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Abstract

Background: Increasing evidence points to the role of tumor immunologic environment on 

urothelial bladder cancer prognosis. This effect might be partly dependent on the host genetic 

context. We evaluated the association of SNPs in inflammation- related genes with non-muscle-

invasive bladder cancer (NMIBC) risk-of-recurrence and risk-of-progression.

Methods: We considered 822 NMIBC included in the SBC/EPICURO Study followed-up >10 

years. We selected 1,679 SNPs belonging to 251 inflammatory genes. The association of SNPs 

with risk-of-recurrence and risk-of-progression was assessed using Cox regression single-marker 

(SMM) and multimarker methods (MMM) Bayes A and Bayesian LASSO. Discriminative 

abilities of the models were calculated using the c index and validated with bootstrap cross-

validation procedures.

Results: While no SNP was found to be associated with risk-of-recurrence using SMM, three 

SNPs in TNIP1, CD5, and JAK3 showed very strong association with posterior probabilities >90% 

using MMM. Regarding risk-of-progression, one SNP in CD3G was significantly associated using 

SMM (HR, 2.69; P = 1.55 × 10−5) and two SNPs in MASP1 and AIRE, showed a posterior 

probability ≥80% with MMM. Validated discriminative abilities of the models without and with 

the SNPs were 58.4% versus 60.5% and 72.1% versus 72.8% for risk-of-recurrence and risk-of-

progression, respectively.

Conclusions: Using innovative analytic approaches, we demonstrated that SNPs in 

inflammatory-related genes were associated with NMIBC prognosis and that they improve the 

discriminative ability of prognostic clinical models for NMIBC.

Impact: This study provides proof of concept for the joint effect of genetic variants in improving 

the discriminative ability of clinical prognostic models. The approach may be extended to other 

diseases.

Introduction

Urothelial bladder carcinoma (UBC) is the fifth most common neoplasm in terms of 

incidence in industrialized countries. UBCis a multifactorial complex disease, tobacco and 

occupation exposure to aromatic amines being the two best established environmental risk 

factors (1, 2). In addition, UBC has a genetic component, and candidate gene and genome-

wide association studies so far have identified 16 loci associated with UBC risk (3–13)

The majority of UBC are non-muscle-invasive (NMIBC). These tumors are heterogeneous 

regarding their clinical, pathologic, molecular, and genetic features. Management of NMIBC 

poses challenges because of their propensity to recur, requiring a long-term surveillance, and 

their risk to progress to muscle invasion, showing a poor 5-year survival rate (14). The 

current prognosticators do not completely discriminate between patients who will suffer 
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from a tumor recurrence/progression and patients who will remain stable after the first 

transurethral resection of the bladder (TURB); thus justifying the need of prognostic 

biomarkers to guide the clinical management of patients with NMIBC (15).

Inflammation and cancer are deeply intricate. Not only local inflammation can promote 

tumor development but also systemic or tumor immune reaction has been shown to have 

either promoting or opposing cancer effects (16–18). These reactions are however dependent 

on the host genetic context (19). Previous studies have assessed SNPs involved in 

inflammatory pathways as prognostic markers for UBC (20–22). Those studies have had 

limited success, as they have applied simplistic models analyzing each SNP individually, 

therefore ignoring the complexity of the disease likely underlined by many genetic variants 

with relatively low effects (23). A recent study has shown the usefulness of multi-marker 

methods (MMM) able to handle large amount of SNPsç often exceeding the number of 

individuals, to assess associations between SNPs in inflammatory genes and UBC risk (24).

The objective of this study was to evaluate the association of SNPs in inflammation-related 

genes with the risk of NMIBC to recur and/or progress by extending the application of 

MMM to the prognostic field for the first time. We compared results with those coming from 

the classical single-marker method (SMM) accounting for the time-to-event nature of the 

data.

Materials and Methods

Ethics statement

Informed consent was obtained from study participants in accordance with the Institutional 

Review Board of the U.S. National Cancer Institute and the Ethics Committees of each 

participating hospital.

Study population and tissue samples

We primarily considered the 995 newly diagnosed patients with NMIBC included in the 

Spanish Bladder Cancer (SBC)/EPICURO Study, a multicenter hospital-based study 

conducted in 1997–2001 in 18 hospitals (3). Tumors were reviewed and confirmed by 

trained uropathologists who classified their stage and grade homogeneously using TNM 

1997 AJCC and 1973 and 2004 WHO grade classifications. All tumors were transitional cell 

carcinomas (TCC). Clinical data and information on primary treatment were retrieved from 

the hospital charts by trained monitors using a structured questionnaire. Patients with 

NMIBC were classified at high (HiR, n = 284) or low (LR, n = 538) risk of progression 

according to the EAU guidelines (25). Low-risk patients consisted of PUNLMP, Ta G1, and 

G2/low grade and high-risk patients included all T1, G2, and G3/high grade and carcinoma 

in situ (CIS). The intermediate-risk group was not considered herein due to reduced sample 

size. Patients were followed up for >10 years using both the hospital charts and through 

direct telephone calls to patients/families. The follow-up rate for patients with NMIBC was 

94%.
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Gene and SNP selection and genotyping

Germline DNA extracted from blood or saliva, in case blood was not available (4% of the 

patients), was used for genotyping (3). Genes (n = 251, Supplementary Table S1) were 

carefully selected according to current available evidence of their involvement in 

inflammatory processes, favoring those inflammatory genes showing association with cancer 

as described elsewhere (24). TagSNPs covering these genes were identified using SYSNP 

(26) and genotyped with the GoldenGate Illumina Genotyping Assay platform (27). On the 

basis of a literature review, we further included 3,628 SNPs in 52 inflammatory genes 

already genotyped in the same individuals with the Illumina Infinium HumanHap1M array 

(6). We excluded SNPs with a low genotyping rate (<95%) and minor allele frequency 

(MAF) <0.05. Missing genotypes were imputed with BEAGLE (28). To reduce both 

colinearity between variables and number of statistical tests, pairwise linkage disequilibrium 

(LD) between SNPs was estimated using the R-package GENETICS (http://cran.r-

project.org/web/packages/genetics/index.html). We retained the SNPs with the highest MAF 

of each LD block when r2 > 0.5. At the end of the quality control process, 822 patients with 

1,517 SNP genotypes and complete clinical and pathological information were available for 

the analysis. These patients were comparable with the whole series (n = 995) for age, 

gender, area, and tumor stage and grade.

Outcome definition

Time-to-first recurrence (TFR) was defined as time elapsed between first TURB and 

histologic diagnosis of a new NMIBC of any stage/grade. Time to progression (TP) was 

defined as time between first TURB and a subsequent histologic diagnosis of a muscle-

invasive breast cancer (MIBC), occurrence of metastasis, or death due to bladder cancer.

Statistical analyses

Median follow-up times were obtained by using the reverse Kaplan-Meier method. We 

applied both an SMM based on a multivariate Cox regression and MMM based on Bayes A 

(BA) and Bayesian LASSO (BL; Supplementary Fig. S1). Cox proportional hazard 

regression was used to estimate the HR and 95% confidence intervals (CI) to assess the 

association between individual SNPs assuming both an additive and a dominant mode of 

inheritance and the outcomes of interest. Each SNP effect was adjusted for classical 

clinicopathologic prognosticators for TFR and TP (Supplementary Table S2). TFR analyses 

did not include patients who received radical cystectomy as first treatment (n = 12). TP was 

analyzed using all available patients with NMIBC and stratified according to HiR/LR. 

Stratification was not performed for TFR because survival curves of LRand HiR patients 

overlapped. Analyses were run in R-language (http://www.R-project.org). SNPs with P < 
0.05, 2-sided test, after Bonferroni’s correction were kept for comparison with the results 

from the MMM.

Multimarker methods

Both Bayes A (29) and Bayesian LASSO (30) were applied coupled with a sequential 

threshold model to analyze each time-to-event data (See Supplementary Methods and ref. 

31. This model (32) has been previously used in quantitative genetics settings (33, 34). This 
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is the first time the method is applied in the prognosis field. The same clinicopathologic 

adjusting variables were used in the MMM (Supplementary Table S2). Because BA and BL 

do not provide P value, the association strength was estimated using a posterior probability 

that the SNP is associated with the outcome. An arbitrary threshold of 80% was deemed as 

significant. Analyses were done using an ad-hoc made Fortran program.

Discrimination ability of the model calculation and validation

The discrimination ability of the models including the SNPs showing association with the 

different outcomes was evaluated by estimating the c index. Briefly, a Cox model including 

the clinical variables only was compared through the c index with a model including also the 

previously associated SNPs for each outcome of interest. The c index is the frequency of 

concordant pairs (i.e., the risk of the event predicted by a model is lower for the patient who 

experiences the event at a later time point) among all pairs of subjects. Three c indexes were 

calculated: the apparent c index (calculated with the original data), the bootstrap cross-

validation c index (calculated using the observations that are not in the bootstrap sample, 

obtained through a random sampling with replacement), and the bootstrap alone c index 

(i.e., a weighted average of the discrimination in the original dataset and the discrimination 

in the observations that were not included in the m-th bootstrapped sample; as in ref. 35) and 

R-package ‘pec’ http://cran.r-project.org/web/packages/pec/pec.pdf).

Results

The median age at diagnosis of the 822 patients with NMIBC was 68 years; 12% of cases 

were women and 65% of the patients presented LR tumors. Patient and treatment 

characteristics are displayed in Table 1 and SupplementaryTableS3, respectively. Up to July 

2007, median follow-up period for the whole series and for patients “free of disease” were 

80.4 and 77.5 months, respectively, with a total of 8 (1.0%) deaths due to UBC as first event. 

According to the abovementioned definitions, 324 (39.4%) patients suffered, at least, one 

event. Survival functions for each event are in Supplementary Figs. S2 and S3.

Time to first recurrence

No SNP was found to be associated with TFR by SMM additive model after Bonferroni’s 

correction (P > 3 × 10−5, Supplementary Table S4). Using a dominant mode of inheritance, 

we found that an SNP in CARD4/NOD1 (rs10267377) was significantly associated with 

TRF (HR, 0.58; 95% CI, 0.45–0.75; P = 0.000026, Padjusted = 0.039). Using MMM, 43 

SNPs had PP > 80% of being associated with TFR (Supplementary Table S5). Among them, 

three had probabilities >90% using both BA and BL, pointing to a very strong association 

(TNIP1-rs2277940, CD5-rs7104333, JAK3-rs6523, Table 2). The same SNP in CARD4 had 

PP of 88% and 90% of being associated with risk of recurrence using BA and BL, 

respectively.

Time to progression

Only one SNP identified by SMM additive model showed a significant association after 

Bonferroni’s correction: CD3G-rs3212262 (HR, 2.69; 95% CI, 1.72–4.23; P = 1.55 × 10−5, 

Padjusted = 0.023; Table 3). Five-year progression-free survival rate was 92% for the AA 
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genotype versus 84% for the Aa and 71% for the aa (log-rank P = 0.001, Fig. 1). No SNP 

was associated with TP using a dominant model. Using MMM, 2 additional SNPs had PP ≥ 

80% with both BA and BL: MASP1-rs698079 and AIRE-rs941405 (Table 4). When 

assessing only HiR tumors, MMM identified 3 SNPs with PP between 77–80%: CARD4-

rs2256023, MAP2K3-rs9901404, and TMEM189-rs2269217 (Supplementary Table S6). 

Neither SMM nor MMM identified any SNP associated with TP among LR tumors, CD68-

rs12942088 (Supplementary Table S7) presenting the highest PP (75% with BL). This SNP 

was one of the top 2 SNPs associated with TP using an additive SMM.

Models’ discriminative ability

The clinical parameter model for TFR showed a moderate discriminatory ability (validated c 
index = 0.58; Table 5). By adding the 3 SNPs showing a PP > 90% (TNIP1-rs2277940, 

CD5-rs7104333, and JAK3-rs6523), the c index raised to 0.61. Adding each SNP to the 

clinical variables increased the predictive ability compared with the model including clinical 

variables only, showing that the predictive ability of the SNPs does not overlap (see 

Supplementary Table S8).

The clinical parameter model for TP showed good discrimination ability (validated c index = 

0.72, Table 5). By adding the 2 SNPs showing PP > 80% (MASP1-rs698079 and AIRE-

rs941405), the c index raised to 0.73. The TP predictive ability was also calculated for the 

HiR and LR subgroups. Adding the SNPs to the clinical variables improved their 

discrimination ability by 10.5 % for HiR and by 10.2 % for LR in the validation set. As 

forTFR, the predictive ability of the SNPs did not overlap for TP considering all and HiR 

patients (see Supplementary Table S8).

Discussion

Classical studies looking for associations between individual SNPs in inflammatory genes 

and UBC prognosis have had limited success (20–22). While some variants have been 

previously associated with UBC prognosis (19, 36), significance was in most cases limited 

to univariate analysis and none of the variant was replicated in independent studies. 

Moreover, Cox regression is limited by the number of variables the model permits (37). In 

general, the lack of associations found by SMM outlines its inefficiency to pinpoint variants 

with small effects in complex traits. To explore the joint effect of multiple SNPs, we have 

applied MMM strategies mimicking the polygenic scenario that features UBC prognosis. 

MMM identified, with strong evidence, inflammatory genes with variants individually 

conferring a small risk of NMIBC recurrence or progression.

A larger number of inflammatory variants showed association with TFR than with TP: 44 

SNPs with PP > 80%, 3 of them with PP > 90%, have been associated with TFR. Among 

them, JAK3-rs6523 and CD5-rs7104333 were already identified as associated with UBC risk 

(24). Only 2 SNPs were associated with TP using MMM. This could be explained by the 

lower rate of progression events (n = 76) compared with the number of recurrences (n = 268) 

that may affect the power of tests in detecting associations. Most of the SNPs/genes 

associated with TFR were not associated with TP and vice versa, which may indicate that 

different inflammatory genes trigger distinct NMIBC outcomes. The small correlation 
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between SNP effects obtained with MMM for TFR and TP (data not shown) also support 

this hypothesis. However, it is noteworthy that genetic variation in CARD4/NOD1 was both 

associated with TR of the whole cohort and TP of high-risk patients. Most of the SNPs 

identified by MMM also ranked in the first positions when Cox regression was applied. Only 

two SNPs in CD3G and CARD4 identified by SMM, as associated with TP and TR, passed 

Bonferroni’s correction and their PPs were high: PPBA = 0.76 and PPBL = 0.79 for CD3G 
and PPBA = 0.88 and PPBL = 0.90 for CARD4. Potential explanations for the different SNP 

ranking for CD3G between tests is the small MAF (0.09) of this variant with very few events 

in the aa genotype group (Fig. 1; ref. 38) and the adjustment by other SNPs included in the 

MMMs.

Inflammatory SNPs were not strongly associated with outcome in both HiR and LR 

subcohorts, probably because of the limited sample size, too. Polymorphisms in 

inflammatory genes were differently associated with TP in patients at HiR versus LR. 

Correlation between SMM and MMM estimates of TP in both subcohorts disagreed 

(Pearson correlation between SNPs effect estimates = −0.01 for BA and −0.03 for Cox 

regression), this suggesting that the difference in prognosis of both groups may, at least, 

partially be mediated by inflammatory genes. Risk of TP is highly influenced by Bacillus 

Calmette-Guérin (BCG) administration (39). Focusing on the HiR subcohort, no BCG*SNP 

interaction using MMMs was found (results not shown). Larger cohorts might be needed to 

pinpoint these potential interactions.

SNPs were included as they tagged the selected inflammatory genes, what does not imply a 

potential function. Since it is difficult to know whether those variants identified are causative 

or are in high LD with the real ones, they should merely be considered as biomarkers of 

prognosis. While most of the selected SNPs tagged genes of particular interest in cancer 

biology, the position of some of the genes changed according to the new version of the 

human genome release, a fact that misplaced SNPs from the initial selection window (i.e., 

rs2269217). Noteworthy, most of the significant variants are placed in genes involved in 

immune tolerance processes: Janus kinase 3 (JAK3) participates in intra-cellular signal 

transduction after activation of immune cells. Lower levels of JAK3 might be responsible for 

the defective reactivity of T lymphocytes in patients with cancer (40). CD5 is known as a 

negative regulator of T- and B-cell receptor signaling. Its expression has been shown to be 

implicated in T lymphocytes tolerance toward tumor cells (41). AIRE encodes a 

transcription factor that regulates the expression of tissue antigens in the thymus and plays 

an important role in the development of organ-specific T regulatory lymphocytes (42). Those 

T regulators are thought to be major barrier impeding antitumor immune response (42). In 

melanoma, polymorphisms in AIRE may variably affect the selection of melanoma-

associated antigen-specific thymocytes, generating T-cell repertoires protecting or 

predisposing individuals to cancer (43). CARD4/NOD1 is a member of the NOD receptor 

family that plays a major role in innate and adaptive immunities. Polymorphisms in those 

genes have been shown to be associated with multiple cancer risk including UBC (22, 44). 

NOD receptors were demonstrated to be involved in antitumor cytotoxicity through the 

potentiation of human natural killer cells and macrophage activities (45). MAP2K3 
pathways play a critical role in carcinogenesis. MAP2K3 has been shown to suppress the 

growth of breast cancer cells (46) and alterations in its pathway are frequent in UBC (47). 
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Finally, the protein encoded by CD3G is part of the T-cell receptor-CD3 complex. 

Prognostic impact of T lymphocytes’ infiltration is now being investigated in multiple 

cancers, and CD3 expression has been shown to be associated with UBC risk of recurrence 

and mortality (48).

Statistically significant results and potential biologic relevance are not enough criteria to 

reach clinical utility. Marker(s) have to be clinically actionable and cost efficient. While we 

identified SNPs strongly associated with NMIBC outcomes, they contributed little (<3.6%) 

to the higher event prediction ability provided by clinicopathologic variables. Furthermore, 

these estimates have to be taken cautiously, as their added value might be overestimated 

mainly because of the relatively low number of progression events in the whole cohort and 

mainly in the HiR/LR subcohorts. We cannot discard that the performances of the models 

are still magnified even though their predictive ability was tested by applying bootstrapped 

cross-validation samples (49). Therefore, an external validation would be advisable to 

confirm the added predictive value of the identified SNPs. However, heterogeneity across 

studies regarding patient recruitment, treatment, patient management, or availability of the 

genotypes data for the same set of SNPs limit the potential success of the replication stage. 

Furthermore, the definition of inflammatory genes was itself challenging. The list of 

potential genes is tremendously large, and the edges of the definition are difficult to 

delineate due to the crosstalk between inflammatory pathways and other cellular functions. 

It is possible that potential susceptibility markers identified in other studies were not 

included here, although we estimate these are a minority. Moreover, incomplete mapping of 

the genes might have occurred as a result of using a previous HapMap genome reference 

release or filtering by LD, what might have led to missing SNPs of interest. Finally, we did 

not explore all genetic mechanisms sustaining UBC prognosis, as the genetic architecture 

and correlations between genes involving complex interactions and epigenetic regulation are 

still unknown (50).

Despite that, this study reports valuable findings and has noteworthy strengths. The cohort 

used was built upon strong methodology. All the patients had complete and homogeneously 

collected clinical, pathologic, and genetic information, with long enough follow-up to 

investigate NMIBC prognosis. Using innovative MMM that identified many SNPs in 

inflammatory genes, we provide further evidence of the complex and heterogeneous nature 

of UBC prognosis and enable to find associations that were not found by applying restrictive 

SMM.

Conclusion

Considering multiple genetic information jointly is key to understand its influence on 

complex traits such as UBC outcome. Innovative analytic approaches were essential to 

demonstrate that several SNPs in inflammatory genes were differently associated with risk 

of TFR and TP in NMIBC. Although external validation is warranted, this study provides 

proof of concept for the joint effect of few genetic variants in improving the discriminative 

ability of clinical prognostic models.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Progression-free survival of the 822 NMIBC according to CD3G-rs3212262 genotypes. 

Five-year progression-free survival was 92% for AA, 85% for Aa, and 71% for aa genotypes 

(log-rank P = 8.4 × 10−4, adjusted Cox P = 0.023).
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Table 3.

Top 10 autosomal SNPs associated with risk of progression in the whole NMIBC series using multivariable 

Cox regression additive model

Gene SNP HR P MAF

CD3G rs3212262 2.70 1.5 × 10−5 0.09

HLA-B rs9266462 2.67 0.0026 0.06

CCL-2 rs929259 0.52 0.0081 0.37

FAS rs1571014 1.73 0.0089 0.36

PPARG rs7626560 1.85 0.0015 0.19

CXCR4 rs778192 0.55 0.0017 0.38

SOCS5 rs973491 2.11 0.0025 0.07

CXCR4 rs16834018 2.10 0.0035 0.08

CD8B1 rs13024609 1.70 0.0044 0.20

IL6 rs2069827 2.00 0.0053 0.06

NOTE: Analyses were adjusted for geographical area, age, multiplicity, tumor stage and grade, number of recurrences, and treatment (see 
Supplementary Table S2).
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