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Abstract
Huntington’s disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1
in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably
is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form
(mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain
region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal
neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity,
neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alter-
ations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HDmouse models implicate both
MSN cell-autonomous properties and cell–cell interactions, particularly corticostriatal but also with non-neuronal cell types.
Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how
astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiol-
ogy. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in
terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
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Huntington’s disease (HD) is an autosomal dominant neuro-
degenerative disorder characterized by motor deficits and in-
voluntary movements, most commonly chorea at early stages,
cognitive dysfunction, and psychiatric manifestations [1]. HD
is caused by an expansion in the trinucleotide CAG repeat in
exon-1 in the huntingtin gene, located on chromosome 4.
When the number of trinucleotide CAG repeats exceeds 40,
HD is fully manifested [2], as the polyglutamine (polyQ) tract
confers neurotoxicity apparently via both gain- and loss-of-
function. An inverse correlation exists between the CAG re-
peat length and age of onset [3]. Mutant huntingtin (mHtt) is
expressed in all cells [4], but the gamma-aminobutyric acid
(GABA)ergic striatal projection medium spiny neuron
(MSNs) is the most, or differentially, vulnerable to

dysfunction and neurodegeneration [5, 6]. Cortical pyramidal
neurons in layers V and VI are also highly perturbed by the
expression of mHtt [7]. A long-standing question in under-
standing HD is whether MSN vulnerability is cell-
autonomous or non-cell-autonomous [8], a question which
now extends to cortical neurons and non-neuronal cell types.

mHtt causes dysfunction of protein degradation systems,
including autophagy and the ubiquitin proteasome system [9,
10], leading to altered proteostasis. A major hallmark of HD is
the presence of mHtt aggregates, and although not necessarily
toxic on their own, Htt is a very large protein with the potential
to interact and bind with many other proteins, altering their
function [11]. Pre-deposition, oligomeric mHtt species may
also comprise a principal component of mHtt toxicity [12,
13], similar to amyloid in Alzheimer’s disease [14].
Transcriptional alterations in HD are partly attributed to
mHtt sequestration of transcription factors [15–18]. Through
interaction with mitochondrial proteins, mHtt perturbs mito-
chondrial function and induces bioenergetic deficits and cal-
cium buffering abnormalities [19]. Finally, mHtt induces pre-
synaptic neurotrophin deficits and postsynaptic signaling
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deficits [20, 21] and glutamate-induced excitotoxicity likely
has pre- and postsynaptic etiologies [22]. These processes
cannot be fully attributed to restricted expression of mHtt in
MSNs and may not even be restricted to the corticostriatal
system as alterations in the dopamine system are also impli-
cated in HD [23]. It is impossible to cover all the possible
interactions, but this review is focused on cell-autonomous
and non-cell-autonomous mHtt-induced alterations in
MSNs, corticostriatal communication, and other non-
neuronal contributions to MSN dysfunction and neurodegen-
eration. It is therefore also of course impossible to create sec-
tions that do not overlap. For example, in discussing
excitotoxicity, there is obvious overlap with the role of
astrocytes.

HD Mouse “Models” to Explore Cell-Specific
Vulnerability

In order to decipher cell-autonomous and non-cell-
autonomous pathogenic mechanisms driving HD pathophysi-
ology, novel mouse lines have been generated with cell-
specific expression or deletion of mHtt. Phenotypes of animal
models discussed herein are summarized in Table 1. Except
for knock-in (KI) models, comparisons are hampered by dif-
ferences in promoter, level of expression of transgene, and
importantly, length of Htt, i.e., fragment versus full length
(FL) (Fig. 1).

Pan-cellular HD Models

Creation of the original HD mouse models, and later KI
models, resulted in pan-cellular models with either overex-
pression or endogenous levels of mHtt. R6 mice, generated
by Bates’ group in 1996 [24], were the first HD transgenic
mouse models. Both R6/1 and R6/2 mouse lines express 67
amino acids of the N-terminal human protein, driven by the
humanHTT promoter, and a single copy of the transgene with
either 115 CAG repeats or three copies with 144 repeats, re-
spectively [24, 45]. Both lines display weight loss, enlarged
cerebral ventricles, neuronal atrophy, progressive increase of
mHtt aggregates, motor alterations, and cognitive deficits.
Cell death is not replicated in these lines [25]. Later, full-
length mHtt transgenic mice, via yeast or bacterial artificial
chromosomes (YAC and BAC), were generated [27, 32].
They express full-length mHtt and contain all the introns,
exons, and regulatory sequences, with 72 or 128 CAG repeats
in the YAC and 97 CAG/CAA in the BACHD. Insertion sites
are unknown. Both models develop motor deficits, neuronal
degeneration, corticostriatal synaptic dysfunction, and mHtt
aggregates. Contemporaneously, mHtt KI mice were generat-
ed [46–48], in which exon 1 of the mouse gene was replaced
by the human HTT exon 1 with an expanded number of CAG

repeats, resulting in the expression of the HD mutation in its
appropriate genomic context. They recapitulate much of the
HD phenotype although with a slower progression than the
over-expressers, and with less neuronal loss than is seen in
human HD. None of these pan-cellular models, however, is
an effective tool to investigate specific cell subtype-specific
contribution to HD physiopathology, without further manipu-
lations, discussed below.

Pan-neuronal mHtt Fragment Transgenic Models

The Prion promoter was used to produce a mouse line, Prp-
N171-82Q, which expresses the N-terminal 171 amino acids
of mHtt with a CAG repeat of 82, principally in neurons [49].
This model has been valuable for unraveling the contribution
of neuronal versus non-neuronal cells in HD. The Nestin-Cre
mouse was used for this purpose as well in a line in which an
Exon1 mHtt fragment was inserted into the Rosa26 locus and
mHtt expression was entirely dependent on Cre-mediated ex-
cision [35]. It should be noted that the Nestin promoter also
directs expression to glial progenitors. The Prp-N171-82Q
mice develop motor deficits, mHtt aggregates, astrogliosis,
decreased lifespan, and neuronal degeneration, as demonstrat-
ed with cleaved caspase-3 immunostaining [34, 49]. The
Nestin-Cre Exon1 mice driven by the Rosa26 promoter pres-
ent age-dependent motor deficits, mHtt aggregates, gliosis,
degenerating “dark neurons” and reduced spontaneous IPSC
frequency [35]. These data imply that these deficits are neu-
ronal cell-autonomous.

Neuronal Subtype-Specific mHtt Fragment
and Full-Length Mice

Two models were created to determine if there are cell-
autonomous effects of mHtt in MSNs. The RosaHD-Dlx5/6-
Cre mouse [50] expresses Exon1 mHtt only in MSNs and in a
subset of cortical and olfactory interneurons during embryonic
development. Although RosaHD-Dlx5/6-Cre mice accumu-
late mHtt aggregates and develop minor glutamatergic
NMDA receptor alterations, they do not develop motor defi-
cits. We generated the D9-N171-82Q line, which expresses a
similar mHtt fragment as does the prion promoter mouse, but
driven by select regulatory regions of the Ppp1r1b/DARPP-
32 gene, restricting transgene expression to MSNs and
Purkinje cells [36]. Comparisons between pan-cellular and
pan-neuronal models demonstrated that mHtt expression in
neurons, and selectively inMSNs in the forebrain, is sufficient
to induce certain aspects of the murine HD molecular and
behavioral phenotypes. Inclusions developed and comparison
of striatal gene expression to other models revealed that
transcriptomic abnormalities are induced largely, intrinsically
by mHtt, independent of cortical or glial expression [51], as is
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complex II mitochondrial dysfunction [37]. Corticostriatal
synaptic dysfunction, albeit present, is minimal [51].

To further investigate the corticostriatal connection, cell-
autonomous, and cell–cell interaction mechanisms in HD,
Yang and colleagues [35] used the Emx1-Cre mouse crossed
with the Exon1/Rosa26 mouse described above, thereby

restricting mHtt expression to cortical pyramidal neurons.
Although Emx-1-Cre HD mice developed mHtt aggregation
in cortical neurons, they did not exhibit electrophysiologic or
motor deficits, implying a role for interactions between corti-
cal interneurons and pyramidal neurons in mHtt-induced cor-
tical dysfunction [35]. Unfortunately, not all neuronal

a

c

b

Fig. 1 Schematic representation of cell-specific contribution to striatal and corticostriatal function in (A) wild-type and (B) HD pancellular context. (C)
Cell-type-specific mHtt overexpressers and deleters mouse models. “X”: mHtt expression; “-”: no mHtt expression
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subtype-specific models were analyzed for microgliosis,
astrogliosis, or transcriptomic changes.

The BACHD mouse described above [32] is engineered
with loxP sites flanking Exon1, allowing for cell-type specific
and regional deletion, and simultaneously therefore the gener-
ation in many cases of cell-type specific overexpression
models. Striatal (Rgs9) or cortical (Emx-1) Cre recombinase
mice were crossed with the BACHD mouse to delete mHtt
from MSN or cortical projection neurons, respectively [38].
These studies, discussed in more detail below, demonstrated
the requirement for mHtt expression in projection neurons for
a more representative and complete HD phenotype in MSNs,
most notably including typical electrophysiologic abnormali-
ties. It is useful also to consider these mice relative to those in
which mHtt in non-neuronal cells has been investigated, as
Rgs9-Cre-mediated deletion, for example, leaves striatal glial
mHtt expression intact.

Deletion and Overexpression of mHtt
in Non-neuronal Cells

The BACHD mouse and cell type-specific promoters have
allowed for the creation of mice with mHtt either specifically
deleted in non-neuronal subtypes on a pan-cellular mHtt back-
ground, or selectively overexpressed on an otherwise wild-
type background.

Astrocytes

There are astrocytic changes in HD and in many pan-cellular
and pan-neuronal HD mouse lines, including morphological
changes, e.g., thicker processes and larger soma containing
mHtt aggregates, and impaired glutamate metabolism and po-
tassium homeostasis [52], discussed in detail below. The
GFAP-CreERT2 transgenic mouse was used to conditionally
delete mHtt in astrocytes in the BACHD mouse [39], and the
GFAP promoter was used to drive mHtt Exon1 expression in
astrocytes [42]. Astrocytic mHtt contributes to the BACHD
phenotype as its deletion improved motor, psychiatric, patho-
logical, and electrophysiological abnormalities [39].
Overexpression of mHtt in astrocytes led to decreased lifespan
and body weight, as well as motor and transcriptional dys-
function [42], specifically implicating cell-autonomous and
non-cell-autonomous effects of mHtt in astrocytes.

Microglia

Microgliosis is also observed in HD brains, and mHtt has
therefore been deleted or expressed selectively in microglial
cells in the BACHD mouse [40], and in this setting, no con-
tribution to phenotype was observed with either modulation.
Conversely, however, mHtt transgene expression driven with
a microglial-specific promoter led to cell-autonomous

microglial activation and heightened inflammatory response
to LPS in Q175 KI mice, thereby suggesting cell-autonomous
effects of mHtt onmicroglia. However, it is not clear that there
was otherwise a phenotypic effect without additional stimuli
[43]. The possible role of neuroinflammation in HD is
discussed further below.

Oligodendroglia

Finally, because myelin alterations are also present in human
HD brain and mouse models of HD [28, 53–55], mHtt has
been selectively expressed and repressed in oligodendrocytes.
The Plp promoter was used to express N-terminal mHtt with
150 glutamines in murine oligodendroglia [44] and, the Ng2-
Cre mouse line was used to delete oligodendroglial mHtt ex-
pression in BACHDmice [41]. In brief, with additional details
provided below, both cell-autonomous effects in oligodendro-
cytes and non-cell-autonomous effects on neurons arise from
mHtt expression in oligodendrocytes. These include transcrip-
tional abnormalities that potentially explain the myelin deficit
in HD and which could play a pivotal role in axonal integrity
and associated motor coordination deficits.

Intrinsic Vulnerability of MSNs

The cell-autonomous nature of some HD phenotypes in
MSNs and their selective vulnerability raises the question as
to which MSN characteristics may induce this dysfunction.
MSNs are unique in that they receive a massive glutamatergic,
excitatory input from the cortex in addition to all being
dopaminoceptive. Much effort has been expended in deter-
mining whether vulnerability is due to this combination of
afferents, and/or MSN-enriched gene expression patterns
uniquely sensitive to mHtt. In addition to being selectively
vulnerable to mHtt expression, MSNs are also highly sensitive
to quinolinic acid [56] or 3-nitropropionic acid (3-NP; [57]),
which were utilized as the first models of HD prior to identi-
fication of the gene and its mutation [2]. Lesions from these
toxins are due to excitotoxicity or inhibition of the citric acid
cycle, respectively, yielding clues to cell intrinsic properties of
MSNs leading to vulnerability in HD. Proteomic and
transcriptomic studies have identified proteins selectively
enriched in striatal neurons which might account for MSN-
specific vulnerability to a toxic stimulus [58–66] and many of
the candidates are involved in the pathways mediating neuro-
transmission and energy utilization. Unsurprisingly, there are
multiple candidates, e.g., Ptpn5, Rhes, Pde10A, Foxp2, and
Bcl11b, some of which we will specifically discuss. Individual
validation is required for each gene.

Ptpn5, which encodes for STEP (striatal-enriched protein
tyrosine phosphatase), is an example in which a targeted val-
idation approach has been used to assay the role of a striatal-
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enriched protein that is not known to directly interact with Htt.
STEP protein regulates the endocytosis of NMDA receptor
subunits [67] and via dephosphorylation modulates intracellu-
lar signaling pathways, including those requiring mitogen ac-
tivated protein kinase (MAPK) or Fyn [68, 69]. In R6/1 and
several other mouse models, phosphorylation of STEP is in-
creased, and STEP is thereby inactivated, hypothetically
exerting a compensatory, neuroprotective role inducing resis-
tance to excitotoxicity [70]. Genetic and pharmacologic inhi-
bition of STEP in the R6/1 mouse delays the appearance of
motor dysfunction, improves cognitive function, and de-
creases the size of mHtt aggregates [71]. Contrary to these
data, in a full-length HD model, STEP activity is actually
increased, hypothetically increasing pathogenic, extrasynaptic
NMDA receptor localization, which is reduced by inactivation
of STEP [72]. These studies highlight the need to look at
multiple models, including fragment and full-length, and at
different disease stages.

PDE10A is a second example of a protein that does not
interact with mHtt protein but has a relevant role in HD pathol-
ogy. This phosphodiesterase directly impacts cyclic AMP levels
and consequently cAMP response element-binding protein
(CREB), whichmodulates gene expression.Pde10A expression
is increased in R6/2 MSNs [73], and its inhibition improves
motor function, prevents striatal atrophy, reduces microgliosis,
and restores brain-derived neurotrophic factor (BDNF) and ac-
tive CREB protein levels in the R6/2 model [73–75]. The basic
function of PDE10A in fact makes it a therapeutic target in
multiple hyperkinetic movement disorders [76].

Amongst the manyHtt interacting proteins, Ras homologue
enriched in striatum (Rhes) is selectively expressed within the
striatum and increases mHtt toxicity via sumoylation [77].
However, using different models, there are again discrepant
reports regarding the role of this protein in HD. Rhes deletion
is neuroprotective in a 3-NP model, ameliorating motor dys-
function and preventing striatal degeneration [78]. Silencing of
Rhes in HD genetic mouse models, however, exacerbated both
striatal pathology and the “psychiatric” phenotype [79] and, in
agreement with these data, its overexpression improved motor
function and brain pathology [80].

Two well-characterized transcription factors (TFs) with
enriched expression in the striatum, Bcl11b/Ctip2 and
Foxp2, are decreased in some HD models, although Foxp2
is not decreased in patients. Both appear to interact with
mHtt, as determined by co-immunoprecipitation [81, 82].
Bcl11b overexpression in STHdhQ111 cells rescues mito-
chondrial metabolic activity [81], but only Foxp2 contribution
to HD pathology has been evaluated in vivo. Interestingly,
Foxp2 overexpression in the BACHD model rescues motor
coordination deficits, whereas knockdown in wild-type mice
leads to symptoms overlapping with those of HD, both unsur-
prisingly implying cell-autonomous effects [82]. Much work,
however, remains to determine whether any individual

striatal-enriched gene, or their combination, actually accounts
for MSN vulnerability.

Differential Vulnerability of Striatal Neuronal
Subtypes

MSNs are morphologically homogeneous, but are sub-
grouped based on molecular properties, and origins and des-
tinations of afferent and efferent projections. The striatum also
contains heterogeneous interneuron subtypes, all of which are
considered relatively resistant to neurodegeneration in HD,
although theymay be dysfunctional. AmongstMSN subtypes,
there is some evidence of further differential vulnerability.
MSNs are divided approximated 50/50 amongst direct path-
way MSNs (dMSNs), which project to the substantia nigra
and express the dopamine type 1 receptor (Drd1/D1R), sub-
stance P and dynorphin [83] and the apparently more vulner-
able indirect pathway MSNs (iMSNs), which project to the
globus pallidus pars externa and express D2-type dopamine
receptors (Drd2/D2R) and enkephalin, [84, 85]. Because
dMSNs and iMSNs express similar levels of mHtt [86], other
mechanisms must account for their different responses in HD.
Physiologically, iMSNs are more excitable than dMSNs, per-
haps due to higher expression of NMDA receptors [87].
dMSNs also display lower input and membrane resistance,
higher branching complexity, along with increased whole-
cell capacitance relative to iMSNs, phenomena that may also
contribute to differences in excitability [88]. As already in-
ferred, iMSNs and dMSNs also differ in their transcriptomes,
and a selectively expressed gene could cell autonomously
confer either vulnerability or protection. For example,
iMSNs express higher levels of the potassium channel
Kir2.3 subunit that might contribute to relative excitability
[89], and higher levels of the BDNF receptor, TrkB [90, 91],
suggesting greater susceptibility to a BDNF deficit. Déglon
and colleagues [92] identified additional genes selectively
expressed in dMSNs and specifically downregulated in Hdh
KI mouse striatum, e.g., glutathione peroxidase Gpx6, inter-
feron alpha-inducible protein 27 like 2B (Ifi27l2b) and protein
tyrosine phosphatase Ptpn7. To date, only Gpx6 has been
experimentally validated, in addition to having been identified
by others as modulating the HD phenotype using a synthetic
lethal screen. Overexpression in R6/2 HDmice improved mo-
tor function and ameliorated biochemical abnormalities [93],
validating this approach, and again pointing to cell-
autonomous actions of neuronal genes altered in HD.

Animal models poorly recapitulate the early loss of iMSNs
observed in HD patients, but electrophysiological assays of
iMSNs and dMSNs at pre- and postsymptomatic stages sup-
port differential vulnerability, including of their output struc-
tures [94, 95], although not always in the same direction as in
human samples. Morphologically, corticostriatal inputs to
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dMSNs are altered whereas inputs to iMSNs are spared in
HD140Q KI mice [96]. Similarly, dMSNs obtained from
Q175 heterozygous symptomatic KI mice display reduced
action potential amplitude and decreased rheobase, along with
selective spine loss, more so than do iMSNs [97]. These are
further examples of how mouse models, although very valu-
able in unraveling pathophysiology in HD, do not perfectly
recapitulate human disease.

Generation of iPSCs to Unravel
Cell-Autonomous Versus Non-cell-Autonomous
Mechanisms in HD

Human-induced pluripotent stem cells (hiPSCs), somatic cells
reprogrammed to a pluripotent state, are now a critical and
unique cellular model to decipher pathogenic mechanisms of
HD and are particularly useful in the study of cell-autonomous
and non-cell-autonomous mechanisms, based on their differen-
tiation into single or multiple cell types, including organoids. In
less than a decade, many hiPSC lines have been generated by
multiple groups, with different numbers of CAG repeats
[98–106]. The mutant locus may be corrected by either homo-
zygous recombination [107] or more commonly now, CrispR
[108–110], creating control lines in isogenic backgrounds,
thereby limiting the experimental variables. In all cases, when
differentiated into “MSNs”, these cell lines recapitulate cell-
autonomous transcriptional alterations, demonstrate increased
cell death with excitotoxicity and/or neurotrophin deficiency
including in a CAG repeat-dependent manner, and have bioen-
ergetic deficits, all likely HD pathophysiologic mechanisms that
are discussed below. iPSC-induced neural stem cells (NSCs)
also recapitulate aspects of the HD phenotype, including altered
cholesterol levels and increased levels of reactive oxygen spe-
cies [111]. In fact, a highly novel aspect emerging from research
using iPSCs is the revelation of CAG-dependent abnormalities
very early in neuronal development, lending support to the no-
tion that HD has a strong developmental component [112, 113].

Notably, cortical neurons differentiated from HD iPSCs
also demonstrate altered transcriptional profiles and morphol-
ogy, revealing cell-autonomous and developmental dysfunc-
tion in neuronal subtypes other than MSNs [114, 115]. With
the rapid technical progress in the iPSC field, reports are soon
likely to emerge characterizing glial subtypes and organoids
derived from these lines.

Pathogenic Mechanisms: Cell-Autonomous,
Non-cell-Autonomous, or Both

As current knowledge regarding intrinsic properties of MSNs
does not adequately explain their selective vulnerability in
HD, there is great interest in non-cell-autonomous and

circuit-based pathogenic mechanisms in HD, including the
role of non-neuronal cells. This is similar to the thought pro-
cesses for other neurodegenerative disorders, e.g., amyotro-
phic lateral sclerosis [116–118] and Parkinson’s disease
[119, 120]. Here, we will review the proposed HD pathogenic
mechanisms in the context of cell-autonomous versus non-
cell-autonomous etiology.

Aberrant Corticostriatal Communication

The MSNs receive major glutamatergic input from the cortex
[121, 122], and these afferents also carry much of their neu-
rotrophic support in the form of BDNF [123, 124], highlight-
ing the direct impact of cortical projection neurons on MSN
function and survival. Corticostriatal communication deficits
are detectable in early stages of HD [125], and within the
cortex, human pyramidal cortical neurons from layers V and
VI are particularly vulnerable, with a 30% reduction in num-
ber [126]. As in the striatum, cortical interneurons are largely
spared from degeneration [127], although data from a mouse
model suggest that interneuron-pyramidal interactions are re-
quired for pyramidal neuron dysfunction [35]. Evidence from
HD mouse models exists suggesting that cortical alterations,
involving mainly cortical layers II/III, may actually precede
striatal pathology [128, 129]. For example, there are dendritic
alterations including a reduced number of spines in cortical
pyramidal neurons in HdhQ7/Q111 KI and R6/2 mice, prior to
striatal structural changes [130, 131]. The physiologic status
of cortical neurons in HD models is highly complex and may
change with disease stage. Functionally, cortical neurons in
R6/1 mice have, at various stages of disease, altered resting
membrane potential, input resistance and cell capacitance [26,
132] along with abnormal firing rate and an imbalance be-
tween excitatory and inhibitory inputs [26, 125].

We have already noted that the D9-N171-82Q mouse did
not display the full range of MSN electrophysiologic alter-
ations seen in models with more widely expressed mHtt
[37], and the expression of an Htt fragment rather than full-
length likely also impacts the phenotype. The BACHDmodel
allowed for more extensive analysis of the corticostriatal path-
way in mice in which full-length mHtt expression is restricted
to select neuronal populations [35, 38, 50]. Mice with knock-
down of cortical expression showed improvement of the mo-
tor and psychiatric alterations relative to mice with expression
in both striatum and cortex, but suppression of mHtt in cortical
afferents did not prevent striatal atrophy. This result is com-
plementary to what is seen in Emx1-Cre-Exon1-103Q Htt
mice, an animal model that only expresses mHtt in cortical
neurons and does not display striatal pathology [35], and also
confirms the existence of MSN cell-autonomous pathology.

Pan-cellular HD mouse models have decreased levels of
pre- and postsynaptic proteins at the corticostriatal synapse,
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including VGlut1 [133, 134], rabphilin3A [135], PSD-95,
and SAP-97 [136]. Furthermore, in HD corticostriatal co-
cultures from Q140 KI mice, and in Q175 KI mice in vivo,
there is a decreased number of corticostriatal contacts [33,
137]. Suppression of mHtt expression in the striatum in the
BACHD mouse restores the levels of postsynaptic, but not
presynaptic, proteins as well as preventing MSN degenera-
tion. Interestingly, reduction of mHtt expression only in the
cortical output neurons of BACHD mice restores the levels
of presynaptic proteins and also exerts benefits at the post-
synaptic level in the MSNs, but does not prevent neurode-
generation. Furthermore, in the BACHD mice with reduced
mHtt expression in cortical output neurons, there is an ame-
lioration of striatal evoked excitatory and inhibitory post-
synaptic current (EPSCs/IPSCs) imbalance [38] and im-
provement in bursting properties, but not firing rate, of
MSNs in vivo [138]. These data indicate the requirement
for corticostriatal cell–cell communication for the full path-
ophysiologic state to develop.

Drivers of Cre recombinase are rarely entirely cell type or
region specific, and recombination is usually below 100%, so
there are caveats in the interpretation of these experiments. For
example, Emx1 directs expression to pallial precursors, in-
cluding glia [139], so the knockdown in the BAC mice may
include glia along with excitatory cortical neurons, leaving
open the possibility that glia may be contributing to the im-
provement. In addition, although there was a comprehensive
phenotyping of the BACHD variants, mitochondrial function
and the transcriptome were not assessed, and none of the stud-
ies has determined the transneuronal effect of cortical mHtt on
striatal gene expression. Despite any caveats, however, these
results from multiple mouse models demonstrate that mHtt
acts cell autonomously in both MSNs and cortical neurons,
so that expression in either neuronal set causes a phenotype.
However, as would be expected, expression in the cortical
projection neurons has a greater impact on the striatum than
vice versa, but amelioration of symptoms likely requires
“treatment” of both compartments.

To further examine the cortical and striatal interactions
in vitro, microfluidic chambers were introduced to reconstitute
the network, and these represent an improved strategy over
co-culture of striatal and cortical neurons. In this system, pre-
synaptic mHtt expression in HD cortical neurons is necessary
and sufficient to produce abnormalities of the corticostriatal
network as determined by single cell calcium imaging, using
GCaMP6f as a calcium sensor. Conversely, HDMSNs receiv-
ing WTcortical inputs were normal in terms of synaptic func-
tion as determined by the same assay [33]. These results sup-
port the hypothesis that the origin of specific, and most, as-
pects of corticostriatal synaptic dysfunction lies in the cortical
neurons. A caveat to this conclusion is that cultured neurons,
like iPSCs, are relatively immature, and other aspects of MSN
dysfunction were not assayed.

Finally, in addition to perturbation of corticostriatal gluta-
matergic projections, there is an early reduction of
thalamostriatal glutamatergic projections in HD (reviewed
by Reiner and Deng, [140]). Thalamic inputs to MSNs are
reduced in HD140Q KI mice in presymptomatic stages, prior
to cor t icos t r ia ta l d isconnect ion [141] . Notably,
thalamocortical abnormalities do not worsen with disease pro-
gression, suggesting that most probably developmental alter-
ations are selectively affecting this synapse [141].
Experimental, isolated manipulation of mHtt in thalamus has
not been performed.

Contribution of Glial Cells to HD
Pathophysiology

The focus of the study of mHtt pathogenic mechanisms
was long restricted to neurons, but the last decade has
witnessed an explosion of knowledge as to how non-
neuronal central nervous system cells may contribute to
neurodegeneration. Notably, Htt expression level, and
therefore of course its mutant form, is similar between as-
trocytes, microglia, and oligodendrocytes [142].
Furthermore, mHtt inclusions develop in all three cell
types, although in different proportions [142], which may
contribute to, or protect from, certain aspects of mHtt tox-
icity. We noted above that there are cell-autonomous ef-
fects of mHtt in all three major glial types, but we will
now discuss cel l–cel l interact ions and non-cel l-
autonomous effects arising from non-neuronal cells in
more detail.

Astrocytes and Neuronal Support

Neurodegenerative disorders are usually accompanied by
astrogliosis in the most affected brain regions. In fact, the
Vonsattel scale commonly used for grading of human HD
neuropathology is partly based on the presence of glial cells
in the putamen, which accumulate during disease progression
[143]. HD astrocytes express higher levels of GFAP relative to
WT, have altered arborization, and increased soma size [143].
Adding to the complexity of non-neuronal cells in neurode-
generative disease is the recent identification of the role of
microglia in inducing a toxic astrocyte phenotype detrimental
to neurons [144, 145], so that non-cell-autonomous actions of
a glial subtype may be exerted on another glial subtype and
not solely on neurons.

In mouse models, expression of mHtt restricted to astro-
cytes induced their activation, and expression restricted to
neurons altered glial gene expression [42, 146], but in several
pan-cellular models, astrogliosis is poorly recapitulated. For
example, astrogliosis is undetectable in symptomatic R6/2
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mice [147], with the most aggressive phenotype amongst HD
mousemodels. Despite the lack of gliosis, however, astrocytes
are dysfunctional in full-length and fragment models of HD.
Overall, they demonstrate decreased efficiency in glutamate
and potassium buffering, due to altered expression of gluta-
mate transporters, Glt-1, and potassium channels, Kir2.1,
Kir2.3, Kir4.1, and Kv2.1 [52]. Electrophysiological parame-
ters in striatal HD astrocytes of pan-cellular models show
mHtt-induced alterations, including increased depolarization
and membrane resistance, along with lower membrane con-
ductance [147]. Restricted expression of mHtt in astrocytes
recapitulates some of these phenotypes, including loss of glu-
tamate transporters [42], indicating that this deficit is cell-au-
tonomous. Astrocytes generated from human HD iPSCs dis-
play vacuolization in a CAG repeat-length dependent manner
[148] and importantly, bipotential glial progenitor cells de-
rived from human cells do not mature normally after engraft-
ment and differentiation in vivo. Furthermore, HD embryonic
stem cell (ESC)–derived glial progenitor cells (GPCs) have
lower morphological fiber network complexity relative to
WT, accompanied by transcriptional abnormalities with prom-
inent downregulation of glial differentiation factors [149].

Restricted expression of mHtt in astrocytes also appears to
lead to non-cell-autonomous neuronal deficits. Thus, trans-
genic or viral-induced expression of mHtt in astrocytes leads
to motor deficits, although this may not require that there be
neuronal abnormalities [149, 150], and expression in astro-
cytes exacerbates neuronal dysfunction via non-cell-
autonomous mechanisms, with both cell types contributing
to alterations in the glutamate cycle. In another study, there
was an increased response to LPS in mice that expressed mHtt
in both astrocytes and neurons relative to neurons only, which
was ascribed to Iκb activity, supporting the non-cell-
autonomous exacerbation of an HD neuronal phenotype by
astrocytes [150].

In microfluidic chamber experiments [33] in which striatal
astrocytes were included with mHtt-expessing MSNs, but
without cortical neuron mHtt expression, corticostriatal con-
nectivity alterations were absent. However, in vivo, deletion of
mHtt in astrocytes BACHD mice restores the levels of post-
synaptic proteins and the amplitude of NMDA currents in
MSNs [39]. These results again suggest a non-cell-
autonomous effect of astrocytic mHtt on MSN synaptic struc-
ture and function. Most recently, Benraiss and colleagues
[151] generated HD glial chimeras by injecting mHtt-
expressing human glial progenitor cells (HD-hGPCs) into
the striatum of immunodeficient mice within 24 h of birth.
These mice developed motor deficits accompanied by hyper-
excitability of striatal neurons. Conversely, transplanted
healthy astroglia improved motor function, prolonged life
span, and normalized MSN excitability in R6/2 mice. These
results demonstrate a clear contribution of HD glia to MSN
dysfunction, in a non-cell-autonomous manner. Please note

that the role of astrocytes and glutamate uptake in HD is
discussed below.

Microglia/Neuroinflammation

Reactive microglia and molecular evidence of neuroinflam-
mation are associated with most neurodegenerative disorders,
but the role of microglia in HD pathophysiology is much less
definitive than in, for example, Alzheimer’s disease. In addi-
tion, again similar to other neurodegenerative diseases, the
answer to the question as to whether microglia play a patho-
genic or protective role remains elusive. Microglial cells ex-
press high levels of mHtt [152] and there is an increased num-
ber of microglial cells prior to the onset of neuronal degener-
ation, as presymptomatic HD patients contain activated mi-
croglia within the striatum [153]. Microglia progressively in-
crease in number, correlating with HD severity [154]. There is
also an increase of pro-inflammatory cytokines in HD human
striatum [155–157]. Using published RNA seq datasets, Botas
and colleagues identified over 300 differentially expressed
genes that overlap between early human HD brain and mouse
models, and these included many genes related to immune
function which, when assayed in a Drosophila HD model,
were deemed to be pathogenic and driving disease via the
NFkB pathway [65].

This last study drew heavily from previously published
databases from HD mouse models with transcriptional pro-
files associated with the striatal inflammatory response
[158–160]. Morphologically, some pan-cellular HD models,
e.g., R6/2, display an increased number of Iba1 positive cells
in the striatum, particularly as compared to neuronal models,
suggesting that MSN mHtt does not by itself induce
microgliosis [29, 161, 162]. Characterization of microglia in
activated states has rapidly advanced in the last few years
using RNA seq, and the classification into the traditional M1
and M2 phenotypes, releasing pro-inflammatory or anti-
inflammatory cytokines, respectively, now appears too sim-
plistic. In older studies, however, the “M1” microglial pheno-
type was detected in symptomatic HD mice, based on an ac-
tivated morphology with retracted processes, relative to the
longer processes in quiescent microglia, and pro-
inflammatory cytokine and lymphokine production [163].
Moreover, some therapies proven effective in ameliorating
HD phenotype, e.g., the modulation of mHtt sumoylation,
via knockdown of the HTT-selective E3 SUMO ligase Pias1
or Pde10A inhibition, are linked with decreased microgliosis
[74, 164]. Together, these human and mouse data might sug-
gest that reactive microglia exacerbate HD pathology rather
than exerting a neuroprotective role.

As with astrocytes, mouse models in which mHtt is selec-
tively expressed or repressed in microglial cells have been
derived and phenotyped to differentiate between cell-
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autonomous and non-cell-autonomous microglial functions in
HD. First, microglial cells in HD mice were proposed to be
more sensitive to sterile inflammation [163] but Crotti and
colleagues [43] demonstrated that mHtt expression restricted
to microglia induces a transcriptional pro-inflammatory re-
sponse. These same mice had increased striatal neuronal death
relative to WT after a peripheral pro-inflammatory challenge
with LPS, raising the specter of a possible non-cell-
autonomous effect on neurons from microglia expressing
mHtt. Furthermore, microglial-derived interleukin-34 contrib-
utes to HD pathology in a biolistic brain slice HD model,
suggesting a non-cell-autonomous effect of microglia on
mHtt neurons [165]. In vitro, WT microglia can be activated
by mHtt-expressing neurons [166], suggesting a non-cell-
autonomous effect in the other direction, i.e., of neuronal
mHtt on microglia. These data are supported by experiments
utilizing co-culture of mHtt-expressing microglia with WT
neurons, in which cell death was induced ex vivo and subse-
quently, in vivo (after sterile inflammation) [43], but mice
were not assayed for motor deficits or neuropathology. In
summary, although there is convincing evidence of microglial
dysfunction in HD, the gaps in knowledge along with the
absence of phenotype in the in vivo selective expression ex-
periments discussed above [40] leave the field with an unclear
picture as to the role of microglia in HD. Likewise, the cross-
talk between mHtt expression astrocytes and microglia re-
quires more investigation, including in the absence of neuro-
nal expression.

Oligodendrocytes/Myelination/Dysmyelination

As with neuroinflammation, white matter abnormalities are
prevalent in several neurodegenerat ive diseases.
Abnormalities in myelin-related proteins together with axonal
myelination deficits are present in several brain regions in HD,
including the corpus callosum and posterior white matter
tracts [53, 54, 167] and occur early in disease [168–170] and
in some, but not all, animalmodels [55, 171].MHtt aggregates
in oligodendrocytes are present in multiple models, including
R6/2 and HD140Q KI and zQ175 mice [142]. Analysis of
oligodendroglial mHtt expression was enhanced by crossing
a HD140Q KI mouse with a Plp-GFP line, allowing the visu-
alization of the cell body and also oligodendrocyte processes,
which are reduced in this mouse relative to WT [44].

The cell-autonomous and non-cell-autonomous contribu-
tions of oligodendrocytes to the HD phenotype are being scru-
tinized using similar methods as for other cell subtypes, i.e.,
selective expression and knockdown in vivo, and assays of
iPSC-derived oligodendroglial lineage cells. Expression of
the N-terminal fragment of mHtt with either 23 or 150 CAG
repeats driven by the Plp promoter leads to compromised
oligodendrocyte process length and myelination, but not cell

viability, with 150CAG relative to 23CAG [44]. Plp-150Q
mice displayed decreased expression of myelin-related genes,
motor deficits, and decreased life span. Interestingly, there
was also axonal degeneration, suggesting that mHtt could
act non-cell autonomously on neurons, although the axonal
degeneration presented after demyelination was already pres-
ent, so it may be secondary and not directly due to mHtt [44].
Selective suppression of mHtt in the NG2+ oligodendrocyte
progenitor cell population in BACHD mice prevented the de-
velopment of white matter abnormalities and ameliorated
some motor alterations [41]. In summary, there appear to be
primary cell-autonomous and non-cell-autonomous effects of
mHtt in oligodendroglia, with a significant contribution to
motor dysfunction [41, 44].

Dysregulation in the expression of myelin-related proteins
is commonly observed in HD models. Huang et al. [44] dem-
onstrated that mHtt expression in oligodendrocytes is directly
responsible for myelin gene expression deficits, because it has
the ability to bind myelin regulatory factor, perturbing its
function as a transcriptional activator. However, these micro-
array analyses could reflect changes in gene expression caused
by demyelination and axonal degeneration secondary to some
other process. In vitro, profound transcriptional abnormalities
were detected in purified HD-hGPCs, affecting principally
genes related to glial differentiation and function, and also
regulation of synaptic function [151], implying a primary,
ce l l - au tonomous de f i c i t . Impo r t an t ly, spec i f i c
oligodendrocyte- and myelin-related genes were altered.
Transplantation of HD-hGPCs cells demonstrated a
myelination defect due to altered oligodendrocyte differentia-
tion and myelin production. These data strongly support the
presence of a cell-autonomous detrimental effect of mHtt in
the oligodendroglial lineage.

Neurotrophic Supply/BDNF Deficit

BDNF is synthesized in the cortex and is anterogradely
transported to the striatum, in which it binds to tyrosine recep-
tor kinase B (TrkB) which is highly expressed in MSNs.
BDNF production [172], transport [173] and intracellular sig-
naling pathways [174] are altered in HD. First, mHtt compro-
mises BDNF at a transcriptional level through binding to tran-
scription factors that regulate its expression [172]. Second, Htt
indirectly binds to kinesin and dynein/dynactin [175, 176],
and the HD mutation thereby compromises vesicular trans-
port, directly affecting BDNF supply to the MSNs. Because
MSNs do not produce BDNF [123, 177], lack of cortical pro-
duction of BDNF results in a non-cell-autonomous negative
effect on MSNs. In addition, however, there are cell-
autonomous impacts on this system within MSNs, as there is
some evidence, albeit contradictory, showing decreased TrkB
levels in striatal neurons of HD patients and in some HD
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models [178–180]. It is also possible that TrkB localization in
MSN dendrites is compromised, along with its signal trans-
duction pathway [181].

The striatum does not develop normally in the absence of
BDNF or TrkB [90, 182–184], but the survival ofMSNs is not
entirely dependent on BDNF. BDNF withdrawal induces in-
creased cell death in HD iPSC-derived neural progenitor cells
(NPCs) and more differentiated iPSC-derived MSNs relative
to controls [98, 102, 185], perhaps due to increased
excitotoxicity. Reducing cortical expression of BDNF
worsens HD pathology in vivo. Overexpression or ectopic
supply of BDNF ameliorates HD pathology in R6/1 and
YAC128 mice and also in an HD rat model [186–190].

Corticostriatal co-cultures in microfluidic chambers again
provide an ideal system in which to evaluate the impact of
mHtt on both sides of the corticostriatal connection. MHtt-
expressing cortical neurons from HD140Q KI and BACHD
mice displayed cell-autonomous deficits in anterograde, and
also retrograde in the latter, transport of BDNF [33, 191, 192],
that could be pharmacologically corrected [192]. Restoration
of BDNF transport by targeting TriC subunits, a subtype of
cytosolic chaperonins, prevented striatal atrophy in BACHD
cultured neurons [192]. The velocity of BDNF transportation
in BACHD cortical neurons was slower than in WT neurons.

Like BDNF, TrkB receptor plays a pivotal role in the de-
velopment, survival, and function of mature MSNs, and its
early deletion [90] or knockdown [182] leads to neuronal loss.
Post-mitotic TrkB deletion restricted to MSNs induces specif-
ic alterations in their gene expression, some of which overlap
with genes altered in HD [193]. As alluded to above, retro-
grade and anterograde TrkB transport in striatal axons also
depends on Htt, which participates in the transport of selective
cargos, such as BDNF, APP, and TrkB. Htt knockdown retards
TrkB movement in striatal axons [181], possibly due to alter-
ations in the binding of TrkB-loaded vesicles to the cytoskel-
eton [33, 181]. Cultures in microfluidic chambers showed that
retrograde transport of TrkB is specifically altered in HD
striatal dendrites compromising dendrite-to-nucleus signaling
[181, 194]. In conclusion, mHtt disrupts the BDNF/TrkB sys-
tem cell autonomously in both cortical and striatal neurons,
and non-cell autonomously via the MSN requirement for
BDNF delivered by cortical afferents.

Notably, although most of the striatal BDNF is supplied by
the cortex, cortical and striatal astrocytes are also important for
BDNF production and release, particularly after injury [195,
196], adding complexity to understanding the mechanism of
deficient neurotrophic supply in HD. In fact, although BDNF
is strongly decreased in pan-cellular models of HD and in the
putamen of HD patients [197–199], cortical BDNF is not de-
creased in an animal model in which mHtt is expressed only in
neuronal cells (PrP-N171-82Q) [34] or specifically in MSNs
(D9-N171-98Q) [36]. Unfortunately, BDNF has not been
assayed in mice in which mHtt is selectively increased in

astrocytes [146], but the induction of BDNF synthesis and
release from astrocytes has been demonstrated to be beneficial
in different models of HD [189].

In vitro, transduction of mHtt into cultured astrocytes with
adenovirus reduced BDNF transcription and secretion by
disrupting the function of transcription factors CREB-
binding protein (CBP) and Sp1, and impairing clathrin and
the Golgi complex, respectively [200]. However, in a
HD140Q KI mouse, transcription of BDNF is not decreased
in astrocytes [201]. This divergence could arise due to higher
levels of mHtt after viral transduction than in the HD140Q KI
mouse. BDNF exocytosis, however, is reduced in the
HD140Q KI astrocytes, due to disruption of the conversion
of Rab3a-GTP to Rab3a-GDP, highlighting the multiplicity of
pathogenic mechanisms via which mHtt disrupts the BDNF/
TrkB system.

Mitochondrial/Energy Dysfunction: Respiratory
Chains and ATP Production

The generation of truncated N-terminal and full-length trans-
genic and then KI HD mouse models largely replaced the use
of toxin models, including 3-NP, a drug that specifically tar-
gets the mitochondrial respiratory chain in striatal neurons,
resulting in lesions resembling HD [202]. Alterations in struc-
ture, function, and dynamics of mitochondria exist in multiple
HD models and in patients. In fact, mHtt has been shown to
directly or indirectly alter mitochondrial dynamics (biogene-
sis, fission, fusion, trafficking, and degradation), calcium buff-
ering capacity, transcription, membrane potential, ATP pro-
duction, and protein import [203, 204]. Mitochondria produce
the high level of ATP required to maintain MSNs in a
hyperpolarized state, and for calcium buffering, and both pro-
cesses are dysregulated in HD. The use of 3-NP as a toxin
model for HD demonstrated that striatal neurons are vulnera-
ble to inhibition of respiratory chain complex II, succinate
dehydrogenase. Lentiviral or transgenic expression of mHtt
in cultured neurons or MSNs in vivo, respectively, decreases
components of complex II and/or its function, and important-
ly, overexpression of complex II components confers neuro-
protection [31, 37].

Most of the studies regarding mitochondrial alterations in
HD were performed in the striatum or in neuronal primary
cultures. Striatal mitochondria are selectively more vulnerable
to the expression of mHtt possibility due to intrinsic properties
[205]. First, neuronal and astrocytic striatal mitochondria are
less efficient in buffering calcium than their cortical counter-
parts [205]. Second, cortical neurons have higher maximal
respiration in comparison with striatal neurons [206]. Third,
PGC-1α, a crucial transcription factor in mitochondria, is de-
creased in HD models [207, 208]. This protein regulates
mitochondrial/nuclear DNA (mtDNA/nDNA) ratio and citrate
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synthase activity. Interestingly, PGC-1α transcription is
equally altered in both HD striatum and cortex, but only the
striatum manifests decreased mtDNA/nDNA ratio [209].
These data suggest that selective striatal vulnerability in HD
may be mediated, in part, by the intrinsic properties of striatal
neuronal mitochondria. Surprisingly, however, some full-
length models, e.g., YAC128 [206] and HD iPSC-derived
neural cells [210] do not display the mitochondrial respiratory
chain activity alterations that are present in pan-neuronal (R6/
1 and R6/2) and MSN-specific (D9-N171-98Q) truncated
models [37, 51].

The discrepancy in the effects of mHtt on mitochondrial
function in full-length and truncated models may arise from
multiple molecular mechanisms. For instance, aggregated
forms of mHtt may account for the mitochondrial dysfunction,
because truncated models generate larger and more numerous
mHtt aggregates than do full-length. Consistent with this ex-
planation, mitochondria are not dysfunctional in heart tissue
from R6/2 mice, in which mHtt is expressed but does not
aggregate, whereas in quadriceps muscle in R6/2 mice, aggre-
gates are present and respiratory chain complex activities are
decreased [211]. Interestingly, aggregates and mitochondria
are frequently closely apposed [212].

Another process mediated by mitochondria which is
perturbed in HD striatum is energy metabolism, with
both cell-autonomous and non-cell-autonomous etiolo-
gies. In co-cultures of WT and BACHD neurons and
astrocytes, the inclusion of mHtt-expressing astrocytes
impairs glucose uptake in WT neurons but importantly,
neuronal genotype does not alter metabolism [213]. Mass
spectrometry studies in R6/2 mice reveal altered expres-
sion of proteins related to energy metabolism in astro-
cytes, pointing again to an astrocytic pathogenic role in
HD [214]. On the other hand, HD iPSC-derived neural
cells have decreased glycolytic capacity relative to
corrected cells, attributed mainly to glycolytic deficits
contributing to ATP depletion [210]. These results sug-
gest that mHtt cell autonomously compromises metabo-
lism in neurons. Future work should include assays of
mitochondrial function in animal models in which mHtt
expression is restricted to single cell types, e.g., astro-
cytes and microglia.

Finally, mHtt also disrupts the levels and activity of pro-
teins that mediate mitochondrial fission and fusion. Both
events regulate mitochondrial morphology, number, size,
and functionality. In general, fusion proteins are downregulat-
ed and fission is upregulated in HD striatum [215–219].
Striatal neurons are intrinsically more sensitive to the presence
of mHtt increasing fission than are cortical neurons. In fact,
the activity of Drp1, a GTPase that mediates mitochondrial
fission, is strongly upregulated in the striatum compared with
cortex [216]. Furthermore, the non-aggregated form of mHtt
disrupts striatal mitochondrial transport [220], whereas in

cortical neurons mitochondrial transport is only affected in
the presence of mHtt aggregates [221]. In total, data support
a large component of cell-autonomous factors impacting on
MSN mitochondria in the presence of mHtt.

Huntingtin Aggregation

Generation of mHtt aggregates is a hallmark of HD and occurs
in all cell types discussed herein. Full-length mHtt has a lower
tendency to aggregate than do N-terminal fragments [222],
accounting for the differences in detectable aggregates be-
tween full-length and fragment mouse models. Post-
translational modifications (PTMs) differentially affect mHtt
toxicity and aggregation, particularly those on the N-terminal
17 amino acids [223]. Thus, BACHD mice lacking the N17
domain have a more severe phenotype than does the original
BACHD mouse [224], although they express lower levels of
mHtt. There are of course PTMs outside the N17 terminus,
including on serine 421, which is phosphorylated via Akt and
GSK, thereby protecting against NMDA-mediated toxicity
and regulating mHtt toxicity and clearance [225].
Remarkably, there are lower levels of serine 421 phosphory-
lation in the striatum than in the cortex or cerebellum [226],
suggesting that striatal neurons could be selectively vulnerable
in a cell-autonomous manner to mHtt aggregation and its pos-
sible downstream effects due to decreased phosphorylation on
serine 421. Along with these data, imbalance in kinase/
phosphatase levels and activity participates in neuronal viabil-
ity and dysfunction in HD [227, 228]. In fact, Akt activation
and level inversely correlate with the most affected brain re-
gions in HD [229].

Striatal neurons clear mHtt more slowly than do cortical
neurons [230], adding to the cell-autonomous, intrinsic mech-
anisms contributing to striatal neuronal vulnerability in HD.
Furthermore, astrocytes degrade mHtt more rapidly than neu-
rons, which is in line with the higher ubiquitin proteasome
system (UPS) activity detected in astrocytes compared with
neurons [231]. The non-cell-autonomous mechanism via
which astrocytes can modulate aggregation in HD neurons is
being unraveled with the use of cellular specific models. First,
astrocytic exosomes reduce mHtt aggregation in HD140Q KI
mice [232], suggesting that these exosomes carry cargo which
participates in prevention of mHtt aggregation. The authors
specifically suggest thatαB-crystallin, a small heat shock pro-
tein that reduces mHtt aggregation and toxicity, participates in
this exosome secretion because its overexpression in HD as-
trocytes prevents these deficits. However, the direct link be-
tween the restoration of αB-crystallin astrocytic protein and
mHtt aggregation has not been established, although reduction
of mHtt in astrocytes is known to redistribute mHtt neuronal
aggregates [39].
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Excitotoxicity and Potassium and Calcium
Buffering

The use of quinolinic acid (QA) as a toxin-induced model of
HD revealed that MSNs demonstrate greater vulnerability to
glutamate-mediated excitotoxicity than do other neuronal sub-
types [233, 234]. Presymptomatic and symptomatic HD
models exhibit different levels of sensitivity to QA-induced
excitotoxicity. Increased resistance to excitotoxicity at late
stages of HD may be attributed to the redistribution of
NMDA receptors within the neuron, and the differential acti-
vation of signaling pathways dependent on the complexed
proteins, e.g., PSD-95 [235] or regulatory element antagonist
modulator (DREAM) [236], and/or their subcellular localiza-
tion [237, 238]. Young D9-N171-98Q mice respond to QA
similarly to their WT counterparts, but pan-neuronal HD
models present increased sensitivity to excitotoxicity at pre-
symptomatic stages, which suggests a non-cell-autonomous
mechanism. Once symptomatic, both D9-N171-98Q and
pan-cellular HD models respond similarly, suggesting that at
advanced stages this non-cell-autonomous mechanism is lost
and a specific MSN quality confers resistance to
excitotoxicity. Under physiologic conditions glutamate clear-
ance is accelerated in R6/2 mice [239], possibly accounting
for the resistance to excitotoxicity at this stage. At later stages,
the number of functional excitatory synapses is reduced,
compromising glutamate release.

Finally, MSN vulnerability to glutamate excitotoxicity in
t h e p r e s e n c e o f mH t t i s p a r t l y a t t r i b u t e d t o
neurodevelopmental alterations, because expression of mHtt
restricted to the developmental period recapitulates this selec-
tive vulnerability at early stages of disease [112]. These data
lend further support to the notion that has evolved from iPSC-
based studies of HD as a neurodevelopmental disorder [112,
113] and it has been suggested that epigenetic-based, HDAC-
associated therapies could reverse presymptomatic alterations
[240].

Vulnerability to excitotoxicity in HD is also determined by
the cell-autonomous effects of MSN mHtt on the activation,
localization, and stabilization of glutamate receptors. The
NMDA receptor mislocalization hypothesis has emerged as
a major contributor to the increased sensitivity of HD MSNs
to excitotoxicity. Briefly, stimulation of synaptic NMDA re-
ceptor activity is neuroprotective, whereas extrasynaptic
NMDA receptor stimulation can lead to cell death [238].
Previously discussed results regarding the role of STEP high-
light the relevance of synaptic versus extrasynaptic NMDA
receptor imbalance at early stages of HD. Other findings in-
clude the enhanced GluN2B extrasynaptic expression in
YAC128 MSNs [241], which may be further enhanced by
the increased extrasynaptic localization of PSD-95, which acts
as scaffolding protein for GluN2B. MHtt also upregulates
GluN3A subunit expression [242], which possibly

participates in GluN2B localization [243]. GluN2B cleavage
is induced, but its phosphorylation is reduced, contributing to
extrasynaptic GluN2B localization [72].

Deciphering the role of excitotoxicity in HD increasingly
includes the study of the contribution of astrocytes. An in-
creased level of glutamate at HD synapses, which may arise
due to altered clearance, would represent a source of
excitotoxicity. There are discrepant reports regarding the func-
tionality and level of glutamate transporters in HD [244–249].
The astrocytic glutamate transporter SlcA12, aka Glt-1 or
EAAT2, that regulates glutamate uptake [214, 250], is de-
creased in astrocytes transduced with viral vectors expressing
mHtt [143]. Although the BACHD mouse has normal levels
ofGlt-1mRNA [39], other HDmouse models including R6/1
[251], R6/2 [147, 250–253], YAC128 [254] and Q175 homo-
zygotes [147] express decreased levels of Glt-1 in striatal ly-
sates, including at corticostriatal synapses. These data suggest
an addition non-cell-autonomous mechanism via which mHtt
expression in astrocytes could increase QA vulnerability of
MSNs at initial disease stages. HD striatal astrocytes also dis-
play alterations in glutamate buffering and consequently ab-
errant calcium signaling that further impacts MSNs [255].
Intrinsically, mHtt expression in cultured astrocytes enhances
calcium-dependent glutamate release, possibly due to in-
creased levels of pyruvate carboxylase, an enzyme which fa-
cilitates glutamate synthesis [256]. Conversely, silencing of
mHtt in HD astrocytes generated frommonkey iPSCs restored
Glt-1 levels and glutamate uptake ability [257], implying that
cell-autonomous effects may be overwhelmed when astro-
cytes are in their natural milieu with intact cell–cell
communication.

Although it is easy to speculate about how inadequate glu-
tamate buffering might increase QA susceptibility, there is no
evidence yet of early dysregulation of Glt-1 expression in
astrocytes in HD models. In addition, HD pathology is not
worsened byGlt-1 deletion [250], and presymptomatic knock-
down of Glt-1 does not affect glutamate clearance in the
YAC128 model [239]. On the other hand, virally mediated
overexpression ofGlt-1 prevents the appearance of motor def-
icits in a Q175 KI mouse model and normalizes neuronal
striatal firing frequency [258]. Finally, R6/2 mice treated with
ceftriaxone, an antibiotic that increases striatal expression of
Glt-1, improves motor function in the early symptomatic stage
[252]. Further work is required to resolve the study of GLT-1
status, perhaps with a focus on genetically accurate models.

In addition to the glutamate transporter, the astrocytic
Kir4.1 potassium channel is also altered in HD. This channel
maintains low levels of potassium in the extracellular space,
maintaining neurons in a hyperpolarized state and regulating
MSN excitability. R6/2 striatal neurons are in fact hyperexcit-
able and striatal interstitial potassium levels are increased in
this animal model [151]. Engraftment of healthy glia into R6/2
mice normalized interstitial potassium levels and MSN
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excitability, implying a non-cell-autonomous mechanism. In
addition, although mHtt suppression in astrocytes does not
restore Kir4.1 expression [39], viral-mediated restoration of
Kir4.1 levels in HD astrocytes ameliorates pathology in R6/2
mice, reducing MSN excitability [147]. These data are similar
to those for Glt-1. However, the improvement of the HD phe-
notype by the potentiation of Kir4.1 expression cannot be
attributed solely to potassium levels, because overexpression
of Kir4.1 increases the level of Glt-1. Finally, although re-
duced Kir4.1 protein levels were detected in R6/2 and Q175
striatal homogenates, not all striatal astrocytes have decreased
levels ofKir4.1 [147], and thus howmHtt reducesKir4.1 level
is not entirely clear.

Like excitotoxicity, a biphasic alteration in dopamine re-
lease exists, with an initial increase, participating in the char-
acteristic hyperkinetic phenotype, to a decrease at later stages
[23, 259]. Dopamine (DA) signaling non-cell autonomously
contributes to NMDA receptor modulation, possibly playing a
role in excitotoxicity, and dopamine also trans-synaptically
regulates specific MSN transcripts known to be dysregulated
in HD, e.g., neuropeptides. One study ascribes early changes
in dopamine release in the pan-cellular R6/1 model to tran-
scriptional dysregulation of SK3 channels [260], and its
mislocalization, but there is little known as to whether DA
release dysregulation is cell-autonomous due to substantia
nigra DAergic neuron dysfunction, or non-cell-autonomous,
due to feedback from MSNs.

Transcriptional Alterations

New data are constantly emerging regarding transcriptional
dysregulation in HD, both from human brain and from mouse
models [30, 58, 261–267]. Although as discussed above, spe-
cific transcription factors (TFs) are implicated, e.g., Foxp2
[82], it is unlikely that HD transcriptional pathology can be
attributed to any single TF. The question of causation versus
compensation for specific genes has also only been
approached for a limited number of candidates, e.g.,
PGC1α, CBP in vitro, and Foxp2 [82, 207, 208], with a larger
screen in Drosophila [61]. This question persists because al-
though regional deep sequencing from Hdh KI mice revealed
that there are more dysregulated genes in the striatum than in
the cortex [58]. The cerebellum, which is frequently used as a
“control” as it is relatively resistant in HD, displays gene ex-
pression changes that qualitatively highly overlap with the
striatum [268–270].

There are three main mechanisms proposed to account for
the alterations in the HD transcriptome. First, mHtt sequesters
TFs thru interactions of the polyQ tracts, impeding their func-
tion and compromising the transcription of selective genes [11,
271–273]. MHtt directly interacts with repressor element-1
silencing transcription factor (REST), retaining it in the

nucleus and thereby repressing the expression of neuronal-
related genes [274, 275]. Second, the presence of mHtt is
associated with histone hypoacetylation [276–278], that in
some cases, may arise due to TF sequestration. One example
is acetyltransferase CBP, which is found in mHtt aggregates
thereby reducing its function [18, 279]. Third, there is likely
reduced trans-synaptic regulation of transcription, specifically
that by BDNF [172]. This last possibility, which would be
non-cell-autonomous, has not been directly addressed.

In all studies using bulk sequencing, neuronal transcriptomic
changes could easily mask glial transcriptional alterations, both
in older microarray experiments and in RNA seq assays. To
date, in most cases, studies of the cell-specific transcriptome
in mouse lines in which mHtt is expressed exclusively in non-
neuronal cells are lacking. There are, however, isolated reports
examining cell-autonomous and non-cell-autonomous tran-
scriptional regulation of specific genes. For example, as
discussed above, viral-mediated expression of mHtt in MSNs
leads to dysregulation of the glutamate transporters Glast and
Glt-1 in astrocytes [143]. Also as previously noted, mHtt ex-
pression restricted to microglia promotes a pro-inflammatory
profile, but unfortunately the neuronal transcriptome was not
assayed in these studies. There are almost certainly sequencing
studies in process from cell subtype-specific mice expressing
mHtt which will tell us much more about transcriptional dys-
regulation and the translatome in neuronal subtypes, e.g.,
dMSNs and iMSNs, non-neuronal cells, single cells, and their
interactions.

Other approaches are being used to unravel selective cell-
type gene expression patterns in adult mouse brain. To avoid
the generation of genetically modified mice to perform trans-
lational profiling, Merienne et al. [92] developed an approach
in which direct and indirect MSNs, astrocytes, and microglia
are identified with selective transcriptomic signatures. Briefly,
laser capture microdissection was performed in mice express-
ing Drd2-eGFP (iMSNs), Glt-1-eGFP-eGFP (astrocytes),
Cx3cr1-eGFP (microglia), and Drd1-Tomato (dMSNs).
Comparison between existing transcriptional data bases of
HD models and data bases generated from different striatal
cell types, revealed that most upregulated genes observed in
HD are highly represented in glia, and conversely, most of the
downregulated transcripts, in neurons. These data suggest that
mHtt induces transcriptional alterations in a cell type-specific
manner, but do not speak to whether they are cell-
autonomous.

As iPSC differentiation methods evolve, transcriptome assays
inmoremature cellswill be able to significantly contribute to such
studies.Asnoted, theseexperimentshavealreadyrevealedspecific
gene expression networks selectively altered during development
andhave recapitulated epigenetic alterations in iPSC-derivedneu-
rons and glial cells. There is always some heterogeneity in the
differentiated cells, but these transcriptional changes are largely
considered to be cell-autonomous in neuronal preparations.
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In summary, although the striatal MSN is the most vulner-
able neuronal subtype in HD, it has long been a question as to
whether their dysfunction and degeneration is cell-
autonomous or non-cell-autonomous, the latter particularly
due to the corticostriatal connection. Definitive data have
emerged demonstrating that both mechanisms are at work,
but that the corticostriatal connection is required for the full
picture of striatal pathology in HD. Additional work is there-
fore required to identify the major pathogenic mechanisms in
cortical neurons, which may differ from those in MSNs due to
intrinsic differences between the two neuronal subtypes, and
to further characterize the mechanisms via which the cortical
neurons impact the MSNs, e.g., trans-synaptic transcriptional
dysregulation. Additional tools have been developed to more
carefully examine these questions in cortical and MSN neuro-
nal subtypes, for example, differences in vulnerability be-
tween direct and indirect pathway, and striosome and matrix,
MSNs. The question of the effects of mHtt on cell types and/or
their interactions has increased in relevance based on enor-
mous strides in identifying the roles of non-neuronal cells in
HD pathophysiology. Much of this is due to advances in the
derivation of mouse lines with cell subtype mHtt expression
in vivo, and the use of HD iPSC-derived neurons and non-
neuronal cells, which has also led to an important notion of
neurodevelopmental abnormalities in HD, suggesting that ear-
ly treatment may be required.
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