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Background—PRO-C3 (N-terminal pro-peptide of type III collagen) is a biomarker of liver 

fibrosis in nonalcoholic-fatty-liver-disease (NAFLD). This study examines the association between 

PRO-C3 concentration and liver fibrosis assessed by magnetic resonance (MR) elastography 

(MRE)-measured stiffness (MRE-stiffness) and the heritability of PRO-C3 concentration in a 

cohort of twins and families with and without NAFLD. We performed a cross-sectional analysis of 

a well-characterized prospective cohort of 306 participants including 44 probands with NAFLD-

cirrhosis and their 72 first-degree-relatives, 24 probands with NAFLD without advanced fibrosis 

and their 24 first-degree-relatives and 72 non-NAFLD controls and their 72 first-degree-relatives. 

Liver steatosis was assessed by MR imaging proton density fat fraction (MRI-PDFF) and liver 

fibrosis by MRE-stiffness. Serum PRO-C3 was assessed by competitive ELISA. We assessed the 

familial correlation of PRO-C3 concentration, shared gene effects between PRO-C3 concentration 

and liver steatosis and fibrosis, and association between PRO-C3 concentration and genetic 

variants in PNPLA3, TM6SF2, MBOAT and CGKR.

In multivariable-adjusted models including age, sex, body mass index and ethnicity, serum PRO-

C3 correlated strongly with liver fibrosis (r2=0.50, p<0.001), and demonstrated robust heritability 

[h2:0.36, 95%confidence-interval (CI):0.07–0.59, p=0.016]. PRO-C3 concentration and steatosis 

had a strong genetic correlation [rG:0.62,95%CI:0.236–1.001, p=0.002] whereas PRO-C3 

concentration and fibrosis had a strong environmental correlation [rE :0.55,95%CI:0.317–0.717, 

p<0.001]. PRO-C3 concentrations were higher in carriers of TM6SF2rs58542926-T-allele versus 

non-carriers: 15.7 (±10.5) versus 10.8 (±5.7) ng/L, (p=0.047).

Conclusion—Serum PRO-C3 correlates with MRE-assessed fibrosis, is heritable, shares genetic 

correlation with liver steatosis and shares environmental correlation with liver fibrosis. PRO-C3 

concentration appears to be linked to both fibrosis and steatosis and increased in carriers of 

TM6SF2rs58542926 risk allele.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent cause of chronic liver 

disease worldwide(1, 2). NAFLD encompasses a spectrum of histological liver phenotype 

ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), the 

more progressive form of NAFLD. NASH has a significantly increased risk of progression to 

advanced fibrosis and cirrhosis(3). Several studies have demonstrated that the presence of 

advanced fibrosis is the most important predictor of mortality in NAFLD(4, 5).

Previous studies have reported a familial aggregation of NAFLD and NAFLD-related 

cirrhosis (6–8), demonstrated that both liver steatosis and fibrosis are heritable, and shown 

that they share a gene-effect in twins with and without NAFLD(9, 10). We have recently 

demonstrated that first-degree relatives of probands with NAFLD-cirrhosis had a significant 

higher risk of having advanced fibrosis compared to first-degree relatives of non-NAFLD 

controls(11). Genome-wide association studies (GWAS) have identified genetic risk variants 

contributing to NAFLD incidence and progression located in PNPLA3(12), TM6SF2(13, 
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14), GCKR(15) and MBOAT7(16). While these risk alleles have advanced our 

understanding of the genetic susceptibility towards NAFLD, they do not account for all of 

the variance observed in NAFLD(15, 17, 18). Therefore, there is still an unmet need to better 

characterize the factors involved in the heritability of liver fibrosis in NAFLD. Identifying 

factors associated with fibrogenesis among families would help to determine therapeutic 

targets as well as potential biomarkers for the screening of individuals at high risk of 

advanced fibrosis in these families.

Liver fibrosis is characterized by the accumulation of excess extracellular matrix (ECM). 

Over the past decade, a panel of collagen-derived biomarkers specifically assessing ECM 

remodeling, which is a key component of fibrogenesis, has been developed(19). These 

biomarkers measure the end-products of tissue remodeling, known as neo-epitopes, resulting 

from specific ECM proteins undergoing posttranslational modification such as protease 

cleavage. These neo-epitopes are released into the circulation and thus may potentially 

reflect the dynamic activity of either the formation or degradation of the ECM involved in 

the fibrogenesis. Among them, PRO-C3 detects the N-terminal pro-peptide of type III 

collagen (PIIINP) released by A Disintegrin and Metalloproteinase with Thrombospondin 

motifs 2 (ADAMTS-2) during ECM formation. PRO-C3 has emerged as a key non-invasive 

biomarker of fibrogenesis(20). It has been shown that PRO-C3 is associated with the 

presence of liver fibrosis in chronic liver disease including NAFLD(20–24). In addition, 

PRO-C3 has recently been found to accurately detect the presence of advanced fibrosis in 

individuals with NAFLD when incorporated in a clinical prediction rule(25). However, there 

are no data regarding whether PRO-C3 concentration, or other biomarkers of ECM activity 

are heritable and if they share any gene effect with liver steatosis and fibrosis.

Using a unique twin and family study design including well-characterized and prospectively 

recruited probands encompassing the entire spectrum of NAFLD and their first degree-

relatives, we aimed to examine the association between PRO-C3 concentration and liver 

fibrosis assessed by magnetic-resonance-elastography (MRE)-measured stiffness and to 

assess the heritability of PRO-C3 concentration in a cohort of twins and families with and 

without NAFLD.

MATERIAL AND METHODS

Study design

This is a cross-sectional analysis of a prospective Familial cohort study of participants from 

the Familial Cirrhosis Study and Twins and Family Study prospectively recruited at the 

University of California at San Diego (UCSD) NAFLD Research Center between December 

2011 and October 2017. All participants underwent a standardized rigorous clinical research 

visit including detailed medical history, physical examination, and testing to rule out other 

causes of chronic liver diseases (see inclusion and exclusion criteria for further details), 

fasting laboratory tests at the University of California at San Diego (UCSD) NAFLD 

Research Center(9–11, 26, 27). Participants also underwent an advanced magnetic resonance 

examination, including confounder-corrected chemical-shift-encoded magnetic resonance 

imaging to measure hepatic proton density fat fraction (MRI-PDFF) and magnetic resonance 

elastography (MRE) to measure liver stiffness at the UCSD Liver Imaging Group for the 
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screening of NAFLD and advanced fibrosis(28–31). Written informed consent was obtained 

from all participants.

Study participants

Proband with NAFLD-Cirrhosis and first-degree relatives—This study included 44 

probands with NAFLD-cirrhosis and 70 of their first-degree relatives from the Familial 

Cirrhosis cohort prospectively recruited at the UCSD NAFLD Research Center(11). 

Probands with NAFLD-cirrhosis had a documented evidence of NAFLD with either biopsy-

proven or meeting imaging criteria for cirrhosis. Definition for NAFLD was based upon 

American Association for the Study of Liver Study (AASLD) Practice Guidelines(32). 

Recruitment of these participants was approved by the UCSD Institutional Review Board 

number 140084.

Inclusion/exclusion criteria for the Familial Cirrhosis cohort—Probands and first-

degree relatives had to be at least 18 years old. Probands were required to have documented 

diagnosis of NAFLD-cirrhosis either by liver biopsy or by documented imaging evidence by 

a protocol specified criteria via ultrasound, computed tomography (CT), or MRI. First-

degree relatives (sibling, child, or parent) with written informed consent who did not meet 

any exclusion criteria were included in the study.

Please see the Supplementary Material for detailed exclusion criteria.

Proband with NAFLD without advanced fibrosis and non-NAFLD control and 
first-degree relatives—The study included a total of 192 participants from the Twin and 

Family study corresponding to 144 twins (72 twin-pairs; 47 monozygotic twin-pairs, 25 

dizygotic twin-pairs) and 24 siblings or parents-offspring pairs (9, 11, 26, 27). These twin, 

sib-sib, and parent-offspring pairs were prospectively recruited and they reside in southern 

California. Recruitment of these participants was approved by the UCSD Institutional 

Review Board number 111282.

Participants from the Twin and Family study were classified based upon their liver status as 

NAFLD controls (group A, defined by no evidence of NAFLD [MRI-PDFF<5%] or 

advanced fibrosis [MRE <3.63 kPa]) and participants with evidence of NAFLD without 

evidence of advanced fibrosis (group B, defined by MRI-PDFF≥5% and MRE-

stiffness<3.63 kPa). Group A included 72 pairs (n=144) of community-dwelling controls (52 

twin pairs, 10 sibling-sibling pairs and 10 parent-offspring pairs); randomly assigned as 

probands (group A1, n=72) or first-degree relatives (group A2, n=72). Group B included 24 

pairs (n=48) 20 twin pairs, 1 sibling-sibling pair and 3 parent-offspring pairs, randomly 

assigned as probands (group B1, n=24) or first-degree relatives (group B2, n=24) 

Supplemental Table 1.

Inclusion and exclusion criteria for Twin and Family cohort—Please see 

Supplementary Material for detailed inclusion and exclusion criteria.

Clinical assessments and laboratory test: Please see Supplementary material.

Caussy et al. Page 4

Hepatology. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MRI assessment

MRI was performed on a 3T research scanner (GE Signa EXCITE HDxt; GE Healthcare, 

Waukesha, WI) with all participants in the supine position. MRI-PDFF was used to measure 

hepatic steatosis and MRE was used to measure liver fibrosis. The details of the MRI 

protocol have been previously described in references(33, 34).

Justification for not using liver biopsy for assessment of liver steatosis and 
fibrosis in controls and first-degree relatives—Liver biopsy was not used for hepatic 

steatosis and fibrosis assessment of controls and first-degree relatives as they were 

asymptomatic with no suspected liver disease and therefore performing a liver biopsy would 

have been unethical. A non-invasive, accurate quantitative imaging method was used to 

estimate liver steatosis and fibrosis. We have previously shown that MRI-PDFF is a precise, 

accurate and reproducible non-invasive biomarker for the quantification of liver steatosis(35, 

36). In addition, MRE is the most accurate, currently available, non-invasive quantitative 

biomarker of liver fibrosis(28, 29, 37) with an excellent diagnostic accuracy in 

differentiating between normal liver and mild fibrosis (stage 0–2) and between non-

advanced fibrosis and advanced fibrosis (stage 3–4)(29).

Definition of NAFLD, cirrhosis and advanced fibrosis

Please see supplemental data

Biomarkers of ECM activity assessment

The serological biomarkers of interstitial matrix turnover was assessed by type III, V and VI 

collagen formation (PRO-C3(38), PRO-C5(39) and PRO-C6(40)) and type III collagen 

degradation by MMP-9 (C3M(41)). Basement membrane formation was evaluated by type 

IV collagen formation (P4NP7S(42)) and degradation mediated by MMPs (C4M2 (43)). All 

markers were assessed by ELISAs. The Nordic Bioscience ELISA assays were performed as 

follows: 96-well pre-coated streptavidin plates (Roche Diagnostics, Mannheim, Germany) 

were coated with the appropriate biotinylated synthetic peptides and incubated for 30 

minutes at 20°C. Twenty μL of standard peptide or pre-diluted sample were added to 

appropriate wells, followed by peroxidase-conjugated specific monoclonal antibodies and 

incubated for 1 hour or overnight at 20°C or 4oC. Finally, tetramethylbenzinidine (TMB) 

(cat.438OH, Kem-En-Tec Diagnostics, Taastrup, Denmark) was added, and the plates were 

incubated for 15 minutes at 20oC in darkness. All the above incubation steps included 

shaking at 300 rpm. After each incubation step, the plate was washed five times in washing 

buffer (20 mM Tris, 50 mM NaCl, pH 7.2). The TMB reaction was stopped by adding 0.18 

M H2SO4 as stopping solution and measured at 450 nm with 650 nm as reference. A 

calibration curve was plotted using a 4-parametric mathematical fit model. Detailed 

specification the biomarkers of ECM activity assessed in the study are summarized in the 

Supplemental Table 2.

Genotyping: whole-blood specimens collected during the research visit were used and DNA 

was extracted. PNPLA3, TM6SF2, GCKR and MBOAT7 genotyping was conducted in a 

subgroup of the cohort (n=135) and their association in explaining the variance in PRO-C3 
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and other biomarkers of ECM activity was examined. The genotyping was performed by 

Human Longevity, Inc (San Diego, CA) and has been previously described (10, 11).

Primary outcome

The study assessed two primary outcomes. The first primary outcome was the association 

between PRO-C3 and liver fibrosis as assessed by MRE. The second primary outcome was 

the heritability of PRO-C3 and genetic or environmental correlation between PRO-C3 

concentration and liver steatosis or liver fibrosis.

The secondary outcomes were the association between other ECM activity biomarker and 

liver fibrosis as assessed by MRE and the heritability of other biomarkers of ECM activity 

and genetic or environmental correlation between biomarkers of ECM activity and liver 

steatosis or liver fibrosis.

Statistical analysis

Data analysis—Patients’ demographic, anthropometric, clinical, and biochemical 

characteristics were summarized. Categorical variables were shown as counts and 

percentages, and associations were tested using a chi-squared test or Fisher’s exact test. 

Normally distributed continuous variables were shown as mean (± standard deviation), and 

differences between groups were analyzed using a two-independent samples t- test or 

Wilcoxon-Mann-Whitney test. Spearman correlation between biomarkers of ECM activity 

and liver fibrosis assessed by MRE were performed. Sensitivity analyses were performed 

using partial correlation between biomarkers of ECM activity liver fibrosis assessed by MRE 

adjusted for age, sex, BMI, and Hispanic ethnicity to account for potential cofounders. 

Familial correlation was assessed by comparing spearman correlation within related pairs 

and within random unrelated pairs. The association between PRO-C3 concentration and 

genetic variant was assessed using, generalized estimating equations (GEE) to account for 

intrapair correlations within twinships. Statistical analyses were performed using SAS 9.4 

(SAS Institute, Cary, NC, USA) or SPSS 25.0 (IBM, Chicago, IL). A two-tailed P value 

<0.05 was considered statistically significant.

Heritability estimates and share gene-effect—AE models were used to estimate the 

shared genetic determination (rG) and shared environmental determination (rE) between 

twin pairs as described in previous studies(9, 26). In the classical twin study of sets of 

monozygotic and dizygotic twins, four latent factors can account for the variance of any 

phenotype: additive genetic effects (A); nonadditive genetic effects, including dominance 

(D); common or shared environmental effects (C); and nonshared or individual-specific 

environmental effects (E)(44). Because monozygotic twins are presumed to be genetically 

identical, they correlate perfectly (r = 1.0) with respect to both additive and nonadditive 

genetic effects. Dizygotic twins share, on average, 50% of their genes, resulting in 

correlations of 0.50 for additive genetic effects and 0.25 for nonadditive genetic effects. The 

C term is defined as environmental factors that make twins similar; hence, common 

environmental factors correlate 1.0 across twin pairs, regardless of zygosity. The E term 

represents environmental factors that lead to differences between twins. Because these are 

individual-specific factors, they are assumed to be uncorrelated across twins. Error is 
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assumed to be random across individuals, so measurement error forms part of the estimate of 

E in these analyses. These latent factors comprise what are referred to as the univariate ACE 

or ADE models; due to model underidentification, an ACDE model cannot be tested in the 

classical twin design (44). The analyses were performed using OpenMx, a structural 

equation modeling software package for genetically informative data (http://

openmx.psyc.virginia.edu). Prior to the model fitting, the measures were adjusted for 

controlling age, gender, and ethnicity. Overall, AE models tended to provide the best fits to 

the data. Consequently, the genetic effects estimated in these AE models refer to broad-sense 

heritability, reflecting the proportion of phenotypic variance accounted for by the combined 

effect of all genetic influences (A+D).

Sample size estimation

We have previously reported that median heritability estimates of serum metabolites was 0.4 

ranging from 0.3 to 0.9 in the Twin cohort(26), and median heritability estimates of serum 

metabolites was 0.5 ranging from 0.2 to 0.8 in a UK Twins cohort(45). We have also 

previously estimated the heritability of hepatic steatosis to be approximately 0.5(10). 

Therefore, we anticipated that the heritability of PRO-C3 concentration or other biomarkers 

of ECM activity and hepatic steatosis or liver fibrosis with one another would be 

approximately in the range from 0.4 to 0.6. It has been shown that, to detect an additive 

genetic component of 0.4–0.8 in an ACE model, approximately 36–74 twin pairs are needed 

to produce a power of 0.95 with an alpha value of 0.05(46). Therefore, the 72 twin pairs 

included in this study would be adequate to assess the heritability of PRO-C3 concentration 

and other biomarkers of ECM activity and their genetic correlation with liver steatosis and 

fibrosis in this cohort.

RESULTS

Baseline characteristics

This cross-sectional analysis included a total of 306 participants who were prospectively 

recruited including 44 probands with NAFLD-cirrhosis and 70 of their first-degree relatives, 

24 probands with NAFLD (MRI-PDDF ≥ 5% and without advanced fibrosis (MRE < 3.63 

kPa) and 24 of their first-degree relatives, and 72 non-NAFLD controls (MRI-PDFF <5%) 

and 72 of their first-degree relatives. The detailed derivation of study cohort is shown in 

Supplemental Figure 1. The participants underwent serum PRO-C3 and other ECM activity 

biomarker profiling, clinical evaluation and advanced MRI assessment. The detailed 

demographic, biochemical, imaging data and biomarkers of ECM activity of the probands 

stratified by their metabolic and liver phenotype are provided in Table 1a. The detailed 

demographic, biochemical, imaging data and biomarkers of ECM activity of the first-degree 

relatives stratified by the liver phenotype of the probands are provided in Table 1b.

Association between PRO-C3 and others Biomarkers of ECM activity and liver 
fibrosis—Serum PRO-C3 concentration showed a strong correlation with liver fibrosis as 

assessed by MRE (p= 9.0E-09). In addition, serum PRO-C6 (p=0.0001), C3M (p=0.0009) 

and C4M2 (p=0.005) were also significantly associated with liver fibrosis in the cohort 

(Supplemental Table 3, Figure 1). In multivariable-adjusted models including age, sex, body 
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mass index and ethnicity, the results remained statistically and clinically significant, and 

PRO-C3 concentration showed a significant correlation with liver fibrosis r=0.62, p=4.0E-11 

(Supplemental Table 3, Figure 1). Only PRO-C3 concentration was significantly correlated 

with the presence of advanced fibrosis (MRE>3.63 kPa) in the multi-variable adjusted 

model: r=0.36, p=0.0004 (Supplemental Table 3). Finally, PRO-C3 concentrations were 

significantly higher in the subjects with NAFLD-cirrhosis median (±SD) 20.4 ng/mL 

(±29.2) vs non-NAFLD controls: 9.1 ng/mL (±4.8) p<0.001, and versus subjects with 

NAFLD without advanced fibrosis 9.1 (±6.0), p<0.001 Figure 2.

Familial correlation and heritability of PRO-C3 concentration—The heritability 

estimates were assessed in the subgroup of twin pairs and are provided in Table 2. Only 

PRO-C3 concentration was significantly heritable with a heritability estimate (h2) of: 0.37 

(95% confidence interval [CI], 0.097–0.592, p=0.009). The PRO-C3 concentration remained 

statistically significant even in a multivariable-adjusted model including age, sex, ethnicity 

and BMI with an h2 of 0.36 (95%CI: 0.072–0.585). The twinship correlation by PRO-C3 

concentration is shown in Figure 3A and 3B.

The familial correlation of PRO-C3 concentration and other biomarkers of ECM activity 

were assessed by comparing the spearman correlation within related pairs compared to 

correlation within random unrelated pairs. The concentration of P4NP7S and PRO-C3 had 

the most significant correlation within related pairs without overlap of the 95%CI between 

correlation coefficient within related pairs and within random unrelated pairs indicating a 

significant familial correlation of the concentration of PRO-C3 and P4NP7S concentration 

Figure 3C.

Shared genetic correlation between PRO-C3 and liver steatosis—The genetic 

correlation and environmental correlation between PRO-C3 concentration and liver steatosis 

assessed by MRI-PDFF and with liver fibrosis assessed by MRE was further investigated 

Table 3. PRO-C3 concentration had a significant shared gene effect with liver steatosis with 

a genetic correlation estimates rG of 0.62, 95%CI: 0.236–1.001; p=0.002, whereas PRO-C3 

concentration and liver fibrosis MRE demonstrated a strong environmental correlation: rE : 

0.55, 95%CI: 0.317–0.717; p<0.001 Table 3, Figure 4A.

TM6SF2 is associated with PRO-C3 concentration—As PRO-C3 concentration and 

liver steatosis share a significant gene effect, we further investigated whether genetic variant 

associated with NAFLD such as PNPLA3 rs738409, TM6SF2 rs58542926, MBOAT7 
rs641738, GCKR rs1260326, were associated with PRO-C3 concentration Supplemental 

Table 4. PRO-C3 concentrations were higher in carriers of TM6SF2rs58542926-T-allele 

versus non-carriers: 15.7 (±10.5) versus 10.8 ±5.7) ng/L, (p=0.047) Figure 4B.

DISCUSSION

Main findings

Using a uniquely well-phenotyped familial cohort, we have demonstrated that serum PRO-

C3 concentration is strongly correlated with liver fibrosis as assessed by MRE. In addition, 

we have demonstrated that level of PRO-C3 is heritable, shares significant gene-effect with 
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liver steatosis whereas it shares environmental effect with liver fibrosis. Finally, we have 

shown that PRO-C3 concentration is associated with the rare genetic variant located in 

TM6SF2 rs58542926. These results indicate a plausible common genetic basis between 

fibrogenesis and liver steatosis and provide new insights underlying the mechanism involved 

in the familial susceptibility towards NAFLD-related fibrosis. In addition, these findings 

show that that the quantity of liver steatosis is associated with fibrogenesis which involves at 

least partially the variant TM6SF2 rs58542926. These data indicate that beyond the genetic 

factors involved in liver steatosis accumulation which is known as the initial step towards 

fibrogenesis, environmental factors have an additive effect triggering an increase in 

fibrogenesis and thus accelerating the development of severe liver injury such as advanced 

fibrosis or cirrhosis.

While there is currently no FDA approved therapy for the treatment of NASH, these data 

have important implication for developing therapeutic approaches of NASH-related fibrosis. 

Reducing liver steatosis e.g by targeting TM6SF2 pathway could reduce ECM accumulation 

or fibrogenesis and prevent the pejorative evolution towards advanced fibrosis and cirrhosis. 

Thus, identifying the pathways involved in the development of advanced fibrosis especially 

in individuals at high risk such as first-degree relatives of probands with NAFLD-related 

cirrhosis may have important clinical implications. In the future, this will potentially help to 

address future guidelines for the screening of this high-risk population.

In context of published literature

Previous studies have demonstrated that PRO-C3 concentration is associated with degree 

and progression in liver fibrosis in chronic liver disease such as chronic hepatitis C (20, 21, 

23). Recently, Daniels and colleagues have shown that PRO-C3 can accurately detect the 

presence of advanced fibrosis when associated with other clinical prediction rules in NAFLD 

patients(25). In this study, we confirm previously reported association between PRO-C3 

concentration and liver fibrosis in a well-characterized cohort of participant with and 

without NAFLD. In addition, we report significant correlation between liver fibrosis and 

additional biomarkers of ECM activity including C3M, C4M2, P4NP7S in the cohort. 

Interestingly, preliminary data from a therapeutic trial suggest that serum PRO-C3 could be 

useful to determine the therapeutic response to anti-fibrotic agent(22), especially in the 

setting of clinical trials in NASH (47).

We have previously demonstrated that both liver steatosis and fibrosis are heritable and that 

they share a gene-effect (9, 10). In addition, we have recently demonstrated that first-degree 

relatives of probands with NAFLD-cirrhosis had a significant higher risk of advanced 

fibrosis compared to first-degree relatives of non-NAFLD controls (11). This study is novel 

because we demonstrate the heritability of PRO-C3 concentration to be significant, and 

showed that PRO-C3 concentration has shared gene effect with liver steatosis and shared 

environmental effect with liver fibrosis. In addition, we have identified a significant 

association between PRO-C3 concentration and the non-synonymous genetic variant located 

in TM6SF2 rs58542926. This loss of function variant has been associated with increased 

liver steatosis(13, 14) and NAFLD severity including liver fibrosis in GWAS studies(13, 18). 

TM6SF2 rs58542926 leads to an increased accumulation of fat in the hepatocytes and a 
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defect of very-low density lipoprotein secretion(14). Studies also shown a reciprocal 

association between TM6SF2 rs58542926 and cardiovascular disease (48). Interestingly, the 

association between TM6SF2 rs58542926 and advanced fibrosis has been reported to be 

dependent on liver steatosis. Indeed, Dongiovanni et al. have shown that genetically 

determined liver steatosis is associated with the severity of NAFLD such as fibrosis in a 

cross-sectional study of a large European cohort with liver biopsy(18). Accordingly, we have 

recently demonstrated that higher hepatic fat content is associated with liver fibrosis 

progression in individuals with NAFLD and paired liver biopsy(30). Our study provides 

additional evidence of the role of liver steatosis genetically determined by TM6SF2 

rs58542926 and now link it with PRO-C3, a marker of fibrogenesis. Further investigations 

are needed to determine the precise pathophysiological mechanism involved in the 

accelerated development of liver fibrosis when liver steatosis increases and its potential 

association with cardiovascular disease.

Strengths and limitations

There are several notable strengths of this study including the prospectively recruited study 

cohort including probands encompassing the entire spectrum of NAFLD and their first 

degree-relatives. In addition, all participants underwent a systematic and standardized liver 

disease assessment and other causes of liver disease were systematically excluded.

However, we acknowledge the following limitations to this study. Liver biopsy assessment 

could not be justified as previously noted in the methods section, and instead we utilized the 

most accurate non-invasive modalities for the assessment of hepatic steatosis and hepatic 

fibrosis (35, 36). As this study screened asymptomatic first-degree relatives of patients with 

NAFLD- cirrhosis, and controls with no suspected liver disease, exposing the study 

population to the risks associated with a liver biopsy such as pain, risk of bleeding, and in 

rare cases death, would not be justifiable and appropriate. Therefore, we are not able to 

determine whether a high PRO-C3 value is of greater predictive value in an individual if 

his/her family member also has NASH fibrosis, as compared to if his/her family member has 

NASH but no fibrosis and further study are needed to determine the clinical relevance of the 

use of PRO-C3. Finally, the association between PRO-C3 concentration and the four major 

genetic variant known to be associated with NAFLD have been assessed in this study while 

other genetic association with PRO-C3 concentration cannot be excluded.

Implication for future study

In this study, we confirm that PRO-C3 concentration is strongly correlated with liver fibrosis 

as assessed by MRE. Furthermore, PRO-C3 concentration is heritable and share significant 

gene-effect with liver steatosis that involves at least partially the variant located in TM6SF2 
rs58542926. Future identification of the pathway involved in this common genetic 

association may lead to individualized, targeted therapies that may prevent and/or reverse the 

development of liver fibrosis. Finally, longitudinal studies are needed to determine whether 

higher concentration of PRO-C3 can predict the development of advanced fibrosis in high-

risk population such as first-degree relative of proband with NAFLD-cirrhosis.
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Figure 1. Correlation between PRO-C3 and other ECM remodeling biomarkers and liver fibrosis 
assessed by MRE
*rank coefficient an p-value determined using partial correlation adjusted for age, sex, BMI, 

and Hispanic ethnicity are shown for PRO-C3, C3M, C4M2 and P4NP7S.
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Figure 2. Serum PRO-C3 levels are significantly increased in NAFLD-cirrhosis
Median and 95% confidence interval of PRO-C3 levels across 3 independent group: non-

NAFLD control (blue), proband with NAFLD without advanced fibrosis (green), and 

NAFLD-cirrhosis (pink) are shown. P-value were determined using nonparametric Mann-

Whitney test
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Figure 3. Familial and Twinship correlation of PRO-C3 levels
Twinship correlations; A. The monozygotic twin-pairs showed a robust correlation in PRO-

C3 (r2=0.58; p <0.001) but not B. the dizygotic twin-pairs (r= 0.30; p=0.15), showing that 

PRO-C3 concentration is a heritable trait. C. Familial correlation shown as Spearman 

correlation coefficient and 95% confidence interval within random unrelated pairs (white 

dots, n=135 pairs) and within related pairs (black squares, n=115 pairs) as a significant 

association was found between PRO-C3 and NAFLD-cirrhosis, individuals with cirrhosis 

were excluded from the analysis. Spearman coefficient values are indicated in the in Y axis 

legend (unrelated/related pairs), *p<0.05, **p<0.01, ***p<0.001.
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Figure 4. Shared genetic and environmental determination of PRO-C3 and higher PRO-C3 levels 
in TM6SF2 risk allele
A. AE Model for genetic correlation between PRO-C3 and hepatic steatosis assessed by 

MRI-PDFF and environmental correlation between PRO-C3 and liver fibrosis assessed by 

MRE. B. Mean and standard deviation of PRO-C3 concentration in TM6SF2 rs5854296 rare 

allele T carriers compared to non-carriers. *P-value derived from Generalized Estimating 

Equations to account for correlation within twinship adjusted for age and sex.
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Table 1a:

Baseline Characteristics of probands with NAFLD-cirrhosis, non-NAFLD controls and proband with NAFLD 

without advanced fibrosis

Characteristics Group A1 Non-NAFLD 
control (n=72)

Group B1 Proband with 
NAFLD without Advanced 

fibrosis (n=24)

Group C1 Probands with 
NAFLD-cirrhosis (n=44) Overall p-value

Demographics

 Age (years) 44.9 (20.3) 52.8 (16.5) 62.2 (10.3) <0.0001 
β,δ

 Female, n (%) 54 (75.0%) 15 (62.5%) 35 (79.6%) 0.3009

 White, n (%) 57 (80.3%) 19 (79.2%) 12 (27.3%) <0.0001

 Hispanic or Latino, n (%) 9 (12.5%) 3 (12.5%) 26 (59.1%) <0.0001

 BMI (kg/m2) 25.2 (6.5) 30.9 (6.0) 31.4 (6.5) <0.0001 
α, β

Clinical

 Type 2 Diabetes, n (%) 0 4 (16.7%) 35 (81.4%) <0.0001

Biological data

 AST (U/L) 20.9 (5.4) 22.7 (6.6) 50.8 (28.2) <0.0001 
β,δ

 ALT (U/L) 17.7 (7.4) 25 (11.5) 47.8 (37.4) <0.0001 
β,δ

 Alk P (U/L) 67.2 (19.5) 69.2 (19.6) 107.6 (39.9) <0.0001 
β, δ

 GGT (Ui/L) 17.6 (8.2) 27.3 (21.3) 100.4 (61.7) <0.0001 
β, δ

 Total Bilirubin (mg/dL) 0.5 (0.2) 0.4 (0.2) 1.6 (5.3) 0.1282

 Direct Bilirubin (mg/dL) 0.1 (0) 0.1 (0) 0.9 (4.1) 0.1669

 Albumin (g/dL) 4.6 (0.3) 4.5 (0.2) 4.1 (0.4) <0.0001 
β, δ

 Glucose (mg/dl) 86.2 (8.7) 94.7 (30.7) 125.2 (54.8) <0.0001 
β, δ

 Hemoglobin A1c (%) 5.6 (0.3) 5.9 (0.7) 6.8 (1.6) <0.0001 
β, δ

 Insulin (U/ml) 8.1 (4.5) 15.2 (12.2) 48.8 (58.7) <0.0001 
β, δ

 Triglycerides (mg/dL) 75.6 (26.1) 132 (62.5) 155.4 (117.6) <0.0001 
α, β

 Total cholesterol (mg/dL) 188 (38.3) 196.4 (30.1) 144.6 (62.7) <0.0001 
βδ

 HDL-cholesterol (mg/dL) 69.3 (18.4) 52.8 (15.7) 55.8 (33.1) 0.0017 
α, β

 LDL-cholesterol (mg/dL) 103.6 (30.3) 118.3 (27.6) 84.6 (27.8) <0.0001 
α, β, δ

 Platelet count (103/μL) 255.7 (49.3) 268.3 (51.0) 169.3 (73.3) <0.0001 
β, δ

 Prothrombin time 10.7 (0.9) 11.4 (4.2) 12.2 (2.8) 0.0039 
β

 INR 1 (0.1) 1.1 (0.4) 1.1 (0.3) 0.0306 
β

 Ferritin (ng/mL) 89.4 (70.8) 120.8 (91.5) 165.9 (215.3) 0.0176 
β

ECM biomarkers

PRO-C3 (ng/mL) 10.3 (4.8) 10.8 (6.1) 30 (29.2) <0.0001 
β, δ
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Characteristics Group A1 Non-NAFLD 
control (n=72)

Group B1 Proband with 
NAFLD without Advanced 

fibrosis (n=24)

Group C1 Probands with 
NAFLD-cirrhosis (n=44) Overall p-value

PRO-C5 (ng/mL) 234.4 (152) 258.5 (141.9) 244.3 (191.3) 0.8482

PRO-C6 (ng/mL) 8.9 (6.1) 10.3 (4.9) 13.7 (13.0) 0.0195 
β

P4NP7S (ng/mL) 176.2 (52.3) 161.1 (41.5) 193.1 (124) 0.2761

C3M (ng/mL) 8 (2.1) 7.3 (1.3) 10.5 (4.8) <0.0001 
β, δ

C4M2 (ng/mL) 18 (5.3) 18.7 (5.0) 22.4 (9.0) 0.0050 
β, δ

Imaging data

 MRI-PDFF % 2.3 (0.8) 11.4 (6.9) 7.0 (5.4) <0.0001 
α, β, δ

 MRE kPa 2.1 (0.4) 2.5 (0.4) 5.5 (2.3) <0.0001 
β, δ

Mean values are provided with standard deviation in parentheses, unless otherwise noted as n (%) BMI: body mass index, HbA1c: glycated 
hemoglobin, ALT: alanine aminotransferase, AST: aspartate aminotransferase, INR: International Normalized Ratio, APRI: AST to platelet ratio, 
HDL: High Density Lipoprotein, LDL: Low Density Lipoprotein, Alk P: Alkaline Phosphatase, MRI-PDFF: magnetic resonance imaging proton 
density fat fraction, MRE: magnetic resonance elastography.

*
P-value determined by chi-square or F-test from ANOVA.

Bold indicates significant P values <0.05.

Superscripts indicate individual significant mean differences between

α
non-NAFLD control versus patients with NAFLD without advanced fibrosis

β
non-NAFLD control versus proband with NAFLD-cirrhosis and

δ
patients with NAFLD without advanced fibrosis versus proband with NAFLD-cirrhosis
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Table 1b:

Baseline Characteristics of first-degree relatives of NAFLD-cirrhosis, first-degree relatives of controls, first 

degree relative of Proband with NAFLD without Advanced fibrosis

Characteristics
Group A2 First 

Degree relatives of 
controls (n=72)

Group B2 First Degree 
relatives of NAFLD 
without Advanced 

fibrosis (n=24)

Group C2 First Degree 
relatives of NAFLD-

cirrhosis (G3R) (n=70) Overall p-value

Demographics

 Age (years) 44.4 (20.4) 53.9 (15.8) 50.6 (17.8) 0.0464 
Ύ

 Female, n (%) 52 (72.2%) 16 (66.7%) 52 (74.3%) 0.7717

 White, n (%) 57 (80.3%) 19 (79.2%) 13 (18.8%) <0.0001

 Hispanic or Latino, n (%) 9 (12.5%) 3 (12.5%) 49 (70.0%) <0.0001

 BMI (kg/m2) 25.5 (5.3) 29.5 (6.6) 34 (11.6) <0.0001 
Ώ, Δ

Clinical

 Type 2 Diabetes, n (%) 2 (2.9%) 4 (16.7%) 18 (25.7) 0.0006

Biological data

 AST (U/L) 23.4 (7.6) 34.5 (21.3) 27.1 (19) 0.0112 
Ύ, Δ

 ALT (U/L) 21.8 (14.2) 40.2 (37) 30.7 (26.8) 0.0038 
Ύ, Ώ

 Alk P (U/L) 68.4 (20.8) 81.3 (21.4) 80.8 (28.2) 0.0059 
Ύ, Ώ

 GGT (Ui/L) 21.8 (17.8) 64.7 (85) 44.8 (38.8) <0.0001 
Ύ, Ώ

 Total Bilirubin (mg/dL) 0.4 (0.2) 0.6 (0.4) 0.5 (0.3) 0.0257 
Ύ, Ώ

 Direct Bilirubin (mg/dL) 0.1 (0) 0.2 (0.1) 0.2 (0.1) 0.0016 
Ύ, Ώ

 Albumin (g/dL) 4.5 (0.3) 4.4 (0.4) 4.4 (0.2) 0.1053 
Ώ

 Glucose (mg/dl) 87.9 (11.4) 89.7 (14.5) 95.5 (26.1) 0.0649

 Hemoglobin A1c (%) 5.7 (0.4) 5.8 (0.5) 5.9 (0.9) 0.2779

 Insulin (U/ml) 8.3 (4.7) 15.0 (13.3) 22.7 (18.2) <0.0001 
Ύ, Ώ, Δ

 Triglycerides (mg/dL) 89.6 (44.4) 156.8 (117.1) 152.6 (76.2) <0.0001 
Ύ, Ώ

 Total cholesterol (mg/dL) 194.3 (44) 200.4 (39.3) 175.5 (56.8) 0.0323 
Ώ, Δ

 HDL-cholesterol (mg/dL) 65 (18.6) 56.7 (22.7) 54.1 (26) 0.0168 
Ώ

 LDL-cholesterol (mg/dL) 111.4 (40.6) 113.8 (30.2) 108.7 (35.6) 0.8293

 Platelet count (103/μL) 247.1 (49.3) 237 (71.4) 266.4 (74.9) 0.0849

 Prothrombin time 10.9 (2.1) 11.7 (4.3) 11.5 (3.5) 0.3542

 INR 1.1 (0.3) 1.1 (0.4) 1.1 (0.3) 0.5815

 Ferritin (ng/mL) 90.1 (68.7) 117 (86.5) 126.2 (128.5) 0.0973

ECM biomarkers

PRO-C3 (ng/mL) 10.4 (4.1) 13.7 (9.4) 14.4 (13.3) 0.0494 
Ώ

PRO-C5 (ng/mL) 261.6 (153.9) 349.3 (134.6) 254.9 (219.1) 0.1263
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Characteristics
Group A2 First 

Degree relatives of 
controls (n=72)

Group B2 First Degree 
relatives of NAFLD 
without Advanced 

fibrosis (n=24)

Group C2 First Degree 
relatives of NAFLD-

cirrhosis (G3R) (n=70) Overall p-value

PRO-C6 (ng/mL) 7.7 (4.5) 10.2 (5.6) 9 (5.8) 0.1001

P4NP7S (ng/mL) 173.8 (57.2) 180.4 (52.8) 180.3 (86.1) 0.8413

C3M (ng/mL) 8.1 (2.0) 7.5 (2.4) 9.7 (3.1) 0.0001 
Ώ, Δ

C4M2 (ng/mL) 19.8 (5.1) 19.6 (4) 21.7 (6.7) 0.1195

Imaging data

 MRI-PDFF % 2.5 (1.8) 6.1 (5.2) 10.1 (8.5) <0.0001 
Ύ, Ύ,,Δ

 NAFLD (MRI-PDFF≥5%), n (%) 1 (1.4) 7 (29.2) 47 ( 67.1) < 0.0001 
Ύ, Ύ,,Δ

 MRE kPa 2.1 (0.4) 3.0 (1.4) 2.6 (0.9) 0.0001 
Ύ, Ώ

Mean values are provided with standard deviation in parentheses, unless otherwise noted as n (%) BMI: body mass index, HbA1c: glycated 
hemoglobin, ALT: alanine aminotransferase, AST: aspartate aminotransferase, INR: International Normalized Ratio, APRI: AST to platelet ratio, 
HDL: High Density Lipoprotein, LDL: Low Density Lipoprotein, Alk P: Alkaline Phosphatase, MRI-PDFF: magnetic resonance imaging proton 
density fat fraction, MRE: magnetic resonance elastography.

*
P-value determined by chi-square or F-test from anova.

Bold indicates significant P values <0.05.

Superscripts indicate individual significant mean differences between

Ύ
first degree relatives of non-NAFLD control versus first degree relatives of patients with NAFLD without advanced fibrosis

Ώ
first degree relatives of non-NAFLD control versus first degree relatives of proband with NAFLD-cirrhosis and

Δ
first degree relatives of patients with NAFLD without advanced fibrosis versus first degree relatives of proband with NAFLD-cirrhosis.
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Table 2.

Heritability estimates of Pro-C3 and other ECM remodeling biomarkers in AE model

Trait Heritability estimates h2 95% CI P value

Primary outcome

Pro-C3 (ng/mL)

Unadjusted 0.373 (0.097–0.592) 0.0089

Age-sex-adjusted 0.336 (0.051–0.567) 0.0215

Age-sex-ethnicity-BMI-adjusted 0.362 (0.072–0.585) 0.0157

Secondary outcome

P4NP7S (ng/mL)

unadjusted 0.136 (0.000–0.337) 0.460

Age-sex- adjusted 0.119 (0.000–0.322) 0.279

Age-sex-ethnicity-BMI-adjusted 0.078 (0.000–0.289) 0.488

PRO-C6 (ng/mL)

unadjusted 0.256 (0.005–0.476) 0.0449

Age-sex- adjusted 0.241 (0.000–0.463) 0.0605

Age-sex-ethnicity-BMI-adjusted 0.075 (0.000–0.327) 0.572

C3M (ng/mL)

unadjusted 0.126 (0.000–0.324) 0.235

Age-sex- adjusted 0.117 (0.000–0.316) 0.272

Age-sex-ethnicity-BMI-adjusted 0.082 (0.000–0.287) 0.453

C4M2 (ng/mL)

unadjusted 0.087 (0.000–0.313) 0.472

Age-sex- adjusted 0.043 (NA −0.278) 0.7297

Age-sex-ethnicity-BMI-adjusted 0 (NA −0.23) 1

Pro-C5 (ng/mL)

unadjusted 0.048 (NA −0.282) 0.6996

Age-sex- adjusted 0.019 (NA −0.258) 0.8816

Age-sex-ethnicity-BMI-adjusted 0 (NA −0.212) 1
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Table 3.

AE Model for genetic and environmental correlation between Pro-C3 concentration and hepatic steatosis and 

fibrosis

Pro-C3 (ng/mL)

Genetic correlation

Hepatic steatosis (MRI-PDFF) Liver fibrosis (MRE)

rG Estimate(95% CI) P value rG Estimate(95% CI) P value

unadjusted 0.593 (0.240, 1.000) 0.00109 0.245 (−0.332, 0.580) 0.303

Age - sex-adjusted 0.671 (0.302, 1.000) 0.00041 0.301 (NA, 0.680) 0.320

Age-sex-ethnicity-BMI-adjusted 0.619 (0.236, 1.000) 0.00152 0.227 (−1.000, 0.830) 0.596

Pro-C3 (ng/mL)

Environmental correlation

Hepatic steatosis (MRI-PDFF) Liver fibrosis (MRE)

rE Estimate(95% CI) P value rE Estimate(95% CI) P value

unadjusted −0.210 (−0.451, 0.066) 0.132 0.528 (0.291, 0.702) <0.001

Age – sex-adjusted −0.217 (−0.457, 0.059) 0.121 0.519 (0.281, 0.695) <0.001

Age-sex-ethnicity-BMI-adjusted −0.231 (−0.470, 0.045) 0.0982 0.549 (0.317, 0.717) <0.001
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