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Deletion of Peroxiredoxin II Inhibits the Growth
of Mouse Primary Mesenchymal Stem Cells Through
Induction of the Gy/G; Cell-cycle Arrest and
Activation of AKT/GSK3f/p-Catenin Signaling
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Abstract. Background/Aim: Dermal mesenchymal stem
cells (DMSCs) are pluripotent stem cells found in the skin
which maintain the thickness of the dermal layer and
participate in skin wound healing. Materials and Methods:
The MTT assay was performed to detect cell proliferation
and cell-cycle progression and cell-surface markers were
assessed by flow cytometry. The levels of proteins in related
signaling pathways were detected by western blotting assay
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and the translocation of (-catenin into the nucleus were
detected by immunofluorescence. Red oil O staining was
performed to examine the differentiational ability of DMSCs.
Results: Knockout of PRDX?2 inhibited DMSC cell growth,
and cell-cycle arrest at Gy/G | phase; p16, p21 and cyclin DI
expression levels in Prdx2 knockout DMSCs were
significantly increased. Furthermore, AKT phosphorylation
were significantly increased in Prdx2 knockout DMSCs,
GSK3f activity were inhibited, result in [3-Catenin
accumulated in the nucleus. Conclusion: In conclusion, these
results demonstrated that PRDX2 plays a pivotal role in
regulating the proliferation of DMSCs, and this is closely
related to the AKT/glycogen synthase kinase 3 beta/B3-catenin
signaling pathway.

Skin has a strong capacity for repair and regeneration due to
the fact that it contains various stem cells, such as epidermal
stem cells, skin-derived precursors and dermal mesenchymal
stem cells (DMSCs) (1, 2). DMSCs play two major roles,
one is as a direct source of fibroblasts, and the other is to
secrete a variety of cytokines which promote fibroblasts to
produce collagen and elastin (3). Therefore, the function of
DMSCs plays decisive role in skin development and wound
repair (4).

Peroxiredoxin 2 (PRDX2) is wildly distributed in various
tissues and cells, and functions as a scavenger of reactive
oxygen species (ROS) (5, 6). Our previous study showed that
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Prdx2 knockout mice had significant symptoms of skin
aging, which are characterized by reduced skin thickness and
thinning of the dermis (7), suggesting that PRDX2 may play
a regulatory role in dermal cells. We also reported that Prdx2
knockout can induced cellular senescence of embryonic
fibroblasts through ROS-dependent signaling pathway (7),
however, the role of PRDX2 in the regulation of DMSC
proliferation is not clear.

The Wnt signal is activated by Wnt ligand binding to a
frizzled receptor (8). In the absence of Wnt ligands, the
downstream  signaling molecule [-catenin can be
phosphorylated by glycogen synthase kinase 3 beta (GSK3f3)
and then phosphorylated [3-catenin is degraded by
ubiquitination (9).When Wnt ligand binds to the receptor, the
phosphorylation of 3-catenin by GSK3p is inhibited, which
results in accumulation of 3-catenin in the cytoplasm, it finally
being transferred to the nucleus to induce the expression of
target genes (10, 11). Therefore, phosphorylation of -catenin
and GSK3p is a marker distinguishing the activation of the
classical Wnt/p-catenin signal (12). Previous studies have
shown that PRXs play a role in cell proliferation via Wnt
signaling. It has been reported that knockdown of PRDX2 can
inhibit the growth of colon cancer cells by inhibiting Wnt
signaling pathway (13), but down-regulation of PRDXS5
inhibited the growth of chondrocytes through activating the
Wnt signaling pathway (14).These findings suggests that
PRXs may participate in cell proliferation by modulating Wnt
signaling in different ways. The role of PRDX2 and Wnt
signaling in the regulation of DMSC proliferation has not been
elucidated.

Therefore, in this study, we used both wild-type and Prdx2
knockout DMSCs to study the effect of PRDX2 on DMSC
proliferations and molecular mechanisms, especially on
activation of [-catenin signaling under normal cell culture
conditions, in order to understand the regulatory function of
PRDX?2 in DMSC growth.

Materials and Methods

Animals. Prdx2++ (wild-type) and Prdx2-/- 129/Sv] mice were
provided by the Korea Research Institute of Bioscience and
Biotechnology (KRIBB). Mice were kept under the temperature at
20-22°C, the humidity 50-60% and the 12-h-dark/light cycles
conditions and provided food and water ad libitum. The Institutional
Animal Care and Use Committee approved both the animal care and
experiments.

Cell isolation and cell culture. The dorsal skin of newborn wild-
type and Prdx2-- mice was collected and spread in 3.5 cm culture
dish with 2 ml 0.25% trypsin-EDTA (T/E; Solarbio, Beijing, China)
for 4 h at 4°C. The subcutaneous fat and blood vessels on skin were
removed using tweezers. The skin was then treated for 1 h at 37 °C
in T/E to Separation of dermis and epidermis. The epidermal-free
tissue were dissected into 1.0 cm? pieces and digested with 0.25%
T/E for 1 h at 37°C. After that, the cells were collected by
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centrifugation at 300 x g for 7 minutes and cultured in growth
medium consisting of Dulbecco’s modified Eagle’s medium (Gibco-
BRL, Grand Island, NY, USA) and Dulbecco’s modified Eagle’s
medium/Nutrient Mixture F-12 (Gibco-BRL) with 2 mM L-
glutamine and 1% non-essential amino acid solution (NEAA;
Solarbio, Beijing, PR China), containing 10% fetal bovine serum
(FBS; Solarbio) and 1% 100 U/ml penicillin-streptomycin (P/S;
Solarbio). The cells were cultured at 37°C under 5% CO,.

Detection of surface antigens. Prdx2+*+ (wild-type) and Prdx2--
DMSCs from passage 3 were seeded in six-well plates at density of
3x105 cells/well. After cell adherence for 24 h, the cells were
washed with phosphate buffer (PBS; Solarbio, Beijing, PR China)
twice, permeabilized, and then immune stained with the following
fluorochrome-conjugated antibodies overnight at 4°C: anti-CD44-
phycoerythrin  (PE), anti-CD106-PE, anti-CD14-fluorescein
isothiocyanate (FITC), anti-CD34-PE and anti-CD45-FITC
(BioLegend, San Diego, CA, USA).The MSC phenotypes of
DMSCs were characterized by flow cytometric analysis (FACScan;
BD Biosciences, San Jose, CA, USA).

Multilineage differentiation potential of DMSCs. DMSCs from
passage 3 were seeded in a 3.5 cm culture dish and cultured with
osteogenic differentiation medium (Solarbio) when cells reached
70% confluence. The culture medium was changed every 2 days.
After 21 days of differentiation, the cells were permeabilized with
70% alcohol for 10 min and stained with 0.1% alizarin red S pH 8.3
for 7 min (Sigma-Aldrich, St. Louis, MO, USA). Finally, images
were obtained by fluorescence microscopy coupled with a camera
(Leica DM2500, Germany).

The double types of DMSCs from passage 3 (3 P) were seeded
in 3.5 cm culture dish and cultured with adipogenic differentiation
medium (Solarbio) when cells reached 70% confluence. The culture
medium was changed every 2 days. After 15 days of differentiation,
the cells were permeabilized with 4% paraformaldehyde for 1 h,
treated with 60% isopropanol for 2 min and stained with 0.5% Oil-
red O for 20 min (Solarbio). Finally, images were obtained with a
DM2500 camera (Leica, Wetzlar, Germany).

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay. Cells (2.5x103 cells/well) were cultured in 96-well
plates with growth medium at 37°C for 1, 2, 5, and 7 days. MTT
(10 pl of 5 mg/ml) was added at specific times during incubation
for 4 h and formazan was dissolved using dimethyl sulfoxide (100
). A micro-plate reader (Bio-Tek Instruments, Inc., Winooski, VT,
USA) was used to measure the absorbance of cells at 570 nm. Each
condition was determined in sextuplicate, and all results were
repeated at least three times.

Flow cytometric analysis. DMSCs from different passages (3, 6 and
12) were seeded in six-well plates at the same density (3x103
cells/well). After cell adherence for 24 h, the cells were washed with
PBS twice and suspended in PBS (-20°C) containing 70% ethyl
alcohol for 24 h. Subsequently, the cells were stained with
propidium iodide (PI)/RNase staining solution in the dark for 30
min at 37°C, and analyzed using flow cytometry (FACScan; BD
Biosciences, San Jose, CA, USA).

Western blot analysis. The cells were lysed in RIPA buffer, Lysates
were incubated for 30 min on ice and centrifuged at 13,201 x g for
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Figure 1. Characterization of isolated dermal mesenchymal stem cells (DMSCs). A: Representative images from flow cytometry show the expression
of surface markers of DMSCs isolated from newborn mice. Microscope images showing that isolated DMSCs can differentiate into adipocytes (B)
and osteocytes (C). Scale bar: 100 um. FITC: Fluorescein isothiocyanate; PE: phycoerythrin.
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Figure 2. Knockout of peroxiredoxin 2 (PRDX2) inhibits dermal mesenchymal stem cell (DMSC) growth. A-C: The growth curve of DMSCs from
different passages (3 P, 6 P and 12 P). D: Western blot analysis showing that the proliferation-related signal in Prdx2+'+ (WT) and Prdx2~"~ (—/-)
DMSCs is inhibited at different passages. E and F: Quantification of western blot analysis by ImageJ software. Data are presented as the
mean+SEM. Significantly different at *p<0.05, **p<0.01, and ***p<0.001. GSK3p: Glycogen synthase kinase 3 beta; PCNA: proliferating cell

nuclear antigen; STAT3: signal transducer and activator of transcription 3.
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Figure 3. Deletion of peroxiredoxin 2 (Prdx2) increases cell-cycle arrest of dermal mesenchymal stem cells (DMSCs) in Gy/G,. A: Flow cytometric
analysis showing cell cycle of DMSCs at three distinct passages. B: Quantification of Gy/G| phase at three distinct passages. Deletion of Prdx2
(Prdx27"-) led to Gy/G cell-cycle arrest of DMSCs. C: Western blotting was used to measure the expression of cell cycle-associated proteins. D:
Quantification of western blot analysis by ImageJ software. Significantly different at *p<0.05, and **¥p<0.001. WT: Wild-type Prdx2+'+.
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Figure 4. Up-regulation of glycogen synthase kinase 3 beta (GSK3[3)/f3-catenin signaling in dermal mesenchymal stem cells (DMSCs) with knockout
of peroxiredoxin 2 (Prdx2==). The expression of GSK/B-catenin signaling proteins analyzed with immunofluorescence (A) and western blot (B-D)
implied that lack of Prdx2~'~ inhibits DMSCs growth via GSK/[3-catenin signaling. *Significantly different at p<0.05. WT: Wild-type Prdx2*/+.

5 min at 4°C Proteins were boiled for 5 min and separated on a 12%
polyacrylamide gel. Protein expression and phosphorylation were
monitored with specific antibodies and chemiluminescent
horseradish peroxidase substrate (ZSGB-BIO, Beijing, PR China).
Primary antibodies used in this study were as follows: anti-PRDX?2
(Abfrontier, Seoul, Republic of Korea), anti-proliferating cell
nuclear antigen (PCNA), anti-signal transducer and activator of
transcription 3 (STAT3), anti p-STAT3, anti-p21, anti-pl6, anti-
cyclin D1, anti-AKT serine/threonine kinase 1 (AKT) anti-p-AKT,
anti-GSK3p, anti-p-GSK3f, anti-f-catenin, anti-p-f-catenin and
anti-o-tubulin (Santa Cruz Biotechnology, Santa Cruz, CA, USA).
Secondary antibodies used were, Goat anti-mouse and Goat anti-
rabbit (ZSGB-BIO) and the images were quantified using Image J
software (https://imagej.nih.gov/ij/index.html, National Institutes of
Health, Bethesda, MD, USA).

Cellular immunofluorescence staining. DMSCs were cultured in 24-
well plates at a density of 1.5x104 cells/well. After 24 h, cells were
treated with 4% paraformaldehyde at room temperature to maintain
cellular shape for 10 min and washed twice with PBS. After that,
cells were incubated with B-catenin antibody (Beyotime, Haimen,
PR China) for overnight. The cells were then treated with Alexa
Fluor™ 633 dye (Invitrogen, Carlsbad, CA, USA) for 1 h and the

nuclei were labeled with Hoechst 33342 (Invitrogen) and finally
positive cells were detected by fluorescence microscopy.

Statistical analysis. All of the data were analyzed by Student #-test.
All results are expressed as mean+SEM from at least three
independent repeated experiments. Statistical significance was
assumed for p<0.05.

Results

Isolation and characterization of primary DMSCs. The
DMSCs were isolated through the protocol described in the
Materials and Methods, and then characterized by staining
for CD106, CD44 and negative marker of CD14, CD34 and
CD45 (15-18). As shown in Figure 1A, the isolated cells
strongly stained with antibodies to CD106 and CD44, and
low binding affinity with CD14, CD34 and CD45 antibodies.
Since DMSCs have stem cell characteristics, we also
examined the differentiation potential of the DMSCs. The
results show that the isolated cells were strongly stained by
red oil red O and alizarin red (Figure 1 B and C), suggesting
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that the isolated DMSCs maintained stem cell characteristics,
and were suitable for use in subsequent experiments.

Knockout of PRDX2 inhibits DMSC cell growth. To
understand the effect of Prdx2 deletion on DMSC
proliferation, the wild-type and Prdx2 knockout DMSCs
were cultured for 1, 3, 5 and 7 days). The results showed that
in early passages (passage 3), there were no significant
differences between the growth of wild-type and Prdx2~"~
DMSCs (Figure 2A), while in the late passages (6 and 12),
Prdx2~'~ DMSCs exhibited delay cell growth (Figure 2B and
C) as detected by MTT assay. Therefore, we also checked
the expression of PCNA and STAT3 proteins which are
involved in cell proliferation. As shown in Figure 2D-F, with
increasing culture passage, expression of PCNA protein was
down-regulated in primary Prdx2”~ DMSCs as was that of
p-STAT?3 protein.

Deletion of Prdx2 increases Gy/G; cell-cycle arrest of
DMSCs. Since Prdx2 deletion inhibited DMSC growth
(Figure 2), we hypothesized that it may affect the cell cycle
processing, which is a key point of regulation of cell
proliferation. To verify this, wild-type and Prdx2 knockout
primary DMSCs were stained with PI/RNase solution to
examine the cell cycle. The results showed that late passage
(6 and 12 passage) DMSCs exhibited significant cell-cycle
arrest, marked by Gy/G; cell accumulation, but not in early
passages (passage 3) (Figure 3A and B). This strongly
supports the cell growth results shown in Figure 2. In order
to understand the possible molecular regulatory mechanism
of PRDX2 in cell-cycle arrest, we also compared the
expression of cell cycle-related proteins between wild-type
and Prdx2~'~ DMSCs. The results showed that expression of
p21 and pl6 proteins, known as cell-cycle inhibitors, were
significantly increased in Prdx2~~ DMSCs, as well as cyclin
D1 (Figure 3C and D).

Up-regulation of GSK/f3-catenin signaling in Prdx2'~
knockout DMSCs. GSK3p/pB-catenin is involved in various
aspects of cell growth and differentiations through regulating
the cell cycle related protein expressions (19-22). Our
findings suggest that PRDX2 gene knockout could
dramatically inhibit the cell growth by affect the cell cycle
related proteins expressions (Figure 3), we hypotheses that
PRDX2 knockout may also affect the GSK/B-catenin
signaling pathway. To verify this, we examined the B-catenin
expression levels in the wild-type and Prdx2~'~ DMSCs. The
result showed that up-regulation of B-catenin in Prdx2~~
DMSCs compared with wild-type, as observed from
immunocytochemistry (Figure 4A). Translocation of [3-
catenin is a mark of $-catenin activation, thus, we examined
nuclear [3-catenin protein expression between wild-type and
Prdx2”'~ DMSCs. The results showed that deletion of Prdx2
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increased the expression of nuclear B-catenin compared with
wild-type DMSCs, while there was no significant difference
in total cell lysate (Figure 4B). Since [-catenin is activated
by GSK phosphorylation, we also assessed p-GSK and p-
AKT expression between wild-type and Prdx2—/— DMSCs.
The results showed significant up-regulation of p-GSK and
p-AKT in Prdx2—/— DMSCs compared with wild-type
(Figure 4C and D).

Discussion

DMSCs are pluripotent stem cells in the dermis (23-25).
DMSCs can activate fibroblasts, stimulate secretion of
collagen and promote the proliferation of fibroblasts and
epidermal cells by secreting a series of cytokines such as
tumor growth factor B, vascular endothelial growth factor,
platelet-derived growth factor and hepatocyte growth factor
(26, 27), therefore, the number and function of DMSCs play
an important role in skin maintenance and homeostasis (28).
DMSCs are a kind of seed cells suitable for tissue
engineering because of their rapid proliferation, multi-
directional differentiation and low immunogenicity (29).
However, in vitro culture and proliferation of DMSCs is
difficult, and it is easy to cause the loss of stemness, which
limits its wide application. Therefore, there is a need to
establish optimal culture conditions to study the key
physiological and biochemical factors of DMSC self-
renewal, so that DMSCs can maintain stemness and normal
physiological functions after massive expansion to better
research findings apply to clinical practice.

PRDX2 plays an important role in the proliferation and
differentiation of many kinds of stem cells. Nitrosylation of
PRDX?2 can promote cardiac formation of mouse embryonic
stem cells through X-box binding protein-1s/phosphati-
dylinositol-4,5-bisphosphate  3-kinase (PI3K) signaling
pathway (30); PRDX2 has also been shown to regulate the
differentiation of embryonic stem cells into neurons (31).
Compared with primary stem cells, the regulation of stem cell
stemness by PRDX?2 comes more from the study of cancer
stem cells (6, 32). Silencing PRDX2 gene resulted in the
decrease of NANOG expression in colon cancer stem cells,
and cell proliferation and migration were significantly reduced
(6). The expression of SRY-related high-mobility-group-box
protein-2 and octamer-binding transcription factor-4 was
down-regulated in PRDX2-silenced Huh7-H-RasG12V
hepatoma cells, and sphere formation efficiency and
epithelial-mesenchymal transition were significantly inhibited
(6). Mechanistic studies showed that PRDX?2 can regulate
stemness of cancer stem cells through a variety of signaling
pathways, which contribute to the maintenance of the cancer
stem cell properties of hepatocellular carcinoma via
VEGF/EGFR/STAT3 signaling and RAS/FOXM]1 signaling
(33-35). In the process of isolation and expansion of DMSCs,
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we found that knockout of PRDX2 can significantly inhibit
the proliferation of stem cells with the increasing cell passage.
Prdx27'~ DMSCs exhibited cell-cycle arrest in the sixth and
12th passage; p16, p21 and cyclin D1 expression levels in
Prdx2~~ DMSCs were also significantly increased, indicating
that knockout of the PRDX?2 in mesenchymal stem cells leads
to cell-cycle arrest, thereby affecting the proliferation of stem
cells.

[-Catenin is a key element in driving the Wnt/B-catenin
signaling pathway, and GSK3p is a critical kinase regulating
[B-catenin phosphorylation (36, 37). When the activity of
GSK3[ kinase is inhibited, unphosphorylated B-catenin can
accumulate in the cytoplasm without being degraded by
proteasomes, and be transferred into the nucleus, where it
binds to transcription factors and forms transcriptionally
active complexes that initiate transcription of genes such as
c-MYC, cyclin D1, and CD44(38), thereby regulating cell
proliferation and differentiation (39). Our results showed that
the expression of p-GSK3[(Ser9) increased in Prdx2~'~
DMSCs with increasing cell passage, and [-catenin
accumulated in the nucleus, indicating that -catenin in the
cytoplasm could not be phosphorylated and degraded by
ubiquitination. The results of this study show that knockout
of Prdx2 in DMSCs can reduce the activity of GSK3[ and
promote the translocation of P-catenin into the nucleus,
thereby activating the downstream signaling pathways.
However, activation of this signaling pathway did not
improve cell proliferation caused by PRDX2 knockout, high
expression of cyclin D1 also did not prevent cell-cycle arrest
(40).The kinase activity of GSK3p can be regulated by
different signaling pathways, in which phosphorylated AKT
can phosphorylate GSK3f to inactivate it (12, 37, 41). In
Prdx2~'~ DMSCs, the phosphorylation of AKT increased as
the number of cell passages increased, this is most likely
achieved through cross talk between the PRDX2, PDGF and
PI3K signals (42).

We conclude that PRDX2 plays an important role in
regulating the proliferation of DMSCs, and this regulation is
closely related to the AKT/GSK3f/B-catenin signaling
pathway. However, the specific regulatory mechanism
involved remains to be further studied.
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