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Abstract

Cancer has traditionally been studied from a basic science perspective, focusing on the underlying 

biology, physiology, and biochemistry. Engineering has supplemented this effort via the 

development of technology, e.g., microscopy. In recent times, engineering and the physical 

sciences have positioned themselves as approaches on par with the traditional basic sciences to 

tackle the study of cancer. Mathematical modeling and computational simulation have become key 

elements of this engineering-focused effort, evaluating the growth of tumors and their response to 

therapy as problems that could benefit from a systems analysis perspective. Building upon 

previous work in this field, here is developed a modeling framework to help evaluate the response 

of tumors to the combination of chemotherapy and immunotherapy, focusing on non-small cell 

lung cancer (NSCLC). With system parameters set with patient tumor-specific parameters, the 

longer term goal of this work is to advance personalized cancer treatment.

I. Introduction

The role of the immune system in cancer progression and response to treatment is 

increasingly recognized as critical to the success of therapy [1]. In particular, the innate 

immune system plays a large role in tumor detection and suppression [2], with macrophages 

being key cells that can migrate or are already resident in many organs of the body [3]. In 

lung cancer, which is the cause of most of the deaths from cancer worldwide, macrophages 

resident in the lung have both tumor-suppressive and tumor-promoting roles [4]. Polarization 

to the M1 phenotype enables release of cytotoxic nitric oxide (NO), while polarization to the 

M2 phenotype leads to release of growth factors and other cytokines conducive to tumor 

growth [5]. This macrophage polarization is fluid, with partial or full sharing of phenotypic 

characteristics occurring along the range of polarization based on the tumor 

microenvironment conditions. In this manner, tumors may drive the macrophage polarization 

to their benefit, thus thwarting the innate immune response [5].
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Chemotherapy is the established treatment modality for advanced stage lung cancer. In 

contrast, immunotherapy for lung cancer is for the most part considered an experimental 

treatment, as the conditions that lead to treatment success or failure, including drug strength, 

are still poorly understood [6]. Consequently, the combination of chemotherapy and 

immunotherapy as a treatment option presents unique challenges due to the complexity of 

the interactions between drugs and their effects, immune system cells, tumor cells, and their 

microenvironment. A purely experimental approach has so far proven inadequate to 

elucidate these interactions.

Mathematical modeling enables abstracting complex system interactions in order to study 

them individually or in combination. When modeling biological phenomena, models have 

typically represented these phenomena as a continuum (e.g., tissues), as discrete elements 

(e.g., individual cells), or as a (hybrid) combination of both (e.g., individual cells within 

tissues), thus enabling the study of biology at different physical scales. Modeling has been 

applied to the study of tumor growth (e.g., [7]), cancer chemotherapy (e.g., [8]), and cancer 

immunotherapy (e.g., [9]). This paper presents a modeling framework to help study the 

combination of all three, focusing on NSCLC as a representative tumor system.

II. Methods

A. Tumor Growth

The tumor growth component builds upon recent work [10] and is based on [11]. A small 

nodule is initially simulated in a Cartesian grid of blood vessels representing a normally 

spaced capillary grid, with vessel parameters calibrated to deliver sufficient oxygen and 

nutrients to normal tissue [10]. The microenvironment has the following regions: normal 

(host) tissue, proliferating (tumor) tissue, hypoxic tissue with insufficient oxygen for 

proliferation, and necrotic tissue with insufficient oxygen for viability. Darcy’s law is 

applied to describe tumor growth with velocity vc [11]:

vc =   − μ∇P + χE ∇E, (1)

where μ is tissue mobility related to cell-cell and cell-matrix adhesion, P is oncotic pressure, 

χE is haptotaxis, and E is extracellular matrix density. Assuming uniform density in 

proliferating tissue, the change in velocity is [11]:

∇ ∙ vc = λp, (2)

where λp is the (non-dimensionalized) tumor proliferation rate. Hypoxic tissue releases 

tumor angiogenic factors (TAF, e.g., vascular endothelial growth factor or VEGF), which 

diffuse into the surroundings, providing a chemotactic gradient for capillary growth and for 

macrophage migration.

B. Angiogenesis and Oxygen Transport

The angiogenesis component, adapted from [12], describes the growth and maturation of a 

tumor-induced neovascular network with blood flow. New vessels sprout and grow in 

response to gradients of TAF, and are influenced by pressure from the proliferating tissue. 

Curtis and Frieboes Page 2

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Oxygen σ is supplied from the vasculature and diffuses with coefficient Dσ into the 

surrounding tissue. Oxygen is taken up by host cells with rate λσ,host, by tumor cells with 

rate λσ,tumor in the proliferating and λσ,hypoxic in the hypoxic regions, and decays with rate 

λσ,necrotic in the necrotic tissue [11]:

0 = ∇ ∙   Dσ ∇σ + λσ, ev x, t, 1vessel, p, σ, h − λσ σ σ, (3)

where x is position in space, t is time, 1vessel indicates the vasculature location, p is tumor 

solid pressure, h is the hematocrit in the vasculature (following [11]), and λσ is the 

respective uptake rate. The extravasation λσ,ev is modulated by the extravascular interstitial 

pressure pi scaled by the effective pressure pe [11].

C. Macrophages

Monocytes and macrophages are simulated as discrete entities using a cellular automaton 

algorithm [13]. Monocytes extravasate from vessels in proportion to the local concentration 

of macrophage chemoattractants (e.g., TAF), and polarize into M1 or M2 phenotypes in 

proportion to the local concentration of cytokines released by proliferating and hypoxic 

tissue [13] as well as the immunotherapy drug strength and local concentration. Monocytes 

and macrophages migrate through the interstitium along gradients of oxygen, pressure, and 

chemoattractants. Movement in one of four directions along the computational grid is 

determined semi-stochastically, similar to their differentiation [13].

M1 cytotoxicity is simulated with death rate λNO in the immediate vicinity of the 

macrophage (1M1), since NO has a short half-life with limited diffusivity [13]:

λM1 = λNO 1M1 . (4)

M2 macrophages release growth factors F that positively affect proliferating tissue with rate 

λM2 [13]:

dλM2/dt = λF F 1 − λM + λM2 , (5)

where λF is the effect of M2 growth factor on tumor tissue proliferation and λM is the tumor 

native proliferation rate.

Mass balance (steady-state conditions) for a particular cytokine concentration C 
(dimensionless units) produced by viable (proliferating or hypoxic) tumor tissue is [14]:

0 = ∇ · DC ∇C + λC, prod 1 − C λC, circ 1vessel − λC, decay C, (6)

where DC is diffusivity and λC,prod, λC,circ and λC,decay are (non-dimensional, ranging from 

0 to 1) cytokine production, wash-out into circulation, and decay rates, respectively.

D. Chemotherapy

Transport of drug s with strength λs,effect, here paclitaxel (PTX), a representative NSCLC 

drug, is simulated from the location of extravasation from the vasculature. Drug diffusivity is 
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Ds. Uptake by tumor and normal cells and wash-out from the interstitial space are included 

as a combined effect in the rate λs,uptake, which reflects the drug half-life (assumed to be 

similar to the half-life in plasma) [15]:

0 = ∇ · Ds∇s + λs, ev x, t, 1vessel, pi, s − λs, uptakes . (7)

Assuming a constant vascular extravasation transfer rate λs,TR, the drug extravasation is 

[16]:

λs, ev = λs, TR 1vessel x, t 1 − kp, i pi/ pe Cs, t − s , (8)

where kp,i represents the weight of the convective transport component of small molecules. 

Drug concentration in the vasculature follows first order kinetics for a constant drug 

infusion: Cs,t = 1 - e−αt, with α based on an average half-life of 5.8 h for PTX for 6 to 24 h 

infusion [17]. Once the infusion is stopped, the concentration falls exponentially: Cs,t = e−αt.

E. Immunotherapy

Transport of a (generic) immunotherapeutic agent N affecting macrophage polarization is 

simulated from the location of extravasation from the vasculature following a single bolus 

administration:

dN /dt = ∇ ⋅ DN∇N + λN, ev t, 1vessel − λN, decay N, (9)

where λN,ev is the vascular extravasation transfer rate and λN.decay is the decay rate. The 

agent locally stimulates M2 macrophages to polarize to an M1 phenotype, proportional to 

agent strength λN.effect and local agent concentration.

For all diffusion equations, zero Neumann conditions are assumed at the boundaries [11].

E. Macrophage and Drug Effects on Tumor Growth

Macrophage effects λM1 and λM2, and chemotherapy drug effect λs,effect, are included in 

the tumor proliferation rate λp:

λp =

0
λM + λM2 σ 1 − λs, effects − λM1

−λM1
−G

, host tissue
, proliferating
, hypoxic
, necrotic

. (10)

Tissue degrades in the necrotic region with rate G, assuming that necrotic debris is 

constantly degraded and fluid is removed [11].
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F. Parameter Values and Numerical Implementation

The main model parameters are in Table I (all other parameters are as in [10]). Cytokine 

characteristics follow previous work that evaluated protein diffusivity based on molecular 

weight [14]. Details of the numerical implementation are in [10] and references therein.

III. Results

A. Tumor Growth Influenced by Macrophages

The simulated NSCLC tumor nodule at 30 d after initiation is shown in Fig. 1 at the start of 

therapy.

The tumor consists of proliferative, hypoxic and necrotic tissue regions. Monocyte 

infiltration begins at the onset of hypoxia, and differentiation into M1 or M2 phenotypes is 

driven by chemoattractants (e.g., TAF) released by hypoxic tissue in the micro-environment. 

In the model, M1 phenotypes tend to cluster within the tumor nodule, while M2 phenotypes 

spread around in the immediate tumor periphery.

B. Effect of Immunotherapy on Macrophage Population

It has been shown that NSCLC tumors with an M1/M2 ratio of 0.9 offered improved survival 

over those with a ratio of 0.1 [20]. Accordingly, immunotherapy dose strengths were 

simulated to achieve macrophage ratios in between this range of ratios. Fig. 2 shows the 

M1/M2 ratios for each case, thus defining the immunotherapeutic drug strength for each 

case, with the immunotherapy timed so that the ratios peak at the same time as the PTX in 

circulation.

C. Tumor Response to Chemotherapy and Immunotherapy

The simulated tumor at 24 h after exposure to PTX and the immunotherapy is shown in Fig. 

3, along with the macrophage distributions and the drug concentrations.

The tumor radius in time is shown in Fig. 4, indicating that the immunotherapy affects the 

duration of tumor regression but not necessarily its rate of regrowth post treatment.

The extent of the tumor response is summarized in Fig. 5, showing that the combination of 

PTX and strongest immuno-therapy achieves the highest response, as expected, yet this 

response is nonlinear with respect to the magnitude of the immunotherapy drug strength 

affecting the macrophage repolarization. Fine-tuning this strength to achieve M1/M2 ratios 

that lead to tumor remission would need to be customized to particular tumor and therapy 

parameters.

IV. Discussion

Building upon previous modeling of tumor growth [10][11], chemotherapy [16][18], and 

tumor-associated macrophages [13], this work presents a framework to evaluate tumor 

response to the combination of chemotherapy and immunotherapy, focusing on macrophage 

repolarization in the tumor microenvironment. Tumor growth and chemotherapy parameters 

were set to simulate a NSCLC nodule being treated with paclitaxel. The system offers the 
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capability to explore variation in therapy parameters, including dosing, drug strength, and 

effect, and their combination across various immuno- and chemotherapeutics.

Much work remains to make modeling systems such as this one clinically relevant. Patient 

measureable parameters, including tumor size, vascularization density and macrophage 

presence could be evaluated from imaging and histology. Parameters that might be 

considered biologically similar across patients, e.g., oxygen diffusivity in tissue and drug 

cellular uptake rates, could be set from previous measurements, as in this study. Expansion 

of the model to include additional patient tumor-specific information, such as genomic, 

transcriptomic and metabolomic data, might enhance system predictivity, with the ultimate 

goal of personalizing therapy efficacy and enhancing patient outcomes.
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Figure 1. 
Simulated tumor at start of therapy. (A) Tumor is shown with proliferative (red), hypoxic 

(blue), and necrotic (brown) regions. Capillaries in the surrounding tissue are depicted by 

the rectangular grid, indicating a normal vascular structure providing adequate oxygen and 

nutrients to the tissue. Capillary sprouts are growing in the direction of the tumor, in 

response to angiogenic factors released by hypoxic tissue. (B) Concentration (non-

dimensional units) of a generic macrophage chemoattractant, such as VEGF, released by 

tumor tissue. Bar=250 μm.
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Figure 2. 
Evolution of intra-tumoral macrophage populations (expressed as M1/M2 ratio) during 

immunotherapy of various drug strengths (non-dimensinal units) started on day 30 post 

tumor initiation.
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Figure 3. 
Simulated tumor 24 h after start of therapy. (A) Tumor has started to shrink in response to 

exposure to the therapy. (B) Hypoxic tissue is reduced, leading to a decrease in release of 

macrophage chemoattractants (e.g., VEGF). (C) Type 1 macrophages are infiltrating the 

tumor, while (D) Type 2 macrophages tend to remain in the tumor periphery. (E) 

Distribution of PTX (concentration in non-dimensional units). (F) Distribution of 

immunotherapeutic drug (concentration in non-dimensional units). Bar=250 μm.
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Figure 4. 
Progression of tumor radius in response to chemotherapy combined with immunotherapy of 

various strengths (non-dimensional units), started at 30 d post tumor initiation.
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Figure 5. 
Tumor response to combined chemotherapy and immuno-therapy. (A) Minimum tumor 

radius achieved for range of immunotherapy drug strengths. (B) Time for tumor to resume 

growth after therapy.

Curtis and Frieboes Page 12

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Curtis and Frieboes Page 13

TABLE I.

Main Model Parameters

Parameter Description Value Reference

Tumor tissue threshold for hypoxia 0.5750 [10]

Tumor tissue threshold for necrosis 0.5700 [10]

Cell degradation rate in necrotic region G
0.3 

a [10]

O2 transfer rate from vasculature λσ,ev 5 
a [11]

O2 diffusivity Dσ 1 
a [11]

O2 uptake rate by proliferating tumor cells
1.5 

a [11]

O2 uptake rate by hypoxic tumor cells
1.3 

a [11]

O2 uptake rate by host microenvironment
0.12 

a [11]

O2 decay rate in necrotic tissue
0.35 

a [11]

Tumor native proliferation rate (day−1) λM 0.5 
a

Calibrated 
b

PTX transfer rate from vasculature λs,ev 5 
a [15]

PTX diffusivity Ds 0.6 
a [18]

PTX cellular uptake rate λs,uptake 1.5 
a [15]

PTX drug effect λs,effect 7.5
Calibrated 

c

M1 NO induced death rate λNO 5 /s
Calibrated 

b

M1 differentiation scaling coefficient 3
Calibrated 

b

M2 induced proliferation rate λF 1000 /s
Calibrated 

b

M2 differentiation scaling coefficient 33
Calibrated 

b

Immune drug transfer rate from vasc. λN,ev 0.5
Calibrated 

d

Immune drug diffusivity DN 0.25
Calibrated 

d

Immune drug strength λN.effect 0, 5, 9
Calibrated 

d

Immune drug decay rate λN.decay 1.25
Calibrated 

d

Cytokine production rate λC,prod 1.0 
e [13]

Cytokine diffusivity DC 0.005 
a [13]

Cytokine wash-out rate into vasculature λC,circ 0.006 
a [13]

Cytokine decay rate λC,decay 0.001 
a [13]

a
Value is non-dimensionalized by the diffusivity of oxygen [19] (1 × 10−5 cm2 s−1)

b
Calibrated to match NSCLC nodule growth observed in [18].

c
Calibrated to approximate a half-maximal inhibitory drug concentration.
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d
Calibrated for drug to achieve a range of M1/M2 ratios as in [20].

e
Value is rescaled by the production rate of VEGF-165 protein, a typical TAF molecule.
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