genome.gov/gwastudies/, Regulome DB database http://

www.regulomedb.org/, PhenX toolkit https://www.phenxtoolkit.org, PredictDB Data 

Repository http://predictdb.hakyimlab.org/
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Results of GWAS on DD.
(a) Manhattan plot of GWAS results for DD in the 23andMe cohort. The y-axis shows the 

minimum P-values (−log10) of 11,508,756 SNPs, and the x-axis shows their chromosomal 

positions. The minimum P-values were obtained by linear regression analysis with 

adjustment for age, gender, genotyping platform and first five principal components for 

genotype. The horizontal line denotes genome-wide significance (P < 5 × 10−8). The 

statistical tests used were two-sided. (b) QQ plot of DD showing the degree of inflation of 

all test statistics. The results have been adjusted for a genomic control inflation factor λ = 

1.022 (sample size = 23,217).
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Figure 2. Genetic correlations (rg, SE) between DD and several traits.
(a) neuropsychiatric, (b) smoking, (c) personality, (d) cognition, (e) anthropomorphic. * P < 

0.05, ** P < 0.01, *** P < 0.0001 (see Supplementary Table 10 for exact P values). The 

statistical tests used were two-sided; see Supplementary Table 10 for the sample sizes used 

for each trait.
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