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Abstract

Recent advances in genomics are producing powerful DNA predictors of complex traits, especially 

cognitive abilities. Here, we leveraged summary statistics from the most recent genome-wide 

association studies of intelligence and educational attainment, with highly genetically correlated 

traits, to build prediction models of general cognitive ability and educational achievement. To this 

end, we compared the performances of multi-trait genomic and polygenic scoring methods. In a 

representative UK sample of 7,026 children at ages 12 and 16, we show that we can now predict 

up to 11 percent of the variance in intelligence and 16 percent in educational achievement. We also 

show that predictive power increases from age 12 to age 16 and that genomic predictions do not 

differ for girls and boys. We found that multi-trait genomic methods were effective in boosting 

predictive power. Prediction accuracy varied across polygenic score approaches, however results 

were similar for different multi-trait and polygenic score methods. We discuss general caveats of 

multi-trait methods and polygenic score prediction, and conclude that polygenic scores for 

educational attainment and intelligence are currently the most powerful predictors in the 

behavioural sciences.

Introduction

Ever increasing sample sizes and methodological advances in polygenic methods have made 

it possible to powerfully predict complex traits such as cognitive abilities without knowing 

anything about the causal chain between genes and behaviour. Progress in predicting 

cognitive traits from inherited DNA variants has been rapid in the past five years and 
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especially in the past year1. Three methodological advances have mainly been responsible 

for this progress: increasingly large genome-wide association (GWA) studies, genome-wide 

polygenic scores (GPS) and multivariate analytic tools. The key has been the recognition 

that the largest associations are extremely small, accounting for less than 0.05% of the 

variance2. To achieve sufficient power to detect such small effect sizes, samples in the 

hundreds of thousands are needed before GWA studies can begin to detect these tiny effects. 

Because the largest associations are so small, useful predictions of individual differences can 

only be made by aggregating the effects of thousands of DNA variants in GPS3. The third 

advance is the development of genomic methods that leverage genetic correlations between 

traits to boost power for variant discovery4 and polygenic risk prediction5.

Together, these three advances have greatly increased the ability to predict intelligence, 

educational attainment (years of schooling), and educational achievement (tested 

performance). For example, for intelligence, until 2017, no replicable associations were 

found in seven GWA studies6–12, which we refer to collectively as ‘IQ1’. These studies had 

sample sizes from 18,000 to 54,000, which seemed large at the time but were not sufficiently 

powered to detect effect sizes of 0.05%. GPS derived from these IQ1 GWA studies at most 

accounted for 1% of the variance in independent samples. Increasing GWA sample sizes to 

78,000 (IQ213) and then to 280,000 (IQ314) paid off in increasing predictive power of GPS 

from 1% to 3% to 4%. Here we present results for IQ3.

Educational attainment has led the way in terms of increasing GWA sample size, from 

125,000 in 2013 (EA115) to 294,000 in 2016 (EA216) to 1.1 million in 2018 (EA317). The 

growing sample sizes increased the predictive power of GPS from 2% to 3% to 12% of the 

variance in educational attainment1. Similarly, in previous work we showed that EA GPS 

predicted an increasingly substantial amount of variance in tested educational achievement 

as sample size from replications of the EA GWAS increased over the years. EA1 predicted 

3% of the variance in educational achievement at age 16 18 and EA2 predicted 9% of the 

variance for overall educational achievement at age 16 19.

Because ‘years of education’ is obtained as a demographic marker in most GWA studies, it 

was possible to accumulate samples sizes with the necessary power to detect very small 

effect sizes. It is more difficult to obtain very large sample sizes for intelligence, which 

needs to be assessed with a psychometric test administered to each individual, whereas years 

of education can be captured with a single self-reported item. Because of the large sample 

size available for EA GWA studies and the substantial genetic correlation between EA and 

intelligence, EA GPS predicted as much or more variance in intelligence than did GPS 

derived from GWAS of the target trait of intelligence itself. EA1 predicted 1% of the 

variance in intelligence 18, 20 and EA2 predicted 4% of the variance 16. Here we present 

results for EA3.

Finding that EA GPS predict educational achievement and intelligence better than do GWA 

of the target traits themselves suggests the usefulness of multivariate approaches. In a 

previous study, a multivariate GPS approach involving regularized regression was applied to 

show that with EA2 and 80 other GPS 11% of the variance in educational achievement at 

age 16 and 5% of the variance in intelligence at age 12 could be predicted21. Although 
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adding 1–2% to the predictive power of GPS might not seem like much, it should be noted 

that five years ago the total variance that could be predicted in either trait was statistically 

indistinguishable from zero.

The aim of the present study is to estimate how much variance in intelligence and 

educational achievement can be predicted by applying several state-of-the-art multi-trait 

genomic approaches and leveraging highly powered GWA summary statistics. First we 

compare three polygenic score methods (PRSice22, LDpred23, and Lassosum24) and test 

how much variance the new IQ3 and EA3 GPS maximally predict. We then jointly analyse 

IQ3 and EA3 with three highly (genetically) correlated traits (Income25, Age when 

completed full time education26, Time spent using computer26) to boost predictive power 

and compare performance of three multi-trait methods (Genomic SEM27, MTAG4 and 

SMTpred5) using predictive power as our criterion.

We conducted these analyses in a sample of 7,026 unrelated individuals from the Twins 

Early Development study, which is representative of the UK population28. We analysed 

intelligence and educational achievement at the end of compulsory schooling in the UK at 

age 16; we also investigated developmental trends in genomic prediction from age 12 to 16. 

Based on previous research19, we expected genomic predictions to increase from 12 to 16.

Materials and Methods

Sample

The sample was drawn from the Twins Early Development Study (TEDS29), an ongoing 

population-based longitudinal study. It consists of twins born in England and Wales between 

1994 and 1996, who have been assessed on a variety of psychological domains. More than 

10,000 twin pairs representative of the general UK population 28 remain actively involved in 

the study to date. Ethical approval for TEDS has been provided by the King’s College 

London Ethics Committee (reference: PNM/09/10–104). Parental consent was obtained 

before data collection. Genotypes for 10,346 individuals (including 3,320 DZ twin pairs) 

were processed with stringent quality control procedures followed by SNP imputation using 

the Haplotype Reference Consortium (release 1.1) reference panels. Current analyses were 

limited to the genotyped and imputed sample of 7,026 unrelated individuals. Following 

imputation, we excluded variants with minor allele frequency < 0.5%, Hardy-Weinberg 

equilibrium p-values of < 1×10−5. To ease computational demands, we selected variants with 

an info score of 1, resulting in 515,000 SNPs used for analysis (see Supplementary Methods 

S1 for a full description of quality control and imputation procedures).

Outcome variables

The outcome variables were intelligence and educational achievement at ages 12 and 16. 

Intelligence was assessed as a composite of verbal and nonverbal web-based tests. 

Educational achievement was indexed by a mean of scores on the compulsory subjects of 

English, mathematics and science obtained from the UK National Pupil Database. A more 

detailed description of outcome variables is provided in the Supplementary Methods S2. 

Supplementary Table S1 includes descriptive statistics for the outcomes variables and 
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Supplementary Figure S1 shows phenotypic correlations. Phenotypes and polygenic scores 

were corrected for age, sex and 10 genetic principal components. The obtained standardised 

residuals were used in all subsequent analyses.

Discovery GWA summary statistics

We based our prediction models on beta weights derived from large, publicly available, 

GWA summary statistics. Of central importance for our analyses were the most recent GWA 

studies of educational attainment (EA317) and intelligence (IQ314). Because the original IQ 

GWA meta-analysis included TEDS as one of its samples, to avoid bias due to sample 

overlap with our target sample we used summary statistics from new GWA analyses that 

excluded TEDS. The EA3 summary statistics employed here do not include 23andMe data 

(~300k individuals) due to their data availability policy.

Polygenic score approaches

We used IQ3 and EA3 summary statistics to construct genome-wide polygenic scores (GPS) 

comparing three distinct approaches: PRSice222, a clumping/pruning + P-value thresholding 

(P+T) approach, with an in-built high-resolution option that returns the best-fit GPS for the 

trait of interest; LDpred23, a Bayesian approach that uses a prior on the expected 

polygenicity of a trait (assumed fraction of non-zero effect markers) and adjusts for linkage 

disequilibrium based on a reference panel to compute SNPs weights; and Lassosum24, a 

machine-learning approach which uses penalized regression on GWA summary statistics to 

produce more accurate beta weights.

A detailed description of the construction of these polygenic scores is included in 

Supplementary Methods S3.

Multi-trait approaches

In order to boost power of IQ3 (N = 266,453) and EA3 (N = 766,345) GWA results and thus 

precision of beta weights to construct more predictive IQ3 and EA3 polygenic scores, we 

jointly analysed these summary statistics with three cognitive and educationally relevant 

traits: “Income”25 (N = 96,900), “Age when completed full time education26 (N = 226,899) 

and “Time spent using computer”29 (N = 261,987). The choice of these traits is consistent 

with a multi-trait framework, as these traits show the highest genetic correlations with IQ 

and educational attainment among publicly available GWA summary statistics, with 

pairwise-genetic correlations ranging from ~.5 to ~.9 (see Supplementary Figure S2). 

Summary statistics from these GWA studies are reported in Supplementary Table S2.

We used three recently developed multi-trait methods, one of which is specifically designed 

to boost polygenic score prediction: SMTpred5, and two of which are strictly speaking 

multivariate GWA approaches, designed to boost power for discovery, but which have been 

shown to increase predictive power of polygenic scores created from multi-trait reweighted 

summary statistics: MTAG4 and Genomic SEM27. Details about these methods are provided 

in Supplementary Methods S4. Briefly, SMTpred5 is a multi-trait extension of the random 

effects model approach, which can be used to create multivariate best linear unbiased 

predictors based on summary statistics (wMT-SBLUP). MTAG is a generalization of 
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inverse-variance weighted meta-analysis, which jointly analyses univariate GWA summary 

statistics. It boosts power for discovery for each trait conditional on the effect size estimates 

of other traits and outputs trait-specific summary statistics. Genomic SEM is a two-stage 

structural equation modelling approach that can be applied in the context of multivariate 

GWA. In the form employed here (common factor GWAS), it directly tests effect of SNPs on 

a latent genetic factor defined by several indicators (i.e. traits) and outputs summary 

statistics for the common factor. We also compared these new multivariate approaches to a 

simple multiple regression on intelligence and on educational achievement using five GPS, 

each derived from the univariate GWA summary statistics used in multi-trait analyses.

Analyses

Univariate analyses

We first calculated polygenic scores for the IQ3 and EA3 GWA summary statistics using 

PRSice, LDpred and Lassosum. This was done to compare current state-of-the-art polygenic 

scores approaches and in order to obtain a benchmark against which to compare 

improvements in prediction accuracy due to multivariate GWA analyses. For each phenotype 

(i.e. intelligence and educational achievement at ages 12 and 16), we randomly split the 

sample into training and test sets (~50% training, ~50% test). Supplementary Table S1 

shows descriptive statistics for each set. In the training sets, parameter optimization of GPS 

was performed, in which each GPS instrument (or p-value threshold in the case of PRSice, 

fraction of markers with nonzero effect in the case of LDpred, and tuning parameters in the 

case of Lassosum) was tested on each of the four phenotypes and the best instrument was 

selected with respect to prediction accuracy (as indexed by R2). Performance of the 

optimized GPS instrument retained from the validation was then assessed in the test sample 

in order to evaluate how well the chosen predictors would perform in independent samples. 

We then proceeded to perform the multi-trait analyses.

Multi-trait analyses

We performed a multi-trait reweighting in SMTpred after transforming the ordinary least 

square betas from GWA studies of ‘IQ’, ‘EA’, ‘Income’, ‘Age completed full time 

education’ and ‘Time spent using computer’ in approximate Best Linear Unbiased 

Predictors (BLUP) using GCTA-Cojo 30. We then used LDSC to calculate SNP h2 and 

genetic correlations between traits and proceeded to the multivariate weighting of traits as 

described in (Meier et al., 2018) to obtain multi-trait summary statistics BLUP (wMT-

SBLUP; see also Supplementary Methods S4).

MTAG was run on the five GWA summary statistics (IQ, EA, Income, Age completed full 

time Education, Income) using standard settings. Because MTAG combines differently 

powered summary statistics (as indexed by the GWAS mean χ2; see Supplementary 

Methods S4), as well as differing degrees of genetic overlap between traits, it can lead to an 

increased rate of false positives Type I error4. However, this is not an issue in the present 

study, which focuses on prediction accuracy rather than variant discovery. It has been 

shown4 that MTAG estimates consistently have a lower genome-wide mean-squared error 

compared to single-trait GWA estimates, and, therefore, polygenic scores created from 
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MTAG perform better than those created at the univariate level. However, in order to control 

for type I error inflation, we used the recommended4 false discovery rate (FDR) calculations 

(see Supplementary Methods S4).

The same five summary statistics were analysed using Genomic SEM. First a common 

factor model with the five summary statistics as indicators was fitted using a weighted least-

square (WLS) estimator (default setting in Genomic SEM). Then a common factor GWA 

analysis with a WLS estimator was run, testing effects of single SNPs on the common factor. 

The WLS estimator was expected to yield lower standard errors and possibly increased 

prediction accuracy of GPS30.

We then created polygenic scores from the MTAG EA, MTAG IQ and common factor GWA 

summary statistics across the three polygenic scores approaches, after splitting the sample 

into a training set to tune parameters and a testing set to assess model performance. In the 

case of SMTpred, polygenic scores for IQ3 and EA3 converted and reweighted indices 

(wMT-SBLUP) were calculated using PLINK31. These multi-trait predictors were then 

directly tested for model performance in the test set, as with the other GPS approaches. 

Based on previous power analyses for polygenic score prediction in the TEDS sample19, 32 

we did not expect any power issues for the current analysis plan.

For prediction estimates derived from both univariate and multi-trait models, we calculated 

bootstrapped confidence intervals with 1000 replications. Furthermore, we performed a 

comparison of R2 estimates between models, by calculating bootstrapped confidence 

intervals for the R2 pairwise mean differences. As such, for each model, bootstrap samples 

were generated by sampling with replacement from the data 1000 times. Each row of data 

for resampling consisted of all polygenic scores and phenotypes examined herein. This 

procedure yielded an R2 distribution for each method tested. The R2 difference between 

methods was then calculated for each bootstrap iteration. This generated a distribution of R2 

differences, from which we calculated 95% confidence intervals.

Results

Polygenic score prediction of IQ and EA across GPS methods

Figure 1 shows variance in intelligence and educational achievement predicted by IQ3 GPS 

and EA3 GPS calculated following three polygenic score methods (PRSice, LDpred and 

Lassosum). Supplementary Table S3 presents associations in the training and test sets across 

all models.

For intelligence, IQ3 GPS predicted a maximum of 5.3% (β = 0.221, se = 0.023, p < .0001) 

of the variance at age 12 and 6.7% (β = 0.266, se = 0.032, p < .0001) at age 16. For 

educational achievement, EA3 GPS predicted a maximum of 6.6% (β = 0.259, se = 0.020, p 

< .0001) of the variance at age 12 and 14.8% (β =0.389, se = 0.019, p < .0001) at age 16. 

EA3 GPS was also a powerful predictor of intelligence, predicting 7.2% (β = 0.265, se = 

0.024, p < .0001) of the variance in intelligence at age 12 and 9.9% (β = 0.321, se = 0.031, p 

< .0001) at age 16.
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Generally, Lassosum was the most powerful approach, predicting up to 1% more of the 

variance compared to LDpred and up to 2% more compared to PRSice. Supplementary 

Figure S4 shows a comparison of prediction estimates for each pair of approaches tested. 

Bootstrapped confidence levels calculated for pairwise comparisons indicated significant 

differences in prediction accuracy of IQ3 GPS within-trait between LDpred and PRSice at 

age 12 (MeanDiff = −0.014, 95% CIs [−0.024; −0.005]), and cross-trait at age 12 and 16. 

However, no significant differences were found for PRSice- vs LDpred-based EA3 GPS. 

Similarly, significant differences were also found for IQ3 GPS between Lassosum and 

PRSice at age 12 within trait (MeanDiff = −0.010, 95% CIs −0.021; −0.001]), and at age 12 

and 16 cross-trait. Lassosum-based EA3 GPS performed better within trait at age 16 

(MeanDiff = −0.020, 95% CIs −0.031; −0.009]).

No differences were found in prediction accuracy between LDpred- vs Lassosum-based IQ3 

GPS or EA3 GPS, within or cross-trait. Supplementary Table S3a reports mean differences 

and CIs for these comparisons.

Multi-trait polygenic score prediction

Results of multivariate GWA analyses are reported in Supplementary Methods S4 and 

Supplementary Tables S5 and S6. Here we report results of polygenic score associations for 

our best predictive polygenic models after multi-trait approaches were applied to GWA 

summary statistics (Figure 3 and Figure S5). Figure S6 shows a comparison of variance 

predicted in intelligence and educational achievement at ages 12 and 16 in the test samples 

across polygenic score methods after multi-trait analyses. Supplementary Table S4 reports 

details of these results.

Figure 2 presents variance predicted in intelligence and educational achievement at age 16 

by polygenic scores derived from multi-trait methods. For intelligence, variance predicted by 

IQ3 GPS increased from 6.7% (Figure 1) to a maximum of 10.0% (β = 0.327, se = 0.032, p 

< .0001) at age 16. For educational achievement, variance predicted by EA3 GPS increased 

from 14.8% to a maximum of 15.9% (β = 0.403, se = 0.018, p < .0001) at age 16. Again, 

EA3 GPS was generally the best performing predictor across phenotypes, predicting a 

maximum of 10.6% (β = 0.332, se = 0.031, p < .0001) in intelligence. Similar improvements 

in prediction were observed at age 12 (see Supplementary Table S4 and supplementary 

figure S4).

Supplementary Figure S6 shows a test of the differences in predictive performance of 

Lassosum-based scores between multi-traits methods tested at age 12 and 16. There were no 

significant differences between multi-trait methods for both IQ3 and EA3 GPS across all 

phenotypes. The only exceptions were the SMTpred IQ3 score, which tended to perform 

better than MTAG at age 16 cross-trait (MeanDiff = −0.011, 95% CIs [−0.022; −0.001]), and 

the MTAG EA3 score which tended to perform better than Genomic SEM at age 16 within 

trait (MeanDiff = −0.0077, 95% CIs [−0.0143; −0.002]). Supplementary Table S4 a reports 

mean differences and CIs for these comparisons.

Polygenic scores quantile differences—Figure 3 shows the results for the best 

predictive models at age 16 by GPS deciles. For both intelligence (panel a) and educational 
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achievement (panel b), the relationship with GPS deciles is linear and the lowest and highest 

deciles differ substantially. For intelligence, the mean difference (~1 SD) is comparable to 

15 IQ points. For educational achievement, the mean difference corresponds to an average 

‘C’ grade for the lowest decile and an average ‘A’ grade for the highest decile. However, the 

range of distributions in the lowest and highest deciles overlap considerably, as would be 

expected from GPS correlations of ~0.32 with intelligence and ~0.40 with educational 

achievement.

Sex differences—We tested associations for the best prediction model (i.e. MTAG EA3 

GPS calculated in Lassosum) separately for males and females in the test set. For 

intelligence at age 16, the GPS predicted 10.7% of the variance (95% CIs [6.33;16.74]) in 

males (N= 369, β = 0.334, se = 0.049) and 10.5% (95% CIs [6.49;15.41]) in females (N = 

558, β = 0.329, se = 0.040). For educational achievement in males (N = 1,105) the GPS 

predicted 14.2% (95% CIs [10.96;17.86]) of the variance (β = 0.375, se = 0.027); in females 

(N = 1,300) estimates were 17.2% (95% CIs [13.51;21.43]; β = 0.420, se = 0.025). To test 

the significance of these sex differences, we performed a Fisher’s r to z transformation of 

corresponding correlation coefficients. Sex differences were not significant for intelligence 

(observed z = −0.066, p = 0.472) nor educational achievement (Observed z = −1.419, p= 

0.077).

Multiple regression model—We compared the results from our multi-trait GPS analyses 

to a simple multiple regression using the five GPS from summary statistics of our multi-trait 

analyses (IQ, EA, income, age when completed full time education, time spent using 

computer) to predict intelligence and educational achievement. The multiple regression 

model predicted similar amounts of variance as the best single multi-trait GPS predictors. 

For intelligence, the adjusted R2 was 8.6% at age 12 and 9.9% at age 16. For educational 

achievement, the adjusted R2 was 9.6% at age 12 and 16.7% at age 16. Results are shown in 

Supplementary Table S7.

Discussion

Using summary statistics from the latest GWA studies of intelligence (IQ314) and 

educational attainment (EA317), we report the strongest polygenic prediction estimates for 

cognitive-related traits to date. Comparing standard polygenic score approaches, we showed 

that IQ3 GPS predicts a maximum of 6.73% of the variance in intelligence at age 16, while 

EA3 GPS predicts 14.78% of the variance in educational achievement at age 16.

In an attempt to boost predictive power, we compared results using state-of-the-art genomics 

methods that leverage the multivariate nature of traits in order to increase power of GWA 

summary statistics. We then tested boosted summary statistics across a number of polygenic 

score approaches, showing that we can predict 10.6% of the variance in intelligence and 

15.9% of the variance in educational achievement, both at age 16. These results compare 

favourably with polygenic prediction estimates from the recent EA3 GWA analysis, whereby 

a polygenic score constructed from multi-trait summary statistics of educational attainment 

and three cognitive-related phenotypes predicted up to 13% of the variance in educational 

attainment and up to 10% in cognitive performance17, this is especially notable given the 
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larger discovery sample size employed in that study (N ~ 1.1 million including 23andMe). 

We note that differences between these studies may be attributable to systematic differences 

at the level of trait measurement (e.g. accuracy of measurement) and sample characteristics 

(e.g. differences in ancestry; differences in heritability). Nevertheless, this is a good 

indication that a multi-trait approach to polygenic prediction replicates well across 

independent samples yielding robust prediction estimates.

We found that trait prediction increased from age 12 to age 16. Polygenic scores become 

more predictive with age, probably because as the sample approaches adulthood it is closer 

in age to the samples in which beta weights were estimated in the original GWA studies for 

IQ3 and EA3. Another possible reason for this finding is that given that heritability of 

intelligence increases with age33, the variance that can be predicted by cognitive-related 

polygenic scores also increases. Lastly, we did not find significant differences in the 

predictive power of IQ3 and EA3 for males and females.

These results indicate the usefulness of taking into account the multivariate nature of 

complex traits in polygenic prediction, and add to the possibility of practical use of 

polygenic scores at the level of individuals34. It is important to note that we randomly split 

our sample (~50%) to validate our models and assessed performance of prediction models in 

the test sample in order to avoid overfitting. Because TEDS is a representative sample of the 

UK population, these prediction estimates are expected to be a close representation of how 

these models would perform in similar samples. Overall, multi-trait methods were successful 

in increasing variance predicted; compared to our ‘baseline’ predictions, estimates increased 

from 1% to 3%. Multi-trait methods were especially useful in increasing predictive power of 

the IQ3 GPS, which was constructed using less powerful summary statistics than the EA3 

GPS. However, differences in prediction accuracy across the tested combinations of genomic 

methods seemed to reflect differences in polygenic score approaches rather than in multi-

traits approaches. An indication of this intuition was also provided by a formal comparison 

of R2 estimates, which showed no consistent differences across multi-trait methods. Yet, 

reassuringly, there were no dramatic differences in prediction accuracy across polygenic 

score approaches either, especially when considering approaches that do not perform 

clumping (thereby losing information across the genome).

One limitation that could affect the interpretability of our findings is that by jointly 

analysing traits with differing levels of power and genetic overlap, the multi-trait methods 

considered here might confound the genetic architecture of boosted traits with that of other 

traits. In this regard, genetic correlations between traits before and after multi-trait analyses 

and with a control trait, as those reported in Supplementary Methods S4, may indicate the 

degree to which the genetic architecture of one trait has ‘shifted’ towards that of others in 

the multi-trait analysis. This is an important post-hoc test to be considered by future studies 

employing multi-trait approaches in the context of polygenic prediction.

An ongoing debate concerns the causal mechanisms by which polygenic scores predict 

phenotypes such as educational achievement and intelligence. Passive gene-environment 

correlation may be a mechanism underlying the association between polygenic scores and 

educational attainment. Given parent-child shared genetics (~50%), if EA trait-increasing 
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variants are correlated with rearing environments which in turn are contributing to 

attainment, GWAS estimates obtained for EA would be partly picking up genetic effects 

mediated via the environment. That is, GWAS effect estimates may be due to indirect 

genetic effects via rearing environments that could reflect both inherited and non-inherited 

parental DNA. Therefore, the association between an individual’s EA polygenic score and 

cognitive traits could partly reflect an environmentally transmitted parental genetic 

effect17, 35, 36. Analyses relying on family-based designs have put forward evidence in this 

regard17, 37, 38. These studies confirmed what have long been acknowledged by twin and 

adoption studies on the nature of nurture39,40. Separating the different mechanisms of gene-

environment interplay by which polygenic scores influence complex traits is an important 

area of research. However, prediction of individual differences in behavioural phenotypes 

from polygenic scores can be achieved without an underlying explanatory model.

Finally, a general limitation of all genomic analyses is that they only assess additive effects 

of common SNPs used on currently SNP arrays. SNP heritability is the ceiling for polygenic 

score prediction, which is about 20%14 of the total variance for intelligence and 30% 41 for 

educational achievement. Viewed in this light, our best polygenic scores predict about half 

of the SNP heritability. With bigger and better GWA studies and other methodological 

advances like multivariate approaches, the missing SNP heritability gap will be narrowed. 

Polygenic scores will only reach their full potential when we are able to close the gap 

between SNP heritability (about 25%) and family study estimates of heritability (about 

50%).

Nonetheless, these polygenic scores predictions are already among the strongest predictors 

in the behavioural sciences. Because inherited DNA variants do not change during 

development, polygenic scores are unique predictors in two ways. First, unlike other 

characteristics of the individual, DNA variants can predict individual differences in adult 

behaviour from birth. Second, unlike other correlations, associations between DNA variants 

and behaviour are causal from DNA to behaviour in the sense that there can be no backward 

causation from behaviour to DNA. These unique features will put genomic prediction of 

cognitive traits in the front line of the DNA revolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We gratefully acknowledge the ongoing contribution of the participants in the Twins Early Development Study 
(TEDS) and their families. TEDS is supported by a program grant to RP from the UK Medical Research Council 
(MR/M021475/1 and previously G0901245), with additional support from the US National Institutes of Health 
(AG046938). The research leading to these results has also received funding from the European Research Council 
under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ grant agreement n° 602768 and 
ERC grant agreement n° 295366. RP is supported by a Medical Research Council Professorship award (G19/2). 
This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
under the Marie Sklodowska-Curie grant agreement no. 721567.

Allegrini et al. Page 10

Mol Psychiatry. Author manuscript; available in PMC 2020 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Plomin R, von Stumm S. The new genetics of intelligence. Nature reviews Genetics 2018; 19(3): 
148–159.

2. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA et al. 10 Years of GWAS 
Discovery: Biology, Function, and Translation. American journal of human genetics 2017; 101(1): 
5–22. [PubMed: 28686856] 

3. Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association 
statistics. Nature reviews Genetics 2017; 18(2): 117–127.

4. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA et al. Multi-trait analysis of 
genome-wide association summary statistics using MTAG. Nature genetics 2018; 50(2): 229–237. 
[PubMed: 29292387] 

5. Maier RM, Zhu Z, Lee SH, Trzaskowski M, Ruderfer DM, Stahl EA et al. Improving genetic 
prediction by leveraging genetic correlations among human diseases and traits. Nature 
Communications 2018; 9(1): 989.

6. Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ et al. Childhood intelligence 
is heritable, highly polygenic and associated with FNBP1L. Molecular psychiatry 2014; 19(2): 253–
258. [PubMed: 23358156] 

7. Butcher LM, Davis OS, Craig IW, Plomin R. Genome-wide quantitative trait locus association scan 
of general cognitive ability using pooled DNA and 500K single nucleotide polymorphism 
microarrays. Genes, brain, and behavior 2008; 7(4): 435–446.

8. Davies G, Armstrong N, Bis JC, Bressler J, Chouraki V, Giddaluru S et al. Genetic contributions to 
variation in general cognitive function: a meta-analysis of genome-wide association studies in the 
CHARGE consortium (N=53949). Molecular psychiatry 2015; 20(2) : 183–192. [PubMed: 
25644384] 

9. Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE et al. Genome-wide 
association study of cognitive functions and educational attainment in UK Biobank (N=112 151). 
Molecular psychiatry 2016; 21(6): 758–767. [PubMed: 27046643] 

10. Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D et al. Genome-wide association 
studies establish that human intelligence is highly heritable and polygenic. Molecular psychiatry 
2011; 16(10): 996–1005. [PubMed: 21826061] 

11. Plomin R, Hill L, Craig IW, McGuffin P, Purcell S, Sham P et al. A genome-wide scan of 1842 
DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA 
pooling and extreme selected groups. Behavior genetics 2001; 31(6): 497–509. [PubMed: 
11838529] 

12. Trampush JW, Yang ML, Yu J, Knowles E, Davies G, Liewald DC et al. GWAS meta-analysis 
reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT 
consortium. Molecular psychiatry 2017; 22(3): 336–345. [PubMed: 28093568] 

13. Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E et al. Genome-wide 
association meta-analysis of 78,308 individuals identifies new loci and genes influencing human 
intelligence. Nature genetics 2017; 49 (7): 1107–1112. [PubMed: 28530673] 

14. Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA et al. Genome-wide 
association meta-analysis in 269,867 individuals identifies new genetic and functional links to 
intelligence. Nature genetics 2018; 50(7): 912–919. [PubMed: 29942086] 

15. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW et al. GWAS of 126,559 
individuals identifies genetic variants associated with educational attainment. Science (New York, 
NY) 2013; 340(6139): 1467–1471.

16. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA et al. Genome-wide 
association study identifies 74 loci associated with educational attainment. Nature 2016; 
533(7604): 539–542. [PubMed: 27225129] 

17. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M et al. Gene discovery and polygenic 
prediction from a genome-wide association study of educational attainment in 1.1 million 
individuals. Nature genetics 2018.

Allegrini et al. Page 11

Mol Psychiatry. Author manuscript; available in PMC 2020 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Krapohl E, Plomin R. Genetic link between family socioeconomic status and children’s 
educational achievement estimated from genome-wide SNPs. Molecular psychiatry 2016; 21(3): 
437–443. [PubMed: 25754083] 

19. Selzam S, Krapohl E, von Stumm S, O’Reilly PF, Rimfeld K, Kovas Y et al. Predicting educational 
achievement from DNA. Molecular psychiatry 2018; 23(1): 161. [PubMed: 28948970] 

20. Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B et al. Common genetic variants 
associated with cognitive performance identified using the proxy-phenotype method. Proceedings 
of the National Academy of Sciences of the United States of America 2014; 111(38): 13790–
13794. [PubMed: 25201988] 

21. Krapohl E, Patel H, Newhouse S, Curtis CJ, von Stumm S, Dale PS et al. Multi-polygenic score 
approach to trait prediction. Molecular psychiatry 2018; 23(5): 1368–1374. [PubMed: 28785111] 

22. Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics 2015; 
31(9): 1466–1468. [PubMed: 25550326] 

23. Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S et al. Modeling Linkage 
Disequilibrium Increases Accuracy of Polygenic Risk Scores. American journal of human genetics 
2015; 97(4): 576–592. [PubMed: 26430803] 

24. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. Polygenic scores via penalized regression on 
summary statistics. Genetic epidemiology 2017; 41(6): 469–480. [PubMed: 28480976] 

25. Hill WD, Hagenaars SP, Marioni RE, Harris SE, Liewald DCM, Davies G et al. Molecular Genetic 
Contributions to Social Deprivation and Household Income in UK Biobank. Current Biology 
2016; 26(22): 3083–3089. [PubMed: 27818178] 

26. Seed C. Hail: An Open-Source Framework for Scalable Genetic Data. 2017.

27. Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD et al. Genomic 
SEM Provides Insights into the Multivariate Genetic Architecture of Complex Traits. bioRxiv 
2018.

28. Haworth CM, Davis OS, Plomin R. Twins Early Development Study (TEDS): a genetically 
sensitive investigation of cognitive and behavioral development from childhood to young 
adulthood. Twin research and human genetics : the official journal of the International Society for 
Twin Studies 2013; 16(1): 117–125. [PubMed: 23110994] 

29. Oliver BR, Plomin R. Twins’ Early Development Study (TEDS): a multivariate, longitudinal 
genetic investigation of language, cognition and behavior problems from childhood through 
adolescence. Twin research and human genetics : the official journal of the International Society 
for Twin Studies 2007; 10(1): 96–105. [PubMed: 17539369] 

30. Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC et al. Conditional and joint 
multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing 
complex traits. Nature genetics 2012; 44(4): 369–375, s361–363. [PubMed: 22426310] 

31. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for 
whole-genome association and population-based linkage analyses. American journal of human 
genetics 2007; 81(3): 559–575. [PubMed: 17701901] 

32. Krapohl E, Euesden J, Zabaneh D, Pingault JB, Rimfeld K, von Stumm S et al. Phenome-wide 
analysis of genome-wide polygenic scores. Molecular psychiatry 2015; 21: 1188. [PubMed: 
26303664] 

33. Haworth CMA, Wright MJ, Luciano M, Martin NG, de Geus EJC, van Beijsterveldt CEM et al. 
The heritability of general cognitive ability increases linearly from childhood to young adulthood. 
Molecular psychiatry 2010; 15(11): 1112–1120. [PubMed: 19488046] 

34. Plomin R. Blueprint: How DNA Makes Us Who We Are. Allen Lane/Penguing Press: London, 
2018.

35. Fletcher JM, Lehrer SF. Genetic lotteries within families. Journal of health economics 2011; 30(4): 
647–659. [PubMed: 21664708] 

36. Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to 
strengthen causal inference in observational research. Nature Reviews Genetics 2018; 19(9): 566–
580.

Allegrini et al. Page 12

Mol Psychiatry. Author manuscript; available in PMC 2020 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



37. Belsky DW, Domingue BW, Wedow R, Arseneault L, Boardman JD, Caspi A et al. Genetic 
analysis of social-class mobility in five longitudinal studies. Proceedings of the National Academy 
of Sciences 2018; 115(31): E7275–E7284.

38. Kong A, Thorleifsson G, Frigge ML, Vilhjalmsson BJ, Young AI, Thorgeirsson TE et al. The 
nature of nurture: Effects of parental genotypes. Science (New York, NY) 2018; 359(6374): 424–
428.

39. Plomin R, Bergeman CS. The nature of nurture: Genetic influence on “environmental” measures. 
Behavioral and Brain Sciences 2011; 14(3): 373–386.

40. Plomin R. Geneticsand experience: The interplay between nature and nurture. Sage Publications: 
Thousand Oaks, CA, 1994.

41. Krapohl E, Plomin R. Genetic link between family socioeconomic status and children’s 
educational achievement estimated from genome-wide SNPs. Molecular psychiatry 2015; 21: 437. 
[PubMed: 25754083] 

Allegrini et al. Page 13

Mol Psychiatry. Author manuscript; available in PMC 2020 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Polygenic score prediction of intelligence (IQ) and educational achievement (EA) at age 12 

and 16. Figure shows polygenic prediction accuracy across polygenic score methods. Error 

bars are bootstrapped 95% confidence intervals based on 1,000 replications.
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Figure 2. 
Within-trait and cross-trait polygenic score prediction of intelligence and educational 

achievement at age 16 across multi-trait methods.

Note. MTAG = MTAG IQ3 (panel a)/ MTAG EA3 (panel b) polygenic scores constructed in 

Lassosum; SMTpred = IQ3 (panel a)/EA3 (panel b) wMT-SBLUP predictors; Genomic 

SEM = Common Factor polygenic score constructed in Lassosum (panel a and b). Error bars 

are bootstrapped 95% confidence intervals based on 1,000 replications.
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Figure 3. 
Mean intelligence scores (panel a) and mean educational achievement (panel b; GCSE 

grades) at age 16 by GPS deciles for the best polygenic predictors in the test set. Bars 

represent bootstrapped 95% confidence intervals. Coloured dots represent individual data 

points.
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