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Abstract

Purpose: To introduce a novel, deep-learning method to generate synthetic computed

tomography (SCT) scans for proton treatment planning and evaluate its efficacy.

Materials and Methods: 50 Patients with base of skull tumors were divided into 2

nonoverlapping training and study cohorts. Computed tomography and magnetic

resonance imaging pairs for patients in the training cohort were used for training our

novel 3-dimensional generative adversarial network (cycleGAN) algorithm. Upon

completion of the training phase, SCT scans for patients in the study cohort were

predicted based on their magnetic resonance images only. The SCT scans obtained

were compared against the corresponding original planning computed tomography

scans as the ground truth, and mean absolute errors (in Hounsfield units [HU]) and

normalized cross-correlations were calculated. Proton plans of 45 Gy in 25 fractions with

2 beams per plan were generated for the patients based on their planning computed

tomographies and recalculated on SCT scans. Dose-volume histogram endpoints were

compared. A c-index analysis along 3 cardinal planes intercepting at the isocenter was

performed. Proton distal range along each beam was calculated.

Results: Image quality metrics show agreement between the generated SCT scans and

the ground truth with mean absolute error values ranging from 38.65 to 65.12 HU and an

average of 54.55 6 6.81 HU and a normalized cross-correlation average of

0.96 6 0.01. The dosimetric evaluation showed no statistically significant differences

(p . 0.05) within planning target volumes for dose-volume histogram endpoints and

other metrics studied, with the exception of the dose covering 95% of the target volume,

with a relative difference of 0.47%. The c-index analysis showed an average passing

rate of 98% with a 10% threshold and 2% and 2-mm criteria. Proton ranges of 48 of 50

beams (96%) in this study were within clinical tolerance adopted by 4 institutions.

Conclusions: This study shows our method is capable of generating SCT scans with

acceptable image quality, dose distribution agreement, and proton distal range

compared with the ground truth. Our results set a promising approach for magnetic

resonance imaging–based proton treatment planning.
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Introduction

Current dose calculation in photon and proton radiotherapy is based on computed

tomography (CT) as the primary imaging modality [1, 2]. The CT provides density

information on patients’ anatomy [3] in terms of Hounsfield units (HU), which, in turn, can
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be converted to relative electron density and a relative stopping power ratio (rSPR) to water for accurate photon and proton

dose calculations. However, precise target delineation cannot be achieved with CT alone. Currently, magnetic resonance

imaging (MRI) is routinely used for contouring in radiation therapy. Superior soft tissue contrast obtained from MRI, compared

with CT scans, enhances the delineation of the target and other critical structures [4, 5], whereas CT enables precise

calculation of dose distribution [6–8] and provides reference images that are essential for patient positioning [9]. The MRI

scans are CT-registered images, so that contours of the targets and organs-at-risk (OARs) can be transferred [10, 11].

However, image registration introduces systematic spatial uncertainties, which are carried downstream to all phases of

treatment planning and delivery [12–16].

With the advancements from machine-learning methods, several studies have developed techniques to facilitate dose

calculations based on MRI alone. These methods construct synthetic CT (SCT) images based on MRI, aiming for the

complete elimination of CT imaging from the workflow [17–25]. They generally consist of 2 stages. In the training stage, pairs

of CT and MRI scans from a training-group of patients are used, with the CT images as the learning-based target of their

corresponding MRI scans. Next, during the synthesizing stage, only MRI scans from new patients are provided to the trained

model to predict the SCT image. The constructed SCT is then compared with the original planning CT (pCT) to evaluate the

performance of the model. Their results show that MRI-based dose calculation can be achieved, and reference images

compatible for image-guided radiotherapy with x-ray localization techniques can be constructed. The MRI-only based

radiation therapy eliminates image-registration errors, simplifies the workflow, reduces treatment workload and cost, and

decreases the concomitant dose to the patient. The latter is of particular interest in pediatric patients who are more likely to

receive proton therapy.

Proton therapy is ideal for treating intracranial and base-of-skull (BoS) tumors [26, 27]; for which, the sharp dose falloff

beyond the target volume allows for superior sparing of healthy tissue. Studies show that the risk of developing secondary

cancers is less for patients who receive proton therapy compared with conventional photon therapy, which makes it ideal for

pediatric patients [28–30]. Proton dose is calculated based on CT images to extract HU values associated with each voxel

within the volume of the patient. Those values are then converted to respective rSPRs with a conversion curve. Proton range

along the beam path is calculated by integration of the rSPR of the tissues. The uncertainties in the calculation of the proton

range alter dose distribution in the patient [31], which necessitates an evaluation of the robustness of the plan. Accurate target

delineation is of particular importance for generating robust proton plans. Errors in target delineation will result in

undercoverage of the planning volume or irradiation of OARs, particularly because of the sharp distal dose falloff of proton

beams. During routine proton-planning workflow, MRI scans are acquired and registered to the corresponding CT images to

accommodate accurate target delineation. However, image registration may introduce a 0.5 to 3.5 mm systematic error in the

head region [32–34]. That error propagates downstream, resulting in a systematic error that remains throughout the course of

treatment, which, in turn, may cause suboptimal tumor coverage or tissue sparing.

The main challenge in SCT generation is the lack of a 1-to-1 relationship between corresponding the CT and the MRI for 2

main reasons: (1) MRI and CT scans are 2 different modalities that work on different physical phenomena, and (2) unless an

MRI is acquired at the same time as the CT scan on a combined MRI-CT machine, setup differences at the time the two

images are acquired are unavoidable. Those setup differences can be reduced by applying rigid registration; however, they

cannot be eliminated. In this article, we introduce our approach to SCT generation.

Methods

Patient Selection and Image Acquisition

This study was based on 50 patients who were diagnosed with BoS tumors and who originally underwent stereotactic radio

surgery (SRS) in our clinic in May to October of 2018. All MRI scans selected were acquired with the same 3-dimensional (3D)

sequences and with fine spatial resolutions of the entire head. Those images, along with their CT images, were extracted

retrospectively under an institutional review board–approved protocol. For the brain images, standard T1-weighted MRI was

captured with an Avanto 1.5T (Siemens, Munich, Germany) with a T1 gradient rephasing/inversion recovery sequence of 1-

mm-thick slices and a resolution of 0.977 mm in 256 3 256 pixels. The CT images were captured with a SOMATOM Definition

AS CT scanner (Siemens) with 1.0 3 1.0 3 1.0–mm3 voxel size and 120 peak kilovolt. Patients were positioned and marked

for repositioning. At the time of MRI acquisition, patients were positioned with the same immobilization devices based on the

tattoo marks.
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Image Preprocessing and Registration

Intensity inhomogeneity of the MRI was corrected with an N4ITK MRI Bias-correction filter, implemented in 3D Slicer (version

4.8.1) software. Because CT and MRI scans had different resolutions, MRI was resampled to match the resolution of the CT

images. Intrasubject, rigid registration was performed within Velocity AI 3.2.1 (Varian Medical Systems, Palo Alto, California) to

register the MRI and CT scans of each patient.

Training Phase

The MRI and pCT imaging pairs of 25 of the patients were used to construct the training cohort. Despite performing rigid

registration, some local mismatches remained between the MRI and corresponding CT imaging, which is one of the major

obstacles in training an MRI-to-CT transformation model. To overcome that difficulty, we introduced a novel, 3D generative

adversarial network (cycleGAN), which uses inverse transformation and inverse supervision to capture the relationship

between the MRI and CT image pairs. The architecture of our 3D cycleGAN was constructed based on dense blocks [35],

which is different from previously published approaches, such as residual blocks used in the Wolterink et al [36] cycleGAN

architecture. Rather than learning the difference between 2 image modalities, dense blocks aim to represent the image patch

by both high- and low-frequency information, such as textural and structural features. In the training stage, the 3D MRI patches

at the 64, 64, and 64 voxel size with overlapping 18 3 18 3 18 patches were fed to the MRI-to-CT generator to construct an

SCT. Inversely, the SCTs are fed to another (CT-to-MRI) to generate synthetic MRI (cycle MRI) scans. Similarly, the training

CT was fed to the CT-to-MRI generator to generate synthetic MRI and, inversely, to the MRI-to-CT generator to generate cycle

CT scans. The constraints for MRI-to-CT and CT-to-MRI transformations were obtained so that (1) cycle images were similar

to the original images, (2) synthetic images were similar to the original images, and (3) discriminators differentiated between

synthetic and original images. The input of our generator was a 3D patch extracted by a sliding window from the MRI scans

with overlap to its neighboring patches. That overlap ensures that a continuous whole-image output can be obtained and

allows for increased training data for the network. We trained and tested on 2 Tesla V100 (NVIDIA, Santa Clara, California)

with 32 GB of memory for each graphics processing unit. A batch size of 4.10 GB of central processing unit memory and 58 GB

of graphics processing unit memory was used for each batch optimization.

The loss function is typically constructed based on l1-norm (mean absolute distance [MAD]) or l2-norm (mean squared

distance [MSD]) separation between synthetic and original images. However, MSD-based loss functions tend to generate

blurry images [37], and MAD-based loss functions potentially introduce tissue-classification errors, especially for bone and

air differentiation. To demonstrate the efficiency of the lp-norm (p-space ¼ 1.5) distance (MPD) loss, we have compared it

against MAD and MSD-based loss functions. The details can be found elsewhere [38]. Such errors are particularly

significant for dose calculations because of the considerable differences in the electron density of air and bone [39].

Therefore, we introduced MPD as a measure of the distance between the original and synthetic images. We constructed a

loss function based on the MPD and the gradient-difference loss [40]. Generator loss is defined as the sum of the compound

loss between synthetic and real images, the compound loss between cycle and real images, and the adversarial loss

obtained from discriminators, as recommended by Wolterink et al [36]. The discriminator loss was defined as a function of

MPD between the discriminator results of input synthetic and planning CT images. To update kernels for all the hidden

layers, Adam (adaptive moment estimation) gradient descent method was applied to minimize generator loss and

discriminator loss. In the synthesizing stage, only MRI patches were fed into the MRI-to-CT generator to predict SCT

patches, which were fused, consecutively, to construct the final SCT images. The patch fusion is performed by averaging

voxel values when overlapping exists. Figure 1 outlines the workflow schematic for our proposed method. A thorough

comparison of our method against recent random forest–based [41], deep learning–based [42], and cycleGAN-based [36]

methods shows the advantages of our method in detail [38].

Image Quality Evaluation

Mean absolute error (MAE) and normalized cross-correlation (NCC) metrics were used to evaluate absolute differences and

image similarity between pCT and SCT scans, which were defined as follows:

MAE ¼ jICT � IpCTj
C

ð1Þ
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where ICT is the ground truth CT, IpCT is the corresponding pCT, C is the number of image voxels within the body outline, and

lCT and lpCT are the means of the CT and pCT intensity values, respectively. The rCT and rpCT are the standard deviations of

the CT and pCT intensity values, respectively.

Dosimetric Evaluation

The original CT scans for the study cohort, as well as the corresponding SCT scans were transferred to RayStation (version

8A, RayStation Laboratories, Stockholm, Sweden) treatment planning software. Experienced dosimetrists generated proton

plans on pCT scans with pencil-beam scanning technique. Dose calculation was achieved with Monte Carlo (version 4.2)

software, and default spot and energy-layer spacing were used for all the cases. Each plan consisted of 2 beams at optimized

gantry angles (minimum healthy tissue irradiation and robust to setup, HU, and anatomy uncertainties). Dose was prescribed

at 45 Gy in 25 fractions and normalized to 98% of the planning target volume (PTV) receiving 100% of the prescription. As the

purpose of this study was to evaluate the HU accuracy from the SCT scan, no robust optimization (to compensate for setup

and range uncertainty) was used. A simple PTV-based technique was used, and the dose to the PTV was inversely optimized.

Dose falloff and maximum dose-volume histogram (DVH) objective functions were used as constraints for minimization of the

dose outside of the clinical target volume. To validate dose calculation using SCT, each plan generated and optimized on pCT

was recalculated on SCT. Several clinically relevant DVH endpoints (eg, the dose covering 10% of the target volume [D10],

Figure 1. Schematic flowchart of the magnetic resonance imaging-based synthetic computed tomography generation algorithm. The upper part shows

the training stage of the method, which consisted of 4 generators. The bottom part shows the synthesizing stage.
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D50, D95, Dmean, Dmax, relative volume receiving . 10 Gy, [V10], V15, V20) were obtained for each plan based on both pCT and

SCT. The distribution of deviations at each endpoint was displayed with a boxplot. To evaluate dose accuracy based on SCT,

we performed a c-index analysis with MyQA (IBA Dosimetry, Schwarzenbruck, Germany) along the coronal, transverse, and

sagittal planes intersecting at the isocenter within: 3% and 3 mm; 2% and 2 mm; and 1% and 1 mm.

Proton Range Evaluation

Proton distal range was calculated with an IronPython script within the RayStation treatment planning software and was

defined at the 80% distal dose falloff along each beam direction:

Range difference ¼ RSCT
80 � RpCT

80ð3Þ

Relative range difference ¼ RSCT
80 � RpCT

80

RpCT
80

3 100%ð4Þ

The 3 uncertainty criteria defined by 4 institutions—Massachusetts General Hospital (MGH, Boston), MD Anderson Cancer

Center (Houston, Texas), and the University of Florida, respectively—are as described below:

Uncertainty , 3:5%R80 þ 1mm; Uncertainty , 3:5%R80 þ 3mm; or Uncertainty , 2:5%R80 þ 1:5mmð5Þ

The range differences were compared against all 3 criteria.

To further investigate the range differences, a new plan based on the SCT image was created for each case, using the

same beam configurations and optimization objectives as the pCT plan. The proximal and distal energies used to cover the

target were recorded for both plans, and the energy differences between the 2 plans were analyzed.

Results

Image Quality Evaluation

Figure 2 shows 2 transverse, a sagittal, and a coronal plane view of an MRI (Figure 2a) and a pCT (Figure 2b), which was

acquired pretreatment as the routine workflow of treatment for one of the patients, and the column shows the, respectively,

generated SCT scans (Figure 2c). As can be seen, the SCT scans contain anatomical details similar to the pCT scans at each

slice. There are few structural discrepancies between the 2, particularly in the detection of air and bone. These discrepancies

may affect proton range if they appear along the beam path. However, traditionally, beam paths that transverse cavities are

avoided because of range uncertainties that are brought about by the extreme inhomogeneity. The difference in HU value

between the pCT and SCT scans at each plane is presented in Figure 2d. As expected, the discrepancies appear at bone, as

well as air, interfaces. Profiles of pCT and SCT scans along the red line are plotted in Figure 2e.

Figure 2f and 2g provides MAEs and NCCs for each individual patient in the study cohort, respectively. The MAEs of the

SCT scans range from 38.65 to 65.12 HU, with a mean of 54.55 6 6.81 HU, which is considerably lower than the reported

values of 84.8 [43], 92.5 [40], 97 [44], and 149 HU [45, 46]. The NCC is a metric to quantify image similarity between the SCT

and the original pCT scans, and the closer the value is to 1, the more similarity between the 2 images is indicated. Our results

show that the SCT scans for the study cohort ranged from 0.94 to 0.97 with an average of 0.96 6 0.01, indicating very high

similarity. Overall, our machine-learning approach has provided very promising results in terms of image quality.

Lateral and anterior projections of the SCT and pCT were generated within RayStation and are presented in Figure 2h. The

SCT-based digitally reconstructed radiographs (DRRs) appear to be more blurred compared with their pCT counterparts.

However, structures such as superior orbital margin, ethmoid sinus, nasal septum, and crista galli are visible in the SCT-based

DRRs with relatively good details. With the SCT-based DRRs, several bony structures relevant for patient positioning are

delineated and marked with dashed red lines. Once those marks are copied and transferred intact to the pCT-based DRRs,

they match.

Dosimetric Evaluation

Figure 3a and 3b provide dose distributions based on pCT and SCT scans, at identical transverse, sagittal, and coronal

planes intercrossing at the isocenter. Figure 3c presents the dose difference between the 2 at each plane. As can be seen in

Figure 3c, the dose difference is small. To quantitatively analyze the difference, we performed c-index analysis at 3D global
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c criteria: 2% and 2 mm, with 10% threshold for comparison with previously published data, and we find them to be 98% and

higher, presenting good agreement between dose distributions obtained from pCT and SCT images. Differences in PTV and

OAR (whole brain) DVH metrics for all 25 plans calculated for 25 patients are presented with boxplots in Figure 3d and 3e.

The central line in each box shows the median, and the yellow and gray bars present 25th and 75th percentiles,

respectively. The whiskers extend to the most extreme data points, excluding the outliers, which are shown individually with

the 3 symbol. Differences in DVH metrics for all 25 plans are summarized in Table 1. Standard deviations and the P values

Figure 2. Image quality: (a)

magnetic resonance imaging,

(b) planning computed

tomography (pCT), and (c)

synthetic computed

tomography (SCT) for 1 of the

25 patients in the study cohort.

(d) Hounsfield unit (HU)

differences between the SCT

and pCT pairs. (e) Comparison

of HU profiles along the red

line shown in b. (f and g)

Histograms of calculated mean

absolute error and normalized

cross-correlation. (h) Lateral

and anterior digitally

reconstructed radiographs

obtained from the pCT (left)

and SCT, respectively. Red

dotted lines show the

delineated structures obtained

from the SCT, copied to the

pCT.
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calculated with the null hypothesis of the zero dose difference between SCT and pCT scans are presented. For all PTV

metrics, the average of the differences for Dmean, Dmax, D10, D50, and D95 among the 25 plans were small. The P values for

all aforementioned metrics (with the exception of D95) showed no statistical difference. The relative differences for D95 were

, 0.47%, which is very small. Within the OAR (whole brain), the metrics and DVH endpoints are in good agreement, as

depicted in Figure 3e.

Figure 3. Transverse, sagittal,

and coronal views of (a) dose

distribution based on planning

computed tomography, (b)

dose distribution based on

synthetic computed

tomography, and (c) dose

distribution difference. The

statistical distribution of

absolute dose distribution

difference at dose-volume

histogram endpoints for (d)

planning target volumes and

(e) organs-at-risk (brain) for all

25 plans In the study cohort.

The central mark indicates the

median. The yellow and gray

bars indicate the second and

third quartile. (f) The statistical

distribution of the pass-rate

results of the c-index analyses

along the coronal, transverse,

and sagittal planes are within 3

distinct criteria (3% and 3 mm;

2% and 2 mm; and 1% and 1

mm).
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A c-index analysis along the coronal, transverse, and sagittal planes intercepting at isocenter was performed. The statistics

of the pass-rate results are summarized in Table 2, and their statistical distributions are depicted as boxplots in Figure 3f. As

can be seen, all plans pass within the 3% and 3 mm criteria. At the tighter criteria of 2% and 2 mm, the c-index pass rate shows

an average of . 98%. At the tightest criteria within this study (1% and 1 mm), the c-index pass rate averages are 89.2, 91.5,

and 91.7, within transverse, coronal, and sagittal plane, respectively.

Proton range evaluation

Figure 4a presents the proton distal range calculated along each beam for each plan in the study cohort based on the pCT as

well as the SCT. The ranges were retrieved from dose grids in the along-beam direction intercepting the isocenter. The

absolute (and relative) distal range differences vary from 0.0 to 4.0 mm (0.0% to 5%) with a mean of 1.1 6 0.9 mm (1.9 6 1.5

%). Figure 4b shows the distal range differences between pCT and SCT compared with clinically acceptable criteria adopted

by MGH, the University of Florida, and MD Anderson Cancer Center and the University of Pennsylvania. All data points fall

within the acceptable region for uncertainty, with the exception of 2 points (1 beam for patient 1, and 1 beam for patient 19),

which fell inside the criteria for MD Anderson Cancer Center and the University of Pennsylvania, but slightly outside the border

for MGH and the University of Florida criteria. Distal and proximal energies obtained from the SCT plan and the pCT plan for

each patient are displayed in Figure 4e and 4f, respectively. The maximum absolute (and relative) proximal energy difference

was 4.0 MeV (5.4%), with an average of 1.43 6 1.0 MeV (1.7% 6 1.2%). The maximum absolute (and relative) distal energy

difference is 6.7 MeV (4.8%), with an average of 1.69 6 1.5 MeV (1.4% 6 1.2%).

Discussion
Recent works [44] have studied the feasibility of using MRI-only treatment planning so that a given, planned distribution yields

dose distributions that are in close agreement to those based on CT image sets. Because the main challenge in SCT

generation is correct detection of bone and air and given the sensitivity of proton beam dose distribution to inhomogeneities,

we have established a novel approach for SCT generation with a 3D cycleGAN model. We used CT and MRI scans of 25

patients to train the algorithm. Then, the trained model predicted SCT images based on only MRI of another 25 patients in the

study cohort. The results were evaluated based on image quality, dosimetric analysis, and proton distal range.

Table 1. Standard deviation and P values calculated with the null hypothesis of the zero planning target

volume dose difference between the synthetic computed tomography and the planning computed

tomography.

Value Dmean (Gy) Dmax (Gy) D10 (Gy) D50 (Gy) D95 (Gy)

Mean �0.130 �0.028 0.046 0.130 0.259

Standard deviation 0.172 0.357 0.119 0.178 0.321

P .181 .872 .728 .229 .003

Table 2. Mean, standard deviation, and range of the pass rate from the c-index analyses for 3 different

criteria (3% and 3 mm; 2% and 2 mm; and 1% and 1 mm).

Criteria Transverse (%) Coronal (%) Sagittal (%) Total (%)

c-Analysis, 1% and 1 mm

Mean 89.2 91.5 91.7 90.8

Standard deviation 8.0 6.4 8.5 7.8

Range 64.3–98.4 72.2–98.9 66.1–99.8 66.1–99.8

c-Analysis, 2% and 2 mm

Mean 98.17 98.97 98.13 98.42

Standard deviation 3.56 1.62 4.62 3.51

Range 83.9–100 93.7–100 79.5–100 79.5–100

c-Analysis, 3% and 3 mm

Mean 99.92 100.00 99.96 99.96

Standard deviation 0.33 0.00 0.13 0.21

Range 98.4–100 100–100 99.5–100 98.4–100

Shafai-Erfani et al. (2019), Int J Particle Ther 19

MRI-based proton treatment planning



Figure 4. Proton distal range comparison along the direction of each beam calculated based on planning computed tomography (pCT) and synthetic

computed tomography (SCT) for the study cohort. (a) The beam range corresponding to each beam for each patient in the study cohort based on pCT

and SCT. (b) Proton distal range differences along each beam are depicted in purple circles. Solid red, dotted yellow, and dashed blue represent the

criteria adopted from Massachusetts General Hospital, the University of Florida, and MD Anderson and the University of Pennsylvania, respectively. (c)

The statistical distribution of differences in proton distal range calculated based on pCT and SCT along each beam. (d) The statistical distribution of

relative distal range differences. Distal (e) and proximal (f) energies obtained from SCT and pCT along each beam for each patient.
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A side-by-side comparison of SCT and pCT scans shows qualitative agreement. The MAE values obtained for all plans in

the study cohort showed a median of 53.82 HU with a maximum value of 65.12 HU. This is considerably smaller than

previously reported values (125–129 HU) [22, 45, 47, 48], and the maximum MAE value for our SCT scans us almost half of

those previously described. Koivula et al [44] reported an MAE value of 34, which is smaller than our values. It is worth noting

that their MAE was based on voxels that excluded the air cavity, whereas our MAE results included the air cavity as well. Given

that the detection of air and bone is the most challenging obstacle in SCT generation, air cavities comprise the most errors. As

can be seen in Figure 2d, the differences between the SCT and pCT pair arise mainly from detection of air and bone around air

cavities. Therefore, our MAE results, which already include such error-prone regions, are indeed promising and show close

agreement between SCT and pCT scans. Our results are even better than the recent report [49] of and MAE of 67 HU (ranging

from 51 to 115 HU). The profiles along different directions show close agreement in HU values for the 2 as illustrated in Figure

2e. The image similarity is further demonstrated with NCC values close to 1, which show close to perfect agreement between

the SCT and pCT pairs. The SCT-based DRRs provide several detailed structures that are clinically relevant for patient

positioning, suggesting the possible competency of such DRRs for clinical use. Further study of such DRRs is needed to

estimate associated positioning error compared with that of pCT-based DRRs.

It is crucial to evaluate the accuracy of SCT-based dose distribution against those obtained from the original pCT scans. For

tumors of the BoS, accurate detection of bone structure, cartilage, and air cavities is imperative for accurate dose calculation.

Figure 3a–3c shows dose distribution maps for plans obtained based on pCT and SCT imaging along 3 planes for 1 of the 25

patients under study. The dosimetric evaluation of the plans obtained based on SCT and pCT scans reveals no statistically

significant differences between among clinically relevant DVH endpoints (Dmean, Dmax, D10, and D50), with the exception of

D95, which shows difference with a mean of 0.259 Gy. The relative dose difference in this case was 0.47%, which is small. This

is further demonstrated in Figure 3d. With the exception of 2 outlying points, the D95 for all plans falls close to zero. Figure 3e

illustrates the statistical distribution of a few clinically relevant metrics. The differences are mainly for Dmax and D10. The V10,

V15, and V20 within the whole brain show very small variations. The similarity in dose calculations based on the SCT and pCT

pairs is further supported by c-index analysis of the plans along 3 planes coinciding with the isocenter. All plans pass along 3

planes, with a total average of 99.96% within the clinical criteria of 3% and 3 mm. For the tighter criteria of 2% and 2 mm, the

total pass rate averaged 98.62%. For the tightest criteria of 1% and 1 mm, the average pass rate was 90.8%, which is lower

than the 95% for intensity-modulated proton therapy reported by Koivula et al [44].

Proton ranges along each beam of all plans for the 25 patients in the study cohort were calculated and are summarized in a

boxplot in Figure 4. The median value for the difference in distal range was 0.99 mm, with a maximum value of 4 mm. The

median is higher than the median value of 0.5 mm reported by Pileggi et al [50]. However, our maximum falls slightly lower

than the maximum value of 4.4 mm in their report. Relative distal range differences from all beams within the accepted range

for the 3 institutions, with 2 beams (1 beam for patient 1 and 1 beam for patient 19), falling marginally outside the accepted

range. In both cases, beams in question travel through the thick part of bone (in the case of patient 1 because of a very oblige

beam angle, and in the case of patient 19 because of a combination of beam angle and the thickness of the posterior aspect of

the skull).

The sources that comprise the discrepancies in proton range are errors in detection of air and bone, imperfect image

registration, and MRI distortion. The latter is addressed as one major challenge for highly conformal plans [39]. Many

manufacturers have provided solutions to rectify such distortions, and a standard guideline is under development (American

Association of Physicists in Medicine [Alexandria, Virginia] Task Group No. 117: Use of MRI Data in Treatment Planning and

Stereotactic Procedures—Spatial Accuracy and Quality Control Procedures).

We would like to emphasize that we have performed this novel study based on images of patients originally treated by the

SRS technique, and thus immobilized accordingly. However, because proton beams are more sensitive to the variations along

the beam path, immobilization of patients with BoS tumors is performed in a more efficient method. Patients are positioned on

a BoS frame to which their masks are attached. Then, the frame is indexed to the robotic couch. This method allows for a

more-precise patient positioning with fewer patient-repositioning errors. Had these patients been treated with protons, they

would have been immobilized with a proton-specific mask and table top for both CT and MRI simulations. This superior

immobilization technique reduces patient movement during, and in between, CT and MRI scans, as well as for every fraction of

treatment. One desirable aspect of this approach is the minimized differences in patient setup for CT and MRI scans, leading

to fewer image-registration errors, which, in turn, make the training of the model an easier task. Even though our results are

promising as they are, we expect better performance with images obtained from proton-specific immobilization. Another
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interesting objective is to investigate the performance of our method after it has been used to train for cases in which an MRI

with contrast has been acquired.

Another issue with SCT is metal surgical implants because MRI does not have signal for them (only some artifacts around

them). In a pCT scan, the implants are typically contoured with a predefined HU threshold, and their materials and physical

densities (or stopping power) are overridden with known values. Similar strategies can be used for the SCT scan. The implants

could be outlined, and their physical properties overridden with correct numbers for proton planning. In many cases, the

geometry and physical properties are available from the surgery log book, which can be used to double check their contours. In

addition, studies have shown that thin titanium surgical mesh and plate (, 1 mm thick) have a minimal effect on the dose

distribution and proton range [51]. We also noticed, in our clinics, that small titanium screws (, 5 mm long) have little effect on

the dose distribution when they are overridden with the same materials as the surrounding tissue.

Conclusions
We introduced a novel learning-based approach for an MRI-only method of generating SCT scans for proton therapy of BoS

tumors with a 3D cycleGAN. We investigated the efficacy of our method for image quality, dosimetric performance, and proton

distal range. The nonoverlapping training and study cohorts were composed of 50 patients. Results obtained for the study

cohort show that our method is capable of predicting images with close to 1 NCC values and an MAE of 54.55, including

regions of air cavities. The dosimetric analysis based on 50 beams from plans for 25 patients in the study cohort showed

promising results for MRI-only–based proton treatment planning. The DVH endpoints and other metrics show no statistically

significant differences, with the exception of D95 which shows a P value of .003 and comprises a 0.47% relative dose

difference within PTV. The c-index analysis showed an average passing rate of 90% at 1% and 1 mm. The proton distal range

for 48 of the 50 beams (96%) fell below the criteria of 3 institutions. We have demonstrated, through several quantitative

analyses, that our method is capable of predicting SCT images with desirable image quality, appropriate dose distribution

(even in regions in proximity to air cavities), and acceptable proton distal range along each beam. These results highlight the

efficacy of our method because the model has overcome the additional and unwarranted challenges from SRS-specific

immobilization and will improve further if repeated with patients who are treated with proton therapy and immobilized with a

more-effective BoS frame and mask.
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