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Abstract

Recent advances in parallel imaging and simultaneous multi-slice techniques have permitted 

whole-brain fMRI acquisitions at sub-second sampling intervals, without significantly sacrificing 

the spatial coverage and resolution. Apart from probing brain function at finer temporal scales, 

faster sampling rates may potentially lead to enhanced functional sensitivity, owing possibly to 

both cleaner neural representations (due to less aliased physiological noise) and additional 

statistical benefits (due to more degrees of freedom for a fixed scan duration). Accompanying 

these intriguing aspects of fast acquisitions, however, confusion has also arisen regarding (1) how 

to preprocess/analyze these fast fMRI data, and (2) what exactly is the extent of benefits with fast 

acquisitions, i.e., how fast is fast enough for a specific research aim? The first question is 

motivated by the altered spectral distribution and noise characteristics at short sampling intervals, 

while the second question seeks to reconcile the complicated trade-offs between the functional 

contrast-to-noise ratio and the effective degrees of freedom. Although there have been recent 

efforts to empirically approach different aspects of these two questions, in this work we discuss, 

from a theoretical perspective accompanied by some illustrative, proof-of-concept experimental in 

vivo human fMRI data, a few considerations that are rarely mentioned, yet are important for both 

preprocessing and optimizing statistical inferences for studies that employ acquisitions with sub-

second sampling intervals. Several summary recommendations include concerns regarding 

advisability of relying on low-pass filtering to de-noise physiological contributions, employment 

of statistical models with sufficient complexity to account for the substantially increased serial 

correlation, and cautions regarding using rapid sampling to enhance functional sensitivity given 

that different analysis models may associate with distinct trade-offs between contrast-to-noise 

ratios and the effective degrees of freedom. As an example, we demonstrate that as TR shortens, 

the intrinsic differences in how noise is accommodated in general linear models and Pearson 

correlation analyses (assuming Gaussian distributed stochastic signals and noise) can result in 

quite different outcomes, either gaining or losing statistical power.
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1 Introduction

The ever-growing availability of simultaneous multi-slice (SMS) pulse sequences has 

offered the fMRI community an option to examine brain activities at much faster temporal 

scales than conventional 2~3 s temporal sampling intervals (Barth et al., 2016; Feinberg et 

al., 2010; Feinberg and Setsompop, 2013; Feinberg and Yacoub, 2012; Hennig et al., 2007; 

Larkman et al., 2001; Lin et al., 2006; Moeller et al., 2010; Narsude et al., 2016; Setsompop 

et al., 2016; Setsompop et al., 2012; Zahneisen et al., 2011). With fast fMRI, researchers 

have been able to probe neural oscillations at frequencies well above the limits of 

conventional acquisitions (e.g., (Lee et al., 2013; Lewis et al., 2016)) and characterize brain 

temporal dynamics at much finer temporal resolutions (e.g., (Lewis et al., 2018; Lin et al., 

2018; Smith et al., 2012)). Furthermore, additional temporal samples are achieved without 

increasing the scan duration, which is commonly thought to be advantageous for enhanced 

sensitivity to neural fluctuations (e.g., (Feinberg et al., 2010; Posse et al., 2012; Smith et al., 

2013)).

However, faster sampling rates come at the penalty of reduced signal-to-noise ratio (SNR) 

per time frame due to reduced longitudinal magnetization recovery (Barth et al., 2016; 

Edelstein et al., 1986; Feinberg and Setsompop, 2013), which will result in altered 

contributions from various sources of fMRI noise by virtue of their distinct dependencies on 

signal amplitudes (Liu, 2016; Wald and Polimeni, 2017). For instance, the level of noise 

resulting from slow physiological processes (e.g., end-tidal CO2 levels and cardiac-related 

pulsation) scales with signal levels while thermal noise remains constant across different TR 

values. Such alterations in noise characteristics, including having broadened spectral 

distributions, pose the concern that conventional analysis pipelines that are optimized for 

longer-TR acquisitions may not be well suited for data collected at subsecond TRs. Indeed, a 

few recent studies have demonstrated that certain steps in conventional acquisitions may 

introduce spurious high-frequency network patterns in the observed fMRI data (Chen et al., 

2017), and that conventional parametric models that characterize the noise fluctuations may 

fail to summarize the temporal characteristics of short-TR data and lead to invalid statistical 

inferences regarding brain activation (Bollmann et al., 2018; Corbin et al., 2018; Eklund et 

al., 2012; Olszowy et al., 2018; Sahib et al., 2016).

Because the reduced SNR per time frame may offset the enhanced statistical power yielded 

by additional sampling points (Constable and Spencer, 2001), it is not obvious at first glance 

whether fast acquisitions indeed contribute to increased functional sensitivity and if so, 

under what conditions. To examine whether sub-second TRs are superior to conventional 

long-TR acquisitions, several studies have empirically evaluated the performance of fast 

acquisitions in specific cases and analysis strategies, which led to somewhat conflicting 

observations. For instance, a few task-based studies showed that sub-second TRs could lead 
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to enhanced sensitivity to neural activation, evidenced by higher statistical scores in general 

linear model (GLM)-based sensory task activation analyses (Chen et al., 2015; McDowell 

and Carmichael, 2018; Posse et al., 2012), detection of additional task clusters when 

combined with multi-echo acquisition (Boyacioglu et al., 2015), enhanced classification 

accuracy of complex cognitive states (Chen et al., 2015; Demetriou et al., 2018), and better 

correspondence with epileptic spikes identified by concurrent EEG recordings (Jacobs et al., 

2014). However, a recent study assessed brain activation under a broad range of task types 

and showed that the benefits of fast acquisitions analyzed with GLM-based approaches were 

very modest (Demetriou et al., 2018). The benefits of rapid sampling for resting-state 

functional connectivity are also controversial. A few studies reported that shorter TRs 

significantly enhanced both the number of detected resting-state networks identified with 

independent component analysis (ICA) (Akin et al., 2017; Olafsson et al., 2015) as well as 

the peak Z-scores of these networks if they were resolved by multi-component dual-

regression analyses (Demetriou et al., 2018; Feinberg et al., 2010; Preibisch et al., 2015). 

However, such statistical gains became minor if the networks were derived separately from a 

single-component/network or seed-based regression (Demetriou et al., 2018; Feinberg et al., 

2010). Thus, existing studies of both task activation and resting-state sub-second fMRI have 

resulted in discordant findings regarding the value of rapid sampling.

The aim of this work is hence twofold: (1) to highlight a few novel considerations for both 

data preprocessing and modeling for fast fMRI; and (2) to provide some basic theory, along 

with measured and simulated data, to clarify certain aspects of previous conflicting 

observations on statistical characteristics of rapid sampling. This manuscript is organized as 

follows: Section 2 will define signal and noise within the scope of this work; Section 3 will 

review a few caveats in preprocessing rapid fMRI data, involving nuisance regression and 

removal of physiological noise in short-TR fMRI data; Section 4 will discuss appropriate 

models that can characterize the temporal autocorrelation of short-TR fMRI time series, 

supported by both theory and real data results; Section 5 will employ elaborate simulations 

to illustrate how different factors in study design, statistical models (with primarily GLM 

and linear Pearson correlation as examples) and signal characteristics can affect the potential 

benefits of fast acquisitions; and finally in Section 6, we will present our recommendations 

for the fast fMRI field, which hopefully can contribute to more effective and consistent 

usage of rapid sampling protocols in future applications.

2 Signal and Noise

To unify discussion in the following sections, we first define signal and noise within the 

scope of this manuscript:

Signal: fluctuations in image intensity causally linked with the neural activity of interest.

Physiological noise: any remaining T2/T2* related fluctuations that scale linearly with the 

signal (Kruger and Glover, 2001), including, for instance, neural activity-related fluctuations 

that are not of interest, residual effects from end-tidal CO2 fluctuations (Birn et al., 2006; 

Wise et al., 2004), or basic maintenance of hemodynamic stasis that is controlled by the 

autonomic system. Of note, such a definition of physiological noise deviates from that in 
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conventional literature—which typically refers to quasi-periodical fluctuations induced by 

respiratory and cardiac cycles. Here, we assume that such quasi-periodical fluctuations have 

already been effectively removed by either temporal filtering or model-based approaches 

(e.g., (Glover et al., 2000)), unless mentioned otherwise.

White (thermal) noise: broadband signal fluctuations arising from the thermal agitation of 

charge carriers in both the subject and the MRI system electronics. This noise is spatially 

and temporally white and is independent of signal level.

Other noise types: signal fluctuations arising from brain motion, system drift, system 

instability (see (Liu, 2016) for a review), image errors from reconstructing data that are 

undersampled in the in-plane or slice directions (e.g., g-factor penalty (Pruessmann et al., 

1999)). This noise is in general structured in space and/or time.

The discussion in this work will focus primarily on the relative contributions of 

physiological and white noise, assuming that other types of system and pulse sequence-

related noise have been effectively removed or have minimal contributions. As we shall see, 

the relative levels of additive (white) and multiplicative (physiological) noise can have a 

profound effect on the benefits of sub-second sampling.

3 Preprocessing

3.1 Spectra misspecification in nuisance regression

Nuisance regression, which projects out of each voxel’s time series noisy components (e.g., 

motion and fluctuations triggered by physiological processes) under a linear regression 

framework, has been routinely employed in data preprocessing. Here, we review a few 

caveats that warrant particular attention when removing nuisance factors from data collected 

with short TRs.

First, respiratory artifacts, which are less noticeable at conventional 2~3 s TRs due to 

aliasing effects, become pronounced in head motion estimates as TR shortens (Fair et al., 

2018; Siegel et al., 2017), as illustrated in Fig. 1 (a) and supplementary material SM2). Such 

artifacts stem both from true mechanical movements of the head (e.g. linked to chest 

expansion and contraction) and from quasi-periodical perturbations of main magnetic field 

caused by respiration processes (Van de Moortele et al., 2002). The former is the result of 

head displacements in multiple directions and rotation, typically predominant about the left-

right axis (Fig. 1 (a), more pronounced in HCP subject 01); whereas the latter induces 

apparent (but artifactual) head displacements along the phase-encoding direction of an echo 

planar imaging (EPI) acquisition, which can manifest in all directions of the rigid-body 

motion estimates due to cross-talk effects (Fair et al., 2018) (Fig. 1 (a), observable in HCP 

subject 02). It is noteworthy that, unlike actual head displacements, respiration-induced field 

perturbation does not cause intensity fluctuations through spin history effects, however 

nuisance regression is only intended to remove motion-induced intensity changes. Therefore 

in this case, deleterious respiratory fluctuations may be introduced into fMRI datasets after 

regression against the estimated motion traces. To avoid this deleterious effect, one can 

either notch-filter the quasi-periodic respiration waveforms from motion estimates prior to 
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nuisance regression (Fair et al., 2018), or include co-varying physiological parameters (e.g., 

RETROICOR covariates (Glover et al., 2000)) together with the estimated motion traces in 

the nuisance regression.

Second, as we have discussed in earlier work (Chen et al., 2017), linear nuisance regression 

results are dominated by the strongest frequency components (typically < 0.2 Hz) present 

both in the fMRI signal and in common nuisance components, implying that higher-

frequency oscillations resolved by fast acquisitions may not be de-noised as effectively if 

these high-frequency bands are preprocessed together with the low-frequency bands 

containing the strongest fluctuations. Therefore, we recommend (and reinforce in section 6 

(2)) that future studies perform matched-band nuisance regression (i.e., filtering both the 

fMRI time series and nuisance regressors into identical frequency bands (Carp, 2013; Chen 

et al., 2017; Hallquist et al., 2013)) if the frequencies of interest do not dominate, i.e., if the 

frequencies of interest are > 0.2 Hz; otherwise, filtering the fMRI time series after regression 

is preferable for resting-state data, because filtering can diminish the effective degrees of 

freedom in statistical inferences (Bright et al., 2017; Davey et al., 2013).

3.2 Correcting for respiratory and cardiac confounds

An intriguing aspect of fast acquisitions is that respiratory/cardiac peaks can be clearly 

resolved at their fundamental frequencies (for sufficiently short TRs) and will not alias into 

lower frequencies where most neural activity resides. As such, it is commonly assumed that 

one can simply de-noise rapidly-acquired fMRI time series via temporal filtering, without 

needing to collect additional physiological data required by most model-based approaches.

Appealing as it may seem to employ low-pass temporal filtering for physiological noise 

elimination, one should be aware that cardiac and respiratory noise waveforms are far from 

sinusoidal and thus include higher-order harmonics not unambiguously resolved at the 

sampling rate employed. Thus, only very short TRs (much smaller than 0.5 s) can guarantee 

no aliasing of physiological peaks (as simulated in Fig. 1 (b)). It is also noteworthy that, if 

aliasing occurs, faster acquisitions may paradoxically not necessarily lead to cleaner neural 

representations. For instance, if we assume neural fluctuations are confined to < 0.2 Hz (Fig. 

1 (b), red dashed lines), then a 1.2 s TR can result in less contamination from the 1st-order 

cardiac spectrum (for the assumed range) than a 1 s TR (Fig. 1 (b), highlighted by red 

arrows).

Aside from the fundamental fluctuations that are time-locked to cardiac/respiratory cycles, it 

is noteworthy that (1) the 2nd-order harmonics in physiological processes also account for 

considerable variance of fMRI time series (Glover et al., 2000); and that (2) certain slow 

changes in regular physiological process (e.g., fluctuations in end-tidal CO2 levels 

(Golestani et al., 2015; Wise et al., 2004), respiration volume per unit time (RVT) (Birn et 

al., 2006), and heart rate variability (HRV) (Chang et al., 2009; Shmueli et al., 2007)) can 

also induce significant low-frequency nuisance fluctuations (as illustrated with HCP datasets 

in Fig. 1 (c)). Because the spectra of these slow physiological processes overlap with the 

spectra of true neuronal components, they cannot be effectively removed by filtering.
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Collectively, despite the fact that filtering can address the fundamental frequencies of 

physiological processes when TR is sufficiently short, model-based (e.g., (Birn et al., 2008; 

Chang et al., 2009; Glover et al., 2000)) or recently proposed data-driven alternatives (e.g., 

(Glasser et al., 2018; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)) should still be 

employed to account for the effects of these physiological processes both in frequency bands 

above the fundamental frequency (i.e., the higher harmonics) and below the fundamental 

(i.e., the slow changes in the physiological processes occurring over several cycles).

4 Modeling signal and noise autocorrelations at sub-second TRs

Because fMRI time series comprise various colored noise components that render the 

neighboring temporal samples non-independent, it is important to account for such serial 

correlations (i.e., the dependencies among distinct samples) in order to yield valid statistical 

inferences on functional activity. Although it is impossible to find a unified model that 

optimally characterizes every brain voxel’s autocorrelation pattern given the expected 

dependence of the autocorrelation structure on local vasculature (Gonzalez-Castillo et al., 

2012; Handwerker et al., 2012), on the spatially-varying mixture of noise components (Liu, 

2016), and on the specific data manipulation and processing steps performed (Friston et al., 

2000), we may still seek a simple yet flexible model that effectively summarizes the 

temporal structure of fMRI time series across a vast set of brain areas and experimental 

conditions. Indeed, various parametric models (e.g., autoregressive models (AR), 1/f noise) 

and nonparametric models (see (Monti, 2011) for a review) have been proposed since the 

seminal treatment of fMRI time series analysis (Friston et al., 1995). While the parametric 

model conventionally employed with long-TR acquisitions (the 1st-order AR or AR1 model) 

appear to be adequate, adding a small amount of complexity to the model (e.g., 2nd-order 

AR, or regularization) has been shown to further improve the fitting performance in 

conventional-TR analyses (Lenoski et al., 2008).

As TR gradually shortens to the sub-second regime, one may naturally wonder whether 

certain parametric long-TR models still apply, because the temporal dependencies of fMRI 

time series change in several ways. First, diminished SNR per time frame leads to increased 

fractional contribution from white noise, which manifests as a sharp peak of the 

autocorrelation function at 0 s lag, and a flatter amplitude spectrum at higher frequencies 

(Fig. 2(a), highlighted by green arrows in the exemplar real data time series). Second, 

because time series of fMRI data are discretely sampled, reduced temporal intervals between 

adjacent samples will result in longer-range dependencies in the autocorrelation function and 

faster amplitude decays in the normalized frequency domain (Fig. 2(a), highlighted by light 

blue arrows). As a result, the performance of certain conventional long-TR models degrades 

as TR shortens, as shown by the fitting of exemplar real data in Fig. 2(b).

Implications of such discrepancies between the serial structure of short-TR data and 

parametric models implemented in common toolkits have been cautioned by several studies 

(Bollmann et al., 2018; Eklund et al., 2012; McDowell and Carmichael, 2018; Olszowy et 

al., 2018; Sahib et al., 2016), and the proposed solutions include invoking nonparametric 

alternatives (e.g., (Woolrich et al., 2001)) or a slightly more complicated parametric model 

(essentially with more free parameters for model fittings), such as higher-order AR models 
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(Bollmann et al., 2018; Jacobs et al., 2014; Sahib et al., 2016; Worsley et al., 2002), and the 

new FAST option of SPM (https://www.fil.ion.ucl.ac.uk/spm/), which fits the serial 

correlation structure with more versatile dictionary components based on exponential 

covariance functions (Corbin et al., 2018; Todd et al., 2016). These more complicated 

models flexibly adapt to data collected at different TRs and have been demonstrated to be 

effective. Yet, increasing model complexity always raises concerns of potential overfitting, 

particularly in scenarios when the data suffer from low SNR (accompanying high 

spatiotemporal resolution) or when considering analyses with short durations (i.e., studies 

investigating a diseased population or time-varying patterns of dynamic brain functional 

connectivity). For instance, as shown by the real data example in Fig. 2(c), the power 

spectrum of a gray matter region can sometimes be very noisy at the single- or very few-

voxel level, and good model fitting is only obtained when multiple voxels are averaged. In 

such cases, models with simple a priori constraints may be preferred. Inspecting Fig. 2(b) 

closely, one observes that the conventional models fail to varying extents at short TRs: AR1 

+ white noise (Purdon and Weisskoff, 1998) (TR = 0.35 s, green waveform) still fits the 

global signal well if the AR coefficient is allowed to vary freely, which agrees with a recent 

comparison that suggests the ARMA(1,1) (a.k.a., AR1 + white noise) model in AFNI 

(https://afni.nimh.nih.gov) outperforms other conventional models as TR shortens (Olszowy 

et al., 2018). This is possibly because increased fractional contribution of white noise can be 

addressed by the additional white noise component in the serial correlation model; and the 

remaining colored noise present in data acquired with different TR values can still be 

captured by very low-order AR models if we allow the AR coefficients to vary flexibly 

(essentially, longer range correlations between time points do not necessarily require a 

higher-order AR model). It is also noteworthy that, in the discussion above, we assume that 

fluctuations time-locked to respiratory and cardiac cycles have been accurately eliminated, 

such that a very-low-order AR model alone is adequate to fit the slow physiological noise 

components (Bollmann et al., 2018). Apart from conventional approaches that address the 

DOFs on an individual voxel or region basis as discussed above, an alternative solution is 

spatial-wise mixture-modeling, see section 5.7 for more detailed discussion.

Finally, why is it so important to model the serial correlation structure correctly? An 

empirical illustration is offered in Fig. 2 (d): compared to models applicable to different TR 

values (ARMA(1,1) or higher-order AR models), AR1 and AR2 models perform well at TR 

= 2 s and lead to almost identical statistical results, but fail to capture the serial correlations 

of fMRI time series at TR = 0.4 s, resulting in inflated t-statistics and thus overestimated 

statistical gains compared to TR = 2 s. This effect can induce false positives and exaggerate 

statistical benefit of short TRs (Purdon and Weisskoff, 1998; Sahib et al., 2016).

5 How fast is fast enough? Factors in task design and analyses that affect 

the statistical outcomes

As briefly reviewed in the Introduction, existing empirical comparisons of fast and 

conventional long-TR acquisitions do not conclusively demonstrate whether the functional 

sensitivity of fMRI studies can be significantly improved by faster sampling. The statistical 

outcomes have been shown to depend heavily on a broad range of factors, e.g., study designs 
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and the statistical analyses employed (e.g., (Demetriou et al., 2018)). In this section, we 

employ simulations (with fMRI signal and noise models outlined in Appendices A–C) and 

some exemplar human scan results (with acquisition and analysis details listed in 

supplementary material S1D) to demonstrate certain theoretical considerations regarding 

how study designs, data analyses, and temporal characteristics of fMRI time series can affect 

the benefits of fast acquisitions. These results may contribute to better understanding of the 

conflicting observations of empirical comparisons, and guide usage of fast fMRI protocols 

in future applications.

5.1 Estimating signal or noise in the presence of serial temporal correlations

As we have discussed in the previous section, correctly modeling the serial correlation 

structures of fMRI time series is critical for yielding valid statistical inferences regarding 

brain activation or connectivity metrics. Yet, depending on the statistical models we employ, 

fluctuations in an fMRI time series may be considered partly or completely stochastic, 

leading to different estimates of serial correlations. For instance, the GLM views the fMRI 

time series as a linearly additive mixture of deterministic signals and stochastic noise, hence 

only characterizes the serial correlations of the residual noise in statistical inferences; 

whereas in the linear Pearson correlation analysis (often used in seed-based or region-of-

interest-based functional connectivity estimation), the serial correlation summarizes the 

temporal dependencies of the entire time series, because both the signal and noise are 

considered stochastic. Fig. 3 (a) gives an illustrative example in which the estimates of serial 

correlations in an fMRI time series can vary depending on whether the entire time series is 

viewed as stochastic, and therefore possessing temporal autocorrelation that requires 

modeling, or whether only the noise is stochastic (blue vs. green curve). Because fMRI 

signals are generally sluggish due to hemodynamic delays, models that evaluate the serial 

correlations only of the residual noise (e.g., in GLM analyses) benefit more from fast 

sampling via increased degrees of freedom (DOFs) (provided that the data are not pre-

whitened) arising from lower temporal dependencies among adjacent samples.

5.2 Contrast to noise ratio (CNR) penalty and effective DOFs as functions of summary 
statistics: GLM vs. linear Pearson correlation

The performance of an fMRI protocol and final statistical outcomes are commonly 

approximated by the metric tSNR × N, where tSNR refers to voxel-wise temporal SNR, 

defined as the voxel’s temporal mean divided by its temporal standard deviation, and N is 

the total number of time points collected in the protocol (e.g., (Smith et al., 2013)). 

However, existing fMRI research has employed a broad range of summary statistics (e.g., 

GLM-based task activation, linear Pearson correlation-based functional connectivity, 

complex network behavior, etc.), each of which are affected by distinct CNR (the ratio of 

neural fluctuations of interest to nuisance fluctuations) penalties and DOFs gains that occur 

as the TR value shortens. For instance, at the single-subject level, the t-score of a task 

covariate derived from a GLM scales roughly linearly with the CNR, and the effective DOFs 

approximate the total number of time points for modest number of covariates (as pre-

whitening is routinely implemented in most toolboxes to address noise serial correlations 

(Bullmore et al., 1996; Woolrich et al., 2001)); whereas the t-statistics of linear Pearson 

correlation values (typically employed to quantify the temporal synchrony between two 
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remote brain regions) scale nonlinearly with CNR, and the effective DOFs increase more 

modestly at short TRs due to serial correlations ((Davey et al., 2013), please refer to 

Appendices B and C). As such, even under identical CNR levels and acquisition protocols/
environments, the ‘optimal’ TR value (that yields the highest expectation of t-statistics) may 
vary according to the types of summary statistics employed. For example, when comparing 

GLM-based task activation analysis to linear Pearson correlation-based functional 

connectivity analysis, the latter favors slightly longer TRs by virtue of both stronger penalty 

on CNR loss and limited benefits in DOFs at short TRs. This is demonstrated by the trend of 

normalized t-score gains vs. TR simulated in Fig. 3 (comparing panels (c) GLM and (d) 

Correlation, ‘Raw’), as well as with real data in Fig. 4 (comparing the ‘Raw’ data in panels 

(b) and (d), given that tSNR × N of the estimated region exhibited similar TR dependence).

5.3 Influence of increased contribution of physiological noise in GLM: CNR reduction at 
short TRs

Akin to signal, the strength of physiological noise also diminishes as TR shortens (Kruger 

and Glover, 2001; Liu, 2016; Wald and Polimeni, 2017). In an extreme scenario where 

physiological noise overwhelmingly dominates, the reduction in CNR caused by rapid 

sampling is very minor. Hence, the relative ratio between white and physiological noise can 

also strongly influence the observed benefits of faster sampling. As simulated in Fig. 3 (c 

left, different levels of white noise) and demonstrated by real data in Fig. 4 (a and b, 

different extents of spatial smoothing), with reduced fractional contribution from white noise 

(through increasing levels of spatial smoothing, which reduces white noise due to noise 

averaging and cancellation) normalized gains of statistical scores at short TR values become 

more pronounced.

5.4 Influence of the task paradigm in GLM

The timing of the imposed task is another factor that can influence the benefit achieved from 

faster acquisitions. Because physiological noise extends beyond the sampling Nyquist 

frequency despite decaying monotonically, reduced aliasing of physiological noise due to 

short TR values will lead to more significant noise reduction at relatively higher frequencies 

(e.g., close to 0.25 Hz, the Nyquist frequency at TR = 2 s) compared to lower frequencies. In 

Fig. 3 (c), we simulated the fractional contributions from white noise by scaling the power of 

white noise by different factors fw. Although the employed noise model (shown in Fig. 3 (b) 

and detailed in Appendix A) may not well characterize fluctuations at very low frequencies 

that can be distorted by system drifts or other un-modeled phenomena (as illustrated in Fig. 

2 (b, TR = 2 s)), the simulations will still offer some qualitative insights on the impacts of 

task paradigm on statistical outcomes. The simulations show that the influence of task 

timing is very minor if white noise is substantial (Fig. 3 (c, ‘Influence of fractional 

contribution of white noise’), fw = 8); however, as the fractional contribution from 

physiological noise increases, tasks operating at faster temporal scales will elicit large gains 

in expected t-scores (Fig. 3 (c, ‘Influence of fractional contribution of white noise’), fw = 

1/8). As expected, such an effect of task paradigm depends on the autocorrelation structure 

of signal or physiological noise: if we reduce the temporal dependencies of signal or 

physiological noise, such a dependence becomes less prominent (Fig. 3 (c, ‘Reduced serial 

correlations of signal/physiological noise’). In these simulations lower serial correlation was 
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achieved by reducing the AR coefficient at TR = 2 s (φ2) from the estimated value 0.58 to 

0.2 and to 0.05).

5.5 Influence of preprocessing in linear Pearson correlation

As fast fMRI data become more widely available, questions arise regarding whether to pre-

whiten or not to pre-whiten the time series, as described above, or whether to smooth or not 

to smooth. The influence of preprocessing has been intensively evaluated in the context of 

GLM-based task activation analysis (Friston et al., 2000; Monti, 2011). These preprocessing 

steps can significantly alter the statistical outcomes by indirectly influencing the CNR 

penalty and DOF gains, however the impact of preprocessing on linear Pearson correlation 

analysis has received less attention. Here, we discuss the effects of temporal filtering and 

pre-whitening on linear Pearson correlation metrics and show that the trend of statistical 

gains on TR value may vary depending on the specific preprocessing steps taken.

Low-pass temporal filtering (< ~0.1 Hz) has been routinely applied to improve the overall 

CNR of resting-state fMRI time series (as noise is considered to dominate signal at 

frequencies > 0.1 Hz). However, filtering can also reduce DOFs available in the datasets 

(leading to almost constant DOFs across TR values) (Davey et al., 2013). It is hence not 

obvious whether temporal filtering is advantageous for improved efficiency of statistical 

testing. In particular, we may benefit less from temporal filtering when performing linear 

Pearson correlation analysis in cases where one attains very modest improvements in CNR 

and the penalty caused by reduced DOFs dominates, such as in physiological noise-

dominated regimes (see Fig. 3 (d, ‘Influence of fractional contribution of white noise’), 

‘Low-pass filtering’ vs. ‘Raw’, fw = 1/8, and at long TR values). In time series with 

relatively lower temporal correlations of the signal/physiological noise, such reduction in 

DOFs caused by temporal filtering is more prominent and one observes more severe 

reduction in statistical power (Fig. 3 (d, ‘Reduced serial correlations of signal/physiological 

noise’), ‘Low-pass filtering’ vs. ‘Raw’, fw = 1, comparing φ2 = 0.05 or 0.2 vs. φ2 = 0.58).

Contrary to temporal filtering, pre-whitening can recover the lost DOFs due to 

autocorrelation. If physiological noise dominates, pre-whitening will incur very minor CNR 

reduction and significantly improve the statistical power (Fig. 3 (d, ‘Influence of fractional 

contribution of white noise’), ‘pre-whitening’ vs. ‘raw’, fw = 1/8). Further, if the noise 

consists only of physiological components (which has similar serial correlation structure as 

the signal), pre-whitening can also reduce the bias of estimated linear Pearson correlation 

values (induced by potentially inconsistent autocorrelation structures of two time series) 

(Arbabshirani et al., 2014; Christova et al., 2011; Lewis et al., 2012). However, as the 

fractional contribution from white noise increases, a huge penalty on CNR and reduced 

statistical scores will be incurred (Fig. 3 (d, ‘Influence of fractional contribution of white 

noise’), ‘pre-whitening’ vs. ‘raw’, fw = 1, 8, at short TR values). Because of autocorrelation, 

the signal contribution to the total variance will thus decrease more dramatically compared 

to the contribution of white noise after pre-whitening. As expected, if we reduce the 

temporal dependencies in the physiological noise, making it more similar to white noise, 

pre-whitening will lead to more moderate reduction in the fractional contributions from 

signal/physiological noise to the total variance of fMRI time series, and thus more modest 
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reduction in final statistical power at short TRs (Fig. 3 (d, ‘Reduced serial correlations of 

signal/physiological noise’), ‘pre-whitening’ vs. ‘raw’, fw = 1, comparing φ2 = 0.05/0.2 vs. 

φ2 = 0.58).

According to the discussion above, it is not trivial to determine the influence exerted by 

either temporal filtering or pre-whitening on the TR-dependence of linear Pearson 

correlation results and make generic recommendations. The exerted changes in CNRs and 

DOFs vary according to the original temporal characteristics of collected time series; and the 

impacts on associated statistics can be further complicated by the nonlinear relationship 

between CNR and statistical outcomes (t-scores scale supra-linearly with CNR at low CNR 

values, while more linear with CNR at high CNR values, see eqn. (C.6) in Appendix C). 

However, it is clear that preprocessing decisions (e.g., temporal filtering and pre-whitening 

discussed here) may incur distinct trade-offs between CNRs and DOFs and hence lead to 

incongruent dependence of statistical outcomes on TRs (simulation in Fig. 3 (d), comparing 

across columns, and real data results in Fig. 4 (c, d)). Therefore, temporal filtering and pre-

whitening ought to be considered when piloting protocols for specific studies.

5.6 GLM-based functional connectivity analysis

Apart from linear Pearson correlation, resting-state functional connectivity has also been 

assessed within the framework of the GLM, by viewing the seed time series as a known 

model factor in the design matrix.

Such analyses differ from typical task-based analyses in two respects, which make the 

statistical benefits at short TRs less evident. First, the seed time series may also carry neural 

fluctuations that are unrelated to the target signal, which can reduce the quality of the model 

fitting and introduce additional sources of unmodeled noise that reduce CNR (resembling 

inaccurate modelling of task effects). For instance, if we assume that the time series of the 

medial prefrontal cortex (MPFC) contains fluctuations that covary independently with both 

the posterior cingulate cortex (PCC) and the insula, then using the time series of the MPFC 

as a regressor to assess its association with the PCC, insula-related variance in the MPFC 

regressors will be introduced into the residuals and increase the variance of unmodeled 

noise. Second, unlike modeled task effects, seed time series extracted from real data are 

inevitably contaminated by non-neural sources of noise (e.g., thermal and motion noise), 

which can further degrade model fits at short TRs due to the reduced SNR. As such, benefits 

of fast sampling are more ambiguous in seed-based regression than task activation results 

where the model is noise-free. Nonetheless, if the seed time series has minimal level of 

noise, and only comprises fluctuations that uniquely model variance of the target voxel, the 

statistical outcomes will resemble those derived from task activation and benefit more from 

short TRs (e.g., using temporal courses derived from ICA (Beckmann et al., 2005; Calhoun 

et al., 2001; McKeown et al., 1998)).

As is the case with task-driven short-TR fMRI, the statistical inferences in resting-state 

analyses made from the GLM and from linear Pearson correlation may not agree, arising 

from distinct model assumptions and associated conventions in data preprocessing. Briefly, 

GLM-based analysis tests against the null hypothesis whether a known seed signal could 

account for significant variance in a target random signal, whereas Pearson correlation 
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analysis views both signals as samples randomly drawn from two distributions, and tests 

against the null hypothesis that the two distributions are independent. When accounting for 

serial correlations, the GLM estimates the correlations from the fitted residuals and pre-

whitens the data, while linear Pearson correlation considers the serial correlations of both 

time series and includes the estimated serial correlations into final statistical inferences.

5.7 Adjusting for temporal autocorrelations using mixture-modeling

In the notable report by Feinberg et al., the authors observed significant increases in the peak 

Z-scores of common resting-state networks by sampling 6-fold faster than conventional 

acquisitions, and these detected networks appeared to be much more evident if different 

resting-state networks were resolved jointly through a multiple-regression analysis (100 

regressors) than through several separate single-regression steps (Feinberg et al., 2010). 

There are multiple potential causes that could lead to these observations. As carefully 

pointed out by the authors, such observations could be a synergistic effect of more complete 

reduction of residual noise with multiple regressors, better modeling of noisy components 

(including quasi-periodical physiological sources), and the benefits of the additional DOFs 

in these data when a large number of regressors are applied. As such, the authors also 

pointed out that such advantages may not be observed by single-regression-like analyses, 

e.g., conventional seed-based or task-based GLM analyses.

Another factor that may possibly contribute to such superiority of multiple-regression over 

single-regression could relate to the manner in which serial autocorrelation was accounted 

for in this study (Feinberg et al., 2010). In lieu of conventional approaches that address the 

DOFs on an individual voxel or region basis, the authors employed a mixture-modeling 

approach (Everitt and Bullmore, 1999; Hartvig and Jensen, 2000)—they modeled the 

distribution of Z-score values (derived from ordinary least-squares fitting) as a mixture of a 

central Gaussian distribution (‘un-activated’ voxels) combined with separate Gamma 

distributions for positive/negative ends of the Z-score histogram (‘activated’ voxels). All the 

Z-scores were shifted and rescaled such that the null central Gaussian distribution had zero 

mean and unit variance, and altered DOFs due to serial correlations were thus corrected. 

This is a sophisticated procedure and is beyond the scope of this work to assess the relative 

superiority of this approach compared to conventional single-voxel-based approaches that 

adjust for serial autocorrelations. However, we would like to advise caution in using 

mixture-modeling to adjust for Z-scores after single-regression, either when multiple brain 

networks are inter-correlated or when this regressor carries information relating to a broad 

range of brain areas. In such cases, the fitted central Gaussian distribution may also 

comprise voxels with true effects (because the ‘activation’ class may not be well isolated 

from the ‘nulls’ or may not be characterized by a single Gamma model), which will over-

adjust the Z-scores and limit the potential benefits of fast sampling.

Additionally, if rapid sampling is accompanied by reduced spatial resolution, partial volume 

contamination may also impact the results of mixture-modeling, thus mitigating the potential 

benefits of rapid sampling, since relevant signal properties (e.g., temporal autocorrelation) 

likely differ amongst gray matter, white matter and CSF.
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5.8 Other considerations

5.8.1 Influence of image reconstruction parameters and hardware 
configuration on noise—As stated above, shortening the sampling interval in fMRI 

acquisitions causes changes in the temporal structure of the time-series data. While faster 

sampling can be achieved through conventional approaches, such as reducing the number of 

slices with the penalty of reducing spatial coverage, simultaneous multi-slice methods are 

increasingly becoming the method of choice for whole-brain fast fMRI. Modern 

simultaneous multi-slice methods utilize accelerated parallel imaging techniques, and like 

any parallel imaging technology, performance will depend on the image reconstruction 

parameters and hardware configuration. Although simultaneous multi-slice accelerates the 

acquisition by acquiring groups of multiple 2D slices simultaneously, it does not 

undersample the in-plane image data, and in the case of perfect reconstruction and slice 

separation there is no associated intrinsic SNR loss. However, with higher slice acceleration 

factors, artifact and noise levels will increase due to poor numerical conditioning of the 

image reconstruction. Structured artifacts such as unresolved spatial aliasing stemming from 

incomplete separation of collapsed slices (sometimes referred to as “leakage” (Cauley et al., 

2014; Todd et al., 2016; Xu et al., 2013)) can occur when the acceleration factor is higher 

than what the receive coil array can support, resulting in spurious spatial correlations that 

can be mistaken for long-range functional connectivity. Similarly, high acceleration can also 

exacerbate noise amplification, or statistical errors in parallel imaging, manifested as 

spatially varying noise patterns (referred to as “g-factor” effects (Pruessmann et al., 1999; 

Setsompop et al., 2012; Todd et al., 2017; Zhu K et al., 2016). This is because high 

acceleration will result in shorter distances between aliased pixels, which can place a high 

demand on the spatial variations in coil sensitivity. The maximal achievable acceleration 

factor for a particular scanner setup, above which these two forms of error become 

unacceptable, is often difficult to estimate because it depends not only on the number of coil 

channels but also on their geometric layout in the array. The latter will influence the total 

number of distinct coil elements that intersect a given prescribed slice group, which means 

slice orientation and slice position within the coil array is also a factor.

All of these considerations complicate any prediction of the artifact and noise levels 

expected for a given simultaneous multi-slice acquisition, and their impact on the temporal 

structure of the fMRI time series. Therefore caution must be employed when designing 

protocols and comparing data collected with different acquisition or image reconstruction 

parameters.

5.8.2 Influence of field strength—An increase in field strength results, for a given 

voxel volume, in an increase in signal amplitude (Edelstein et al., 1986; Macovski, 1996). 

Consequently, the fractional contribution of white noise is reduced, and the relative 

influence of physiological, signal-dependent noise sources increases (Bianciardi et al., 2009; 

Kruger and Glover, 2001; Triantafyllou et al., 2005). Overall, the temporal SNR increases 

with field strength (Triantafyllou et al., 2005), and is often traded for higher resolution in 

either space or time.
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Most ultra-high field applications currently focus on high spatial (sub-millimeter) resolution 

(Polimeni et al., 2018), and are characterized by high fractional contributions of white noise 

and reduced serial correlations. However, sub-second TR acquisitions at ultra-high field 

might also be attractive for tasks operating at higher temporal scales (Fig. 3 (c)), if the 

reduction in white noise outweighs the increase in serial correlations. Similarly, correlation-

based analyses in combination with pre-whitening (Fig. 3 (d)) might significantly benefit 

from the simultaneous increase in tSNR (Triantafyllou et al., 2005) and CNR (Gati et al., 

1997; Okada et al., 2005) provided at higher fields.

Apart from varying noise contributions, also the relaxation times change with increasing 

field strength. Pertinent to this discussion is the increase in the longitudinal relaxation time 

T1 (Pohmann et al., 2016), which leads to smaller Ernst angles and, thereby, a reduction in 

signal amplitude at a greater rate at short TRs.

5.8.3 Influence on cluster-wise inference—As recently noted (Wald and Polimeni, 

2017), another potential benefit of short-TR acquisitions lies in the impact of the associated 

reduced signal levels on spatial autocorrelation observed in fMRI time series. Because lower 

signal levels at short TRs will lead to enhanced fractional contribution of white noise, the 

long range spatial correlations will be mitigated, making the assumptions of many cluster-

wise inference methods more fully met and thereby reducing the inflated false-positive rates 

examined in the recent Eklund et al. study (Eklund et al., 2016).

5.8.4 Influence of inter-subject variability on the group-level inference—
Changes in the effect size or variability of summary statistics at the first-level analysis 

(discussed in this work) may be obscured by large inter-subject variability and will not 

manifest in the group-level statistical outcomes (Kirilina et al., 2016). Therefore, the extents 

of inter-subject variability may be another factor that limits the observation of increased/

reduced efficacy of fast sampling at the group-level.

5.9 Limitations of our simulation results

Signal, physiological and thermal noise fluctuations are assumed Gaussian in the present 

simulations (see appendix A–C for details). Such assumptions, however, may not hold for 

acquisitions with low SNR or multiple-channel coil arrays (Constantinides et al., 1997; 

Gudbjartsson and Patz, 1995; Henkelman, 1985; Kellman and McVeigh, 2005; Triantafyllou 

et al., 2011), in which detection bias of image magnitudes (and therefore tSNR) can be 

substantial (see supplementary material SM4 for simulations). With the ever-growing 

interest in high spatiotemporal acquisitions (which are commonly accompanied by lower 

levels of SNR) and the necessity for employment of multiple-channel coil arrays, one future 

avenue is to consider non-central chi distributed image magnitudes in existing statistical 

models for multiple-channel coil arrays.

Surprisingly, unlike GLM analysis, the influence of serial correlations on linear Pearson 

correlation analysis has not yet been thoroughly characterized and is only briefly discussed 

here. The statistical model simulated in this study (Appendix C) was adapted from an earlier 

model that evaluates the influence of temporal filtering on fMRI serial correlations (Davey et 

al., 2013), with additional assumptions of identical serial correlations and CNRs in the 

Chen et al. Page 14

Neuroimage. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signal pair for simplicity. Further work will be necessary to establish more sophisticated 

statistical models that address distinct CNRs and serial correlations (given that the time 

series of a seed region is commonly derived by averaging across multiple voxels, and should 

have higher CNR and less white noise than the time series of a single brain voxel), for both 

valid significance testing and more accurate characterization (i.e., recovering the true cross-

correlation values biased by inconsistent CNR and by serial autocorrelations within the pair 

of cross-correlated time series).

To compare the t-statistics across different TR values, we assume implicitly that the 

associated DOFs are sufficiently large (e.g., > 30) such that the null distributions converge to 

a standard normal distribution and are consistent across TR values. Such assumptions may 

not hold for studies that evaluate brain activity across extremely short temporal windows 

(e.g., 30 s), in which altered null distributions (associated with having too few DOFs) should 

be considered when designing the acquisition protocols.

Finally, it is noteworthy that the simulations performed in this study aimed at offering a 

qualitative illustration on how different factors in experiment design, statistical analyses, and 

the temporal characteristics of fMRI time series can affect the actual statistical gains of fast 

sampling. Other considerations, such as the influence of image reconstruction parameters 

and hardware configuration, were not incorporated in the simulation results due to their 

complexity. Parameters used in signal/noise models, although adapted from real data, should 

be generalized with caution for specific applications.

6 Recommendations

Based on the discussions presented here, we make the following recommendations for 

studies employing short-TR acquisitions.

1. If apparent head movements due to quasi-periodical magnetic field perturbations 

are present in fMRI data, motion parameters should be temporally notch-filtered 

or modeled along with respiratory covariates in nuisance regression to prevent 

introduction of fallacious respiratory effects into fMRI time series. See Section 

3.1.

2. Nuisance regressors should be filtered to match the frequency bands of interest, 

in order to avoid potential spectra misspecifications such as introducing spurious 

components. See Section 3.1.

3. While it is commonly thought that sub-second sampling allows the complete 

removal of physiological noise effects because the fundamental frequencies can 

be low-pass-filtered out, it remains beneficial to record subjects’ physiological 

information (e.g., heart rates, respiratory waveforms) to account for substantial 

higher-order harmonics in quasi-periodical physiological components not 

resolved by fast sampling, as well as to mitigate additional noise caused by slow 

physiological effects (e.g., changes in RVT, HRV). See Section 3.2.

4. Serial correlation becomes substantially more important to accurately account for 

in acquisitions with fast sampling rates, as does the influence of white noise. 
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Parametric models with more free parameters (e.g., higher-order AR or ARMA 

models, or the FAST method of the SPM toolbox), or nonparametric alternatives 

should be considered when modeling serial correlations of short-TR time series. 

Additionally, the AR1 + white noise (a.k.a. ARMA(1,1)) model may be a 

reasonable option for data vulnerable to model over-fitting (e.g., data with low 

SNR) if the AR coefficient is allowed to vary flexibly. See Section 4.

5. Because reduced SNR due to shorter T1 magnetization recovery time can offset 

the increased DOFs at short TRs, and the noise structure can change dramatically 

at short TRs, determining the efficacy of fast sampling is not straightforward. 

Existing studies and simulations performed in this note have suggested some 

cases in which the benefits of rapid sampling are more evident:

• for summary statistics with more lenient CNR penalty (e.g., GLM-

based task activation compared to linear Pearson correlation-based 

functional connectivity);

• in task paradigms that utilize faster oscillating frequencies;

• in data that reside in the physiological noise-dominated regime; and

• in data with reduced serial correlations in the signal and/or in the 

physiological noise (note, this is different from higher fractional 

contribution of white noise).

Despite these generic trends, whether it is beneficial to sample faster for a study depends 

upon the specific experimental design, statistical analyses, and temporal characteristics of 

collected time courses. Considerations include hardware configuration as well as decisions 

in acquisition, reconstruction and preprocessing, and how they interact with the employed 

experimental design and statistical analyses. For example, simply changing the voxel size 

can result in complex effects on statistical inferences in Pearson correlation vs. GLM 

analyses at short TRs as variously shown in Figs. 2–4 because of variation in the fractional 

contribution of white noise relative to physiological noise. As such, results of published 

empirical comparisons may provide limited insight for more generic studies; thus one should 

pilot acquisitions along with experimental design and the analysis pipeline to determine the 

optimal protocol for a specific study aim. See Section 5 for considerations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Modelling physiological and white noise at different TR values

Noise at each TR value was modeled using an ARMA(1,1) model, i.e., physiological noise 

Np,TR (AR1 process) + white noise Nw,TR:

N p, TR[n] = φTRN p, TR[n − 1] + εp, TR[n] eqn. (A.1)

Nw, TR[n] = εw, TR[n] eqn. (A.2)

Where φTR is the autoregressive coefficient of the AR1 process, εp,TR[n] and εw,TR[n] refer 

to two white Gaussian noise processes with zero mean and constant variance σp, TR
2  and 

σw, TR
2 . Parameters for TR = 0.35 s (φ0.35 = 0.9089, σp, 0.35

2 = 0.1221, and σw, 0.35
2 = 1.3069) 

were estimated from the normalized spectra shown in Fig. 2 (b) (TR = 0.35 s, ‘green’). The 

level of white noise was kept constant across TR values:

σw, TR
2 = σw, 0.35

2 , eqn. (A.3)

whereas φTR and σp, TR
2  were adapted from φ0.35 and σp, 0.35

2  using:

φTR = e
log φ0.35 ⋅ TR/0.35

, eqn. (A.4)

σp, TR
2 =

ATR
A0.35

2
⋅

1 − φTR
2

1 − φ0.35
2 ⋅ σp, 0.35

2 . eqn. (A.5)

Please refer to the supplementary material SM5 for the mathematical derivation. The scaling 

factor ATR was computed from the Ernst angles at different TR values, assuming the tissue 

T1 = 1350 ms at 3T:

ATR = 1 − e
−TR/T1 / 1 + e

−TR/T1 . eqn. (A.6)

Appendix B: Simulating the statistical outcomes of GLM as a function of 

TRs

In GLM, the fMRI time series y is modeled as: y = Xβ + ε, where X refers to the model 

factors, β quantifies the associated fitting parameters, and ε ℕ 0, V i  denotes the residual 

noise with Vj being the serial correlation term. After pre-whitening (Bullmore et al., 1996; 

Woolrich et al., 2001), we obtain the unbiased, yet most efficient, estimation:
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β = XTV i
−1X −1XTV i

−1y, eqn. (B.1)

Var(β) = XTV i
−1X −1 . eqn. (B.2)

For simplicity, we assume that the imposed task is periodic, and X only comprises the task-

evoked response oscillating at the task fundamental frequency f (the responses evoked at 

higher harmonics are minor and are thus ignored). When the number of time frames N is 

very large, we then have:

E(β) = β f , eqn. (B.3)

Var(β) = XTV i
−1X −1 = λ f XTX −1, eqn. (B.4)

E(t(β)) ≈ E(β)
Var(β)

=
β f

XTX
N

λ f
N = CNR f N, eqn. (B.5)

where βf quantifies the amplitude of BOLD responses evoked by the task, λf is the 

eigenvalue of Vi associated with the periodically varying eigenvector at f (Worsley and 

Friston, 1995), and CNRf represents the CNR at task frequency f. Intuitively, λ f  reflects the 

noise level at the normalized task frequency (amplitude in Fig. 3(b), adapted with discrete 

sampling).

Appendix C: Simulating the statistical outcomes of the linear Pearson 

correlation as a function of TR values

Linear Pearson correlation quantifies the instantaneous temporal synchrony between a pair 

of time courses {x[n], y[n]} as:

rx, y =
∑n = 1

N (x[n] − x)(y[n] − y)
∑n = 1

N (x[n] − x)2 ∑n = 1
N (y[n] − y)2 , eqn. (C.1)

where N is the total number of samples, x and y are the sample means. If we model the fMRI 

observation y as an additive mixture of a stochastic signal ys, physiological noise εp, and 

white noise εw as follows:

y = ys + εp + εw, eqn. (C.2)

where yS ℕ 0, VS , εp ℕ 0, V p , and εw ℕ 0, Vw , we have:
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CNRy =
E ∑n = 1

N ys
2[n]

E ∑n = 1
N εp

2[n] + ∑n = 1
N εw

2 [n]
. eqn. (C.3)

To simplify the simulation, we make a few additional assumptions: (1) x and y have identical 

CNR (CNRx = CNRy = CNR), signal and noise serial correlation structure; (2) signal xs and 

ys are both AR1 processes, and can be characterized by the same autoregression coefficient 

as εp, i.e., Vs = kVp, k is a scaling constant determined by CNR; and (3) rxs, ys
= 1

(uncorrelated portion could always be considered as physiological noise). As such, we have 

ρx,y (the expectation of rx,y) as:

ρx, y = CNR2

CNR2 + 1
. eqn. (C.4)

When testing the significance of sample correlation against the null hypothesis:

rx, y ℕ 0, 1
κ , eqn. (C.5)

where κ ≅
trace Vi

2

trace ViVi
, V i = VS + V p + Vw (assuming ys, εp, and εw are independent of each 

other) (Davey et al., 2013; Kumar, 2009), the expected t-score (approximated by 1st-order 

Taylor expansion) is:

E t rx, y = E
rx, y

1 − rx, y
2 κ ≈

ρx, y

1 − ρx, y
2 κ = CNR2

2CNR2 + 1
κ . eqn. (C.6)
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Figure 1. 
(a) Illustration of respiratory artifacts in rigid-body-based head motion estimates (three 

rotational + three translational directions) in two example subjects from the WU-UMinn 

Human Connectome Project (HCP) resting-state cohort (Van Essen et al., 2013) (3T, TR = 

0.72 s, 2 mm isotropic resolution). The mechanical-movement-based effect dominates in 

subject 01 (evidenced by the most prominent quasi-periodical fluctuation along the ‘pitch’ 

direction), and the field-perturbation-based artifact is observable in subject 02 (evidenced by 

the occurrence of quasi-periodical fluctuations along all rotational directions due to potential 
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cross-talk effects and stronger effects along the phase encoding direction (‘left-right’) than 

other translational directions). Left: raw motion estimates after 2nd-order temporal 

detrending. Right: amplitude spectra of motion estimates aligned with respiratory 

fluctuations directly recorded with a respiratory belt. There is a strong correspondence 

between the amplitude spectra of certain components of head motion and the respiration, 

indicating that respiration may be driving the head motion. (b) Top: simulated spectral 

components of cardiac and respiratory noise; Bottom: Aliased physiological frequencies as a 

function of TR for respiratory components (‘resp.’), cardiac components (‘cardiac’), and 

their second-order harmonics (‘resp. 2nd’ + ‘cardiac. 2nd’). Although aliasing is always 

resolved at high-enough sampling rates, aliasing into frequency bands of interest can also be 

absent in lower sampling rates as well. (c) Percent signal variance explained by sinusoids 

representing the fundamental frequencies and second-order harmonics of respiratory/cardiac 

cycles (Glover et al., 2000), and covariates related to slow physiological processes—

respiratory variation (RV) and heart rate variability (HRV) (Chang et al., 2009). The 

characterization is single-voxel based, after minimal preprocessing, and averaged across 190 

subjects from the WU-UMinn HCP resting-state cohort (Glasser et al., 2013).
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Figure 2. 
(a) Illustration of altered autocorrelation structure at short TR values. Time series were 

extracted from a region of interest (ROI) located in the posterior cingulate cortex (averaged 

across 27 voxels, voxel size 1.72×1.72×3 mm3) in two different scans (TR = 0.35 and 2 s). 

See supplementary material S1A for descriptions of data acquisition and analysis. The 

temporal autocorrelation function is clearly broader in the white noise dominated data, as 

expected. Light blue and green arrows highlight the distinct features of temporal 

autocorrelation structures at long- and short-TR values (see main text Section 4 for 
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discussion). (b) Amplitude spectra and model fitting of the global signal, averaged across 

two cohorts of datasets collected with different TR values. See supplementary material S1B 

for descriptions of data acquisition and analysis. Common serial correlation models describe 

conventional long-TR data well, however they can be inappropriate when applied to short-

TR data. (c) Amplitude spectra as a function of ROI size, same ROI and datasets as shown in 

panel (a) for illustration. The power spectrum of a gray matter region can sometimes be very 

noisy at a single- or very few-voxel level, and multiple voxels may need to be averaged to 

obtain a valid model fit. (d) Dependence of task activation t-statistics on serial correlation 

models. The optimal AR order (ARp) was chosen according to the Bayesian information 

criterion (BIC). See supplementary material S1C for descriptions of data acquisition and 

analysis. Inappropriate models for short-TR data can lead to inflated t-statistic values.
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Figure 3. 
(a) Distinct estimates of autocorrelation functions (ACFs) if the entire time series (blue) or 

only residual noise (green) are considered as stochastic as in Pearson correlation or GLM 

analyses, respectively. (b) Examples of simulated fMRI noise at two different TR values 

(based on the models presented in Appendix A, 0.5 is Nyquist frequency). Noise (black) was 

modeled as a linearly additive mixture of physiological noise (blue color, an AR1 process) 

and white noise (green). (c) Simulated statistical gains of fast sampling in GLM-based task 

activation analysis, normalized by the t-scores at TR = 2 s. The amplitudes of fMRI signals 

were computed from the Ernst angles at different TR values (e.g., ATR of eqn. (A.6) in 
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Appendix A), noise at different TR values were simulated according to Appendix A, and the 

statistical scores were simulated based on eqn. (B.5) in Appendix B. Task frequencies are 

highlighted by distinct color lines. Influences of fractional contributions from white noise 

(first three columns) were simulated by scaling the power of white noise by different factors 

fw (‘lower’:1/8, ‘medium’:1, ‘higher’:8). Influences of lower serial correlations of signal/

physiological noise (last two columns) were simulated by reducing the AR1 coefficient at 

TR = 2 s (φ2) from the estimated value 0.58 (see Appendix A) to 0.2 or 0.05. (d) Simulated 

statistical gains of fast sampling in linear Pearson correlation-based functional connectivity 

analyses; results of different preprocessing options were all normalized by the t-scores at TR 

= 2 s of the ‘Raw’ data for comparison. Simulations were performed based on the model 

assumptions outlined in Appendix C. Influences of distinct preprocessing steps are displayed 

across rows (‘Raw’: no additional preprocessing; ‘Pre-whitening’: pre-whitening, i.e., 

removal of serial correlations; ‘Low-pass filtering’: < 0.1 Hz low-pass filtering). 

Dependence of CNR levels are highlighted by distinct color lines (values in the legend 

quantify the CNR level at TR = 2 s, ‘Raw’).
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Figure 4. 
(a) GLM-based single-subject visual task activation at different TR values without (‘Raw’, 

1.72×1.72×3 mm3) and with spatial smoothing. (b) (Left) Predicted (tSNR × N, N is the 

number of temporal frames) and (Right) estimated (real data) t-score gains (i.e., divided by 

the t-score values at TR = 2 s) for the data shown in panel (a). Data were smoothed by 

different spatial extents with isotropic Gaussian kernels at different FWHMs (highlighted 

with distinct colors) to manipulate the fractional contribution of physiological and white 

noise in the real data. (c) Linear Pearson correlation based auditory network patterns at 

different TRs and preprocessing. (d) Predicted tSNR × N  and estimated (real data) t-score 

gains in (c). Note that only the contralateral side of the seed (highlighted by a red rectangle 

in (c)) was included for comparison. The statistical gains of different preprocessing steps 

were normalized by the t-scores at TR = 2 s of the ‘Raw’ data. See supplementary material 

S1D for descriptions of task design, data acquisition and analysis.
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