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Abstract

Background: Contamination of reagents and cross contamination across samples is a long-recognized issue in
molecular biology laboratories. While often innocuous, contamination can lead to inaccurate results. Cantalupo
et al., for example, found HeLa-derived human papillomavirus 18 (H-HPV18) in several of The Cancer Genome Atlas
(TCGA) RNA-sequencing samples. This work motivated us to assess a greater number of samples and determine the
origin of possible contaminations using viral sequences. To detect viruses with high specificity, we developed the
publicly available workflow, VirDetect, that detects virus and laboratory vector sequences in RNA-seq samples. We
applied VirDetect to 9143 RNA-seq samples sequenced at one TCGA sequencing center (28/33 cancer types) over 5
years.

Results: We confirmed that H-HPV18 was present in many samples and determined that viral transcripts from H-
HPV18 significantly co-occurred with those from xenotropic mouse leukemia virus-related virus (XMRV). Using
laboratory metadata and viral transcription, we determined that the likely contaminant was a pool of cell lines
known as the “common reference”, which was sequenced alongside TCGA RNA-seq samples as a control to
monitor quality across technology transitions (i.e. microarray to GAII to HiSeq), and to link RNA-seq to previous
generation microarrays that standardly used the “common reference”. One of the cell lines in the pool was a
laboratory isolate of MCF-7, which we discovered was infected with XMRV; another constituent of the pool was
likely HeLa cells.

Conclusions: Altogether, this indicates a multi-step contamination process. First, MCF-7 was infected with an XMRV.
Second, this infected cell line was added to a pool of cell lines, which contained HeLa. Finally, RNA from this pool
of cell lines contaminated several TCGA tumor samples most-likely during library construction. Thus, these human
tumors with H-HPV or XMRV reads were likely not infected with H-HPV 18 or XMRV.

Keywords: Virus detection, Bioinformatics, Contamination, Human papilloma virus, Xenotropic murine leukemia
virus-related

Background
Rigorous and reproducible experiments should minimize
extrinsic factors that could bias the results. Nevertheless,
contamination in molecular biology is a well-described
problem [1]. Here we investigated the source(s) of viral
contamination in The Cancer Genome Atlas (TCGA) pan-
cancer RNA-seq dataset. The two types of contamination

that were uncovered in this study were (a) unexpected viral
infection of a cell line and (b) unexpected contamination of
massively parallel sequencing experiments. A previous ex-
ample of an unexpected viral contamination was the dis-
covery of a xenotropic murine leukemia virus-related virus
(XMRV) in the human prostate cancer cell line, 22Rv1 [2–
4]. After this initial discovery, other strains of XMRVs have
been found in additional cell lines [5–7]. These include
both complete and defective proviral genomes. Some
XMRVs make infectious particles and thus have the ability
to infect other cell lines in culture. Yet, infection does not
cause overt phenotypes. This can lead to an unnoticeable
contamination of cell lines in culture.
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The other type of contamination uncovered in this
study was contamination during the sequencing
process [1, 8–11]. The sensitivity of sequencing tech-
nology allows for minimal amounts of contaminating
nucleic acids to manifest in the data. Ballenghien
et al. found 80% of samples from a large-scale se-
quencing experiment had evidence of cross-
contamination, which they demonstrated likely oc-
curred in the sequencing center [1]. Robinson et al.
demonstrated that bacterial species detected from
RNA and DNA sequencing were associated with spe-
cific sequencing centers in TCGA, indicating possible
contamination [10]. Finally, HeLa-derived human pap-
illomavirus 18 (H-HPV18) was discovered in non-
cervical cancer samples in TCGA RNA-seq [11]. This
motivated us to test the extent and origin of H-
HPV18 contamination, as well as other possible viral
sequences in the RNA-seq from TCGA. We investi-
gate contamination through association with labora-
tory processing variables including time of sequence
generation and laboratory controls. To assess the con-
tamination, we created the virus detection software,
VirDetect.

Results
A highly specific virus detection software: VirDetect
To detect viruses from RNA-seq data, we developed Vir-
Detect, an open source software based on the principles
of digital subtraction [12–16]. VirDetect begins by align-
ing RNA-seq reads to the human genome using the
STARv2.4 aligner [17, 18]. We chose to use the STAR
aligner due to its speed and ability to handle spliced
reads, which occur in some viruses. Reads that did not
align to the human genome were then mapped to a data-
base of modified viral genomes (Fig. 1a).
Virus detection can be subject to poor specificity

caused by areas of low complexity and sequence simi-
larity to human sequences that are found in some
viral genomes. To ameliorate this, the target viral ge-
nomes database was optimized to increase specificity
by masking the viral genomes for (a) areas of human
homology and (b) areas of low complexity (Fig. 1b).
We used 93% nucleotide similarity across a sliding
window of 75 nucleotides as evidence of homology.
The masking step replaced nucleotides in these areas
with Ns so that the aligner would not align any reads
to the masked areas. This step addresses the problem
of low complexity reads, which are abundant in RNA-
seq data and can lead to false positive virus calls [6]
(Fig. 1c). By performing in silico simulations of hu-
man and low complexity reads, we confirmed that
masking the viral genome reduced the false positive
rate from a median of 163/106 for low complexity
reads and 4.5/106 for human simulated reads to a

total of 2/108 mapped reads for low complexity reads
and 0/108 human simulated reads.
We validated the performance of VirDetect using in

silico simulations (see methods) of randomly drawn
paired-end 50-mers from all virus genomes in our data-
base that incorporated up to 10 base changes in the first
read in the pair. For ≤3 mutations, the median sensitivity
was 99.6% (Fig. 1d). For > 3 mutations, the sensitivity de-
creased linearly (Spearman’s rank correlation coeffi-
cient = − 0.96), down to a median of 23% for 10 random
substitutions per 50 mer. The positive predictive value
was 97% across all mutation levels (Fig. 1e), meaning
that even when mutation burden was high, the specifi-
city (virus reads mapping to the correct genome)
remained high.

Contamination in TCGA data as ascertained by VirDetect
We assessed the extent of possible viral contamination by
analyzing virally-derived reads in those TCGA samples that
were sequenced at the University of North Carolina at
Chapel Hill (all cancer types except glioblastoma, esopha-
geal, gastric, acute myeloid leukemia and ovarian cancer,
n = 9143, Additional file 1: Table S1, Fig. 2). As expected,
hepatitis B virus (HBV) was prevalent (n = 152/368, 41%) in
liver cancer. Our data were 83% concordant (true positive
calls) to TCGA Research Network [19], which used consen-
sus calls of different virus detection software and clinical
data to identify HBV positive samples [13, 19, 20]. We did
not find any hepatitis C virus sequences since TCGA RNA-
seq used polyA selection and hepatitis C is not poly-
adenylated [21]. HPV16 was prevalent in head and neck
squamous cell carcinoma (HNSC) (> 0 reads, n = 125/495
(25%); > 1000 reads, n = 53/496 (10%)). Using > 0 reads, the
concordance was 81% compared to TCGA Research Net-
work [22], which used p16 immunostaining and in situ
hybridization. Using the threshold of 1000 reads, as used by
TCGA Research Network, HPV16 calls were completely
concordant. HPV16 in cervical carcinoma (CESC) was
present in 54% of samples (n = 163/301) and HPV18 was
present in 15% (n = 44/301) of samples with > 1000 counts
and was 99 and 96% concordant, respectively with TCGA
Research Network’s HPV calls, which were RNA-seq based
[23]. Thus, VirDetect detected the expected viruses in the
appropriate tumor types.
Unlike the above noted viruses that we expected to ob-

serve in TCGA tissue, VirDetect also detected the pres-
ence of HPV18 in non-cervical cancer tumors, which is
unlikely to be present. HPV18 sequences were found in
233 samples, 131 of which were non-cervical cancer
samples. The median read count for HPV18 in non-
cervical cancer samples was 4 with a maximum read
count of 1836 (clear cell renal cell carcinoma (KIRC),
sample: TCGA-CJ-5681). The mean read count for
CESC samples was 14,298 reads, with a maximum read
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count of 156,772. HPV18 was also present in 9% of lung
squamous cell carcinoma samples (LUSC, Figs. 2 and 3a)
with a median read count of 4 and a maximum read
count of 16. These order of magnitude differences sug-
gested either an entirely different pathophysiology or
contamination.
Cantalupo et al. found HPV18 in non-cervical samples

to be derived from the HeLa cell line [11]. This finding
was based on unique single nucleotide polymorphisms

(SNPs) that were present in the genome of HPV18 in
HeLa cells. Using the described 23 HeLa-specific SNPs,
we found that except for CESC and three bladder cancer
samples (described in the pathology reports as “invasion
into the cervix”, possibly cervical cancer), all n = 17 non-
cervical cancer samples that had coverage > 0 of these
SNPs matched HeLa HPV18 strain completely (Fig. 3b),
confirming what Cantalupo et al. previously found. This
strengthens the hypothesis that the non-cervical HPV18

Fig. 1 VirDetect workflow and performance. a & b VirDetect workflow diagram a VirDetect alignment steps, b virus genome preparation steps. c
Number of reads mapping to the viral genome for both human (left) and low complexity (right) simulated reads (100 simulated samples, with
1000,000 human reads and 1000 low complexity reads each). From left to right on x-axis: (1) Unmasked, directly to the virus: all reads directly
mapped to the unmodified viral genomes, without filtering human reads. (2) Unmasked: reads unaligned to the human genome were aligned to
the unmodified viral genomes. (3) Low complexity masking only: reads unaligned to the human genome were aligned to the viral genomes
masked for areas of low complexity. (4) Human masking only: reads unaligned to the human genome were aligned to viral genomes that were
masked in areas of human homology. (5) Masked, mapping directly to the virus: all reads were mapped directly to the masked viral genomes,
without filtering reads out that map the human genome. (6) Masked: reads unaligned to the human genome were aligned to masked viral
genomes. d & e Viral simulated reads (100 simulated samples with 1000 reads each) with 0–10 mutations in the first read pair (d) Sensitivity,
measured by the percent of reads that mapped to the viral genomes. e Positive predictive value (PPV) measured by number of true positives
(simulated viral reads that mapped to the correct viral genomes) divided by the number of true positives and false positives
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that was detected in TCGA samples was likely due to
contaminating HeLa cells.
Ninety-six samples in TCGA had mRNA reads that

aligned to an XMRV, specifically XMV43 (NC 001702.1,
Murine type C), which was likely not present in any hu-
man tumor tissue, but resulted from demonstrated con-
tamination in cell culture from an external source [5].
Notably, XMV43 had a median read count of 2, with a
maximum read count of 554 in the same KIRC sample
with the highest (non-cervical) expression of HPV18
(TCGA-CJ-5681, Fig. 3c). XMV43 was also present in
5% of LUSC samples and 3.5% of LUSC samples con-
tained both XMV43 and HPV18 (Fig. 3d). The co-
occurrence of these two unexpected viruses in the same
sample suggested a common origin.
If HPV18 and XMV43 were introduced into the

TCGA dataset as a result of contamination by a com-
mon event, e.g. at the same time, one would expect them
to be present in the same samples and have correlated
expression. For the samples with both XMV43 and
HPV18, the expression was correlated (Spearman’s rank
correlation coefficient = 0.44, p = 0.006, Fig. 3c). We then
tested if HPV18 and XMV43 reads were present in the
same samples more than expected by chance and found
that they significantly co-occurred in breast cancer,
HNSC, KIRC, renal papillary cell, and LUSC (both vi-
ruses were expressed in > 1 sample, FDR adjusted p-
values, Fisher’s exact test, respectively: 0.03, 4.3 × 10− 9,
0.03, 0.01, 1.4 × 10− 13, Fig. 3d). Together, this indicates

that the likely contaminant contained RNA from both
viruses.
Among human cancers, second to CESC, HNSC is

consistently associated with high risk human papilloma-
viruses; although, HNSC is very rarely associated with
type HPV18 [24]. HPV18 and XMV43 reads did not sig-
nificantly co-occur in CESC, even though CESC had the
highest HPV18 positivity of all samples in the TCGA.
The co-occurrence of HPV18 and XMV43 in HNSC, but
not in CESC is consistent with the hypothesis that
HPV18 and XMV43 were introduced into the sequen-
cing pipeline together rather than originated from co-
infected naturally occurring cancers.

Investigations into the origin of the contamination
To identify the root cause of contamination, each posi-
tive sample was investigated with respect to a shared
event. The Stratagene Universal Human Reference RNA
(UHRR, proprietary mixture of several cell lines) was se-
quenced in the same sequencing facility and contempor-
aneously with most of the TCGA samples to monitor
the library preparation and sequencing procedures
(Fig. 4a) [25]. Additionally, the lab stocks of two breast
cancer cell lines, MCF-7 and ME16C, were added to the
UHRR sequencing control sample to ensure that breast
cancer gene expression was included in the human refer-
ence (will be referred to as UHRR+). Both UHRR and
UHRR+ contained high levels of HPV18 transcripts, in-
dicating that HeLa was likely included as one of the

Fig. 2 Prevalence of viral expression in TCGA. Viruses with > 5% prevalence in any TCGA cohort sequenced at UNC are shown on the y-axis and
cancer types are on the x-axis. The color of each cell represents the proportion of samples with expression (> 2 reads) of each virus, if the
prevalence is > 5%. Human endogenous retrovirus K113 was displayed as a positive control, since all samples have should express it
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UHRR cell lines (Fig. 4b). By contrast, only the UHRR+
samples contained high levels of XMV43 transcripts.
This suggests that one of the two additional cell lines
was responsible for the presence of XMV43.
Most of the UHRR+ samples were sequenced in 2010,

when none of the TCGA samples contained XMV43 or
HPV18 reads (Fig. 4a). The evidence of UHRR+ contam-
ination (i.e. HPV18 and XMV43 together) peaked in the
spring/summer of 2011. Some samples with evidence of
contamination did not have their library prepared on the
same day as other UHRR(+) samples, meaning the pres-
ence of these viral sequences was not necessarily due to
cross-contamination or “sample jumping” (RNA “jump-
ing” to another tube due to static conditions) during li-
brary preparation. Also, “sample bleeding” was not
observed due to several flow cells with only a single
XMV43/HPV18 positive sample and sequenced on a dif-
ferent flowcell than a common reference sample (Fig. 4c,
bottom panel).

The low levels of RNA from HPV18 and XMV43 may
have only been observed due to an increase in sequen-
cing depth. The sequencing depth in 2010 was lower
than in 2011 by an average 20 million reads. The in-
crease in sequencing depth corresponded to a change
from the Illumina GAII to the Illumina HiSeq sequencer
at the facility. The samples that contained a contaminant
had a significantly higher number of reads than samples
without a contaminant (P < 1 × 10− 16, Mann-Whitney U-
test).
Both of the lab stocks of MCF-7 and ME16C had pre-

existing RNA-seq data (prepared on January of 2013).
We detected the presence of XMV43-like sequences in
both of these cell lines (Fig. 5a). MCF-7 had a higher
abundance (1.8 × 106 raw counts, 1% of total reads) com-
pared to ME16C (1746 raw counts, 0.001% of total
reads). The lab stock of MCF-7 had 21 nucleotides (nts,
XMV43’s genome size is 8135 nts) compared to the ref-
erence XMV43 with an alternative allele frequency > 0.9

Fig. 3 Expression of HPV18 and XMV43 in TCGA samples a Log10(virus read count) of HPV18 (top panel) and XMV43 (bottom panel) for all
cancer types in TCGA that have expression of either virus. b Proportion of HeLa specific SNPs (defined in Cantalupo et al. [11]) that have a HeLa
specific allele. The color of the dot represents the number of reference SNPs that had coverage across the HeLa allele. c Scatter plot of
log10(HPV18 counts) on x-axis and log10(XMV43 counts) on y-axis for non-cervical cancer samples. The points are slightly jittered for due to
overlapping points. d Number of samples that contain HPV18 (pink), XMV43 reads (blue), or both (purple) for cancer types with expression in
either virus

Selitsky et al. BMC Genomics           (2020) 21:79 Page 5 of 11



and ME16C had 160 nts with alternative allele frequen-
cies > 0.9 with coverage >10X. Also, MCF-7 had >10X
coverage across the entire genome in these samples,
while ME16C had >10X coverage across just 40% of the
XMV43 genome. The higher expression, higher se-
quence identity, and complete genome coverage of
XMV43 in MCF-7 indicates that this cell line likely con-
tributed to the XMV43 found in TCGA RNA-seq. To
determine if the original MCF-7 cell line contained
XMV43 or only this lab stock, we assessed publicly avail-
able RNA-seq of MCF-7, from Marcotte et al.
(GSE73526) [26] and Qu et al. (GSE78512) [27]. The
RNA-seq from both of these MCF-7 data sets contained
no XMV43 reads. This suggests that XMV43 was only
present in the laboratory stock of MCF-7 and not in the
original cell line stock.
The incomplete alignments of ME16C sequences to

XMV43-like were likely due to the presence of the
pBabe-puro hTERT vector, which was used to trans-
duce this cell line [28]. This vector contains mouse
murine leukemia virus (MMLV) LTRs, packaging sig-
nal, and gag sequences, which contain low complexity
regions of no significant sequence similarity to the
human genome and thus were not masked by VirDe-
tect. To differentiate virus-derived transcripts from
viral-vector-derived transcripts, we added individual
vector sequences to the VirDetect database. Assessing
each component of the vector individually, as opposed
to using UniVec [14], that contains the entire vector
sequence, allowed for clearer resolution of what was

transcribed. Many vectors in UniVec contain viral se-
quences (such as the human immunodeficiency virus
and cytomegalovirus promoter/enhancer regions) and
would increase false negative calls if all of UniVec
was used as a filter. ME16C showed transcripts cover-
ing the puromycin resistance gene as well as the ca-
nonical SV40 promoter [29], which are both present
in the pBABE-puro hTERT vector (Fig. 5b). The per-
fect alignments of MMLV elements to the vector and
poor alignments to the XMV43 reference strongly
suggests that XMV43 was detected in ME16C RNA-
seq because of the vector used to transform the cell
line. Together, this study elucidated a multistep con-
tamination process. First, MCF-7 was infected with
XMV43, which is known to infect human cells. Next,
RNA from MCF-7 was added to the UHRR along
with RNA from ME16C. This pool of RNA was se-
quenced alongside TCGA samples and became a low-
level contaminant of the TCGA samples, although the
specific event of how this contaminant was intro-
duced remains unknown.

Rabies virus expression, an additional signal of possible
contamination
We observed an additional virus signal in the RNA-seq
that was likely due to laboratory contamination, however
we were unable to determine the exact origin. We ob-
served rabies virus expression with a read count of 2 in
19 samples from 10 different tumor types. These reads
had high confidence alignments to rabies virus using

Fig. 4 Viral expression across time. a Timeline of TCGA and UHRR library preparation. Stacked bar graph, with each bar representing one month.
b Log 10 read counts of human endogenous retrovirus K113 (HERV, positive control), HPV18, or XMV43 in UHHR or UHHR+ samples. c Stacked
bar graph showing the number of either UHRR or TCGA sample in each flowcell. The x-axis is organized by chronologically (oldest sample on
left). Only flowcells that contained HPV18 (excluding CESC), XMV43, or a UHRR(+) sample were included. a&c The colors represent TCGA samples
with no evidence of either HPV18, XMV43, or CESC samples (gray), samples with HPV18 reads (pink, excluding CESC samples), XMV43 reads (blue),
non-cervical samples that contain both HPV18 and XMV43 (purple), or was a UHRR (black), or UHRR+ (dark gray) sample
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BLAST as an independent verification step. Each of the
samples had their libraries prepared from November of
2012 to April of 2013 (Fig. 6). Even though the virus was
present at extremely low counts, the occurrence in adja-
cent time points suggests contamination.

Discussion
Contamination in molecular biology has been a long and
pervasive problem. RNA-sequencing is so sensitive that
it can detect extremely low levels of contamination. Even
with its ubiquity, contamination is a hazard to science,
with the possibility of false positive claims and associa-
tions. We developed and validated a new virus discovery
algorithm and database that allowed for high confidence
in the virus calls. VirDetect can detect viruses with ex-
tremely high specificity because of the masked viral
genomes.

From RNA-seq of tumor samples, differentiating nat-
ural virus infection from contamination is not always ob-
vious and correlation with the presence of viral
sequences alone is not evidence for causality. Some stud-
ies have used the criteria that a virus must have a certain
expression threshold (mRNA levels) for the tumor to be
virus-associated and that strength of association is there-
fore correlated with the strength of viral gene expres-
sion. This reasoning is sufficient for viruses and cancer
types, where viruses are expected to be present in every
single tumor cell, such as Epstein-Barr Virus (EBV) in
EBV-associated gastric cancer or lymphoma [30]. It de-
fines a conservative “gold standard”, but may miss situa-
tions, where the virus is present in only a fraction of the
tumor cells or present in infiltrating, none tumor cells.
These situations may never rise to the degree of estab-
lishing the virus in question as an etiological agent, but

Fig. 5 a&b Coverage plots. Position on the x-axis and coverage on the y-axis. a Alignments of laboratory stock of MCF-7 (top panel) and ME16C
RNA-seq (bottom panel) aligned to the XMV43 genome. Dot represents a position with coverage > 10 and a variant allele with frequency > 0.9.
The color of the dot represents the variant allele. b Alignments of ME16C RNA-seq to the pBabe-puro hTERT-HA vector sequence (addgene
Plasmid #: 1772). The color on the sequence represents the different vector components that were derived from the Moloney Murine
Leukemia Virus
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may nevertheless have utility in clinical decision making,
e.g. in tumor classification or treatment selection. One
such example is the established association of hepatitis B
virus and liver cancer [16]. Another example is work by
us and others of EBV transcripts in multiple cancers in
the TCGA [31, 32]. These were well below the levels
seen in clinically confirmed cases of gastric cancer and
lymphoma and likely due to infiltrating lymphocytes, as
we identified strong associations with B-cell abundance
and altered B-cell receptor diversity.
RNA-seq contamination may arise from a PCR prod-

uct, “sample jumping” (from tube to tube during labora-
tory handling of samples), “sample cross-talk” (read mis-
assignment during pooling) [33, 34], or other possible
technical phenomena that causes RNA or a read from
one sample to be present in another. Being involved in
producing most of TCGA’s RNA-sequencing, allowed us
access to the laboratory metadata and enabled us to per-
form a forensic bioinformatics analysis. We confirmed
the presence of HPV18 in non-cervical TCGA RNA-seq
data and matched the SNPs to the specific HPV18 strain
present in the HeLa cell line [11]. XMRV was found in
the same samples as HPV18 more than expected by
chance alone, indicating that the co-occurrence of both
was likely due to the same exogenous contaminant.
In addition to these XMRV and Hela specific HPV con-

taminants, we also detected a small possible rabies virus
contamination, albeit with very low read counts (2–19
total reads/contaminated sample). This strengthens the ar-
gument for the need for rigor and reproducibility in re-
search, and to assist with this we provide VirDetect, as a
robust tool for objective and accurate virus discovery and
quantitation.

Conclusions
Using RNA-seq and the laboratory metadata from
TCGA, we were able to reconstruct the steps that lead
to contamination. First the MCF-7 cell line was infected

with an XMRV during local expansion, specifically
XMV43. RNA from this cell line was then added to a
pool of cell-line derived RNA (UHRR) that already con-
tained HeLa. This pool of cell lines was sequenced con-
temporaneously and repeatedly with TCGA RNA-seq
and during processing, a fraction of the TCGA sample
RNAs were contaminated with the RNA from the stand-
ard pool of cell lines (UHRR+).

Methods
Virus detection, VirDetect
The VirDetect (https://github.com/dmarron/virdetect)
database comprised of 1893 manually-curated vertebrate
virus reference genomes from GenBank, downloaded on
December 16, 2015. RNA-seq reads were aligned to
hg38 (without chrEBV, which is an Epstein Barr Virus
genome. Removed to enable detection of Epstein Barr
Virus) using STAR v2.4.2a (1080 multi-maps, 10 mis-
matches). Unmapped reads were aligned to a masked
viral FASTA using STAR v2.4.2a (52 multi-maps, 4 mis-
matches). Vertebrate viral FASTA (1894 viruses) was
downloaded from GenBank and masked for increased
specificity. All viruses were masked except for the hu-
man endogenous retrovirus K113 (NC_022518), which
we used as a positive control. Regions were masked in
two ways. (1) Viral reads of length 75 were simulated
from the entire viral FASTA and then mapped to hg38
using STAR v2.4.2a (1080 multi-maps, 5 mismatches). If
the viral simulated reads mapped to the human genome,
they were masked in the viral FASTA. (2) Areas of low
complexity (occurs in some viral genomes, 9 or more re-
peating single nucleotides (nts), 7 or more repeating
double nts, 4 or more repeating nt patterns of 3, 3 or
more repeating nts patterns of 4, 2 or more repeating
patterns of 5, 2 or more repeating nt patterns of 6) were
masked. Viruses were then quantified using the resultant
SAM file. Vector component sequences were manually
curated using available sequences at Vector Builder

Fig. 6 Timeline of TCGA library preparation showing the number of samples with rabies virus expression. The x-axis is the date of library
preparation by every month, labeled every other month, and the y-axis shows the number of TCGA samples either with the expression of rabies
virus or without for each month
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(https://en.vectorbuilder.com), AddGene (https://www.
addgene.org), and Algosome (http://www.algosome.com/
resources/common-sequences.html).

In silico simulations
Scripts can be found here: https://github.com/sararse-
litsky/RNA-contamination-scripts. Random virus simula-
tion: to simulate viral reads, a random virus and a
random location within the virus were chosen. Fifty nts
after that location comprised the first read in the pair.
Then after a space of 200 nts, then the next 50 nts were
used for the second read in the pair. The second read
was reverse transcribed. Next, 0–10 mutations were ran-
domly chosen and added to the first read in the pair at a
randomly selected location. For each number of muta-
tions, there were 100 simulated samples, each containing
1000 simulated reads.
Human transcriptome simulation: Human reads were

simulated by randomly choosing a transcript from an
hg38 transcript file generated by RSEM. A random loca-
tion within the transcript was chosen as the first location
for the first paired-end read. Then after a space of 200
nts, the next 50 nts comprised the second read pair. The
reverse complement was taken of the second read pair.
100 simulated samples with 1000,000 paired-end reads
in each sample were made. Low complexity simulation:
Low complexity reads were simulated by generating all
combinations of patterns of 1 (all As, all Ts…), 2 (AT,
GC, CT, …), and 3 (CAC,CAA,CCA,…). Low complexity
reads from this pool were randomly chosen and a ran-
dom number of mutations were added to the first read
pair. The second read was a reverse transcribed version
of the first read pair, but without the mutations. 100
simulated samples, each with 1000 reads were generated.

Sequencing of the universal human RNA reference
The UHRR+ was generated by adding 0.3 μg mRNA
from MCF7 and 0.3μg mRNA from ME16C2 per 100 μg
Stratagene Universal Reference RNA (Cat#740000–41).
This was added to increase coverage of genes expressed
in estrogen receptor positive and estrogen receptor
negative breast cancers. One μg of total RNA from ei-
ther UHRR or UHRR+ was converted to cDNA libraries
using the lllumina mRNA TruSeq kit (RS-122-2001 or
RS-122-2002) following the manufacturer’s directions.
Libraries were sequenced 48x7x48bp on the Illumina
HiSeq 2000 as previously described [35]. FASTQ files
were generated by CASAVA.

Details about the Hela SNP analysis
Script can be found here: https://github.com/sararse-
litsky/RNA-contamination-scripts/blob/master/HPV18_
from_HeLa.pl. To determine the proportion of HeLa
specific HPV18 SNPs (Table 3 from Cantalupo et al.

[11]) we calculated the alternative allele frequency from
the selected SNPs. If the HeLa alternative allele propor-
tion was > 0.5, then this was considered a “HeLa SNP”,
otherwise a reference SNP. Since contamination mostly
led to low levels of HPV18 reads in non-cervical cancer
samples, we did not have a coverage or allele count
threshold. We calculated how many of the HeLa specific
SNPs had an alternative allele compared to the
reference.

Statistics
All plots, except Fig. 5, and statistical analyses were per-
formed using R version 3.4.1. The packages used were
ggplot2, reshape2, and gplots.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6483-6.

Additional file 1. Virus count table. The columns are in the following
order: analysis ID, cancer type, and then raw virus counts for all viruses
with counts >0 in at least one sample.
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