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ABSTRACT: We present a framework to model microbial
transformations in chemostats and retentostats under
transient or quasi-steady state conditions. The model accounts
for transformation-induced isotope fractionation and mass-
transfer across the cell membrane. It also verifies that the
isotope fractionation ϵ can be evaluated as the difference of
substrate-specific isotope ratios between inflow and outflow.
We explicitly considered that the dropwise feeding of
substrate into the reactor at very low dilution rates leads to
transient behavior of concentrations and transformation rates
and use this information to validate conditions under which a
quasi-steady state treatment is justified. We demonstrate the
practicality of the code by modeling a chemostat experiment
of atrazine degradation at low dilution/growth rates by the
strain Arthrobacter aurescens TC1. Our results shed light on the interplay of processes that control biodegradation and isotope
fractionation of contaminants at low (μg/L) concentration levels. With the help of the model, an estimate of the mass-transfer
coefficient of atrazine through the cell membrane was achieved (0.0025s−1).

■ INTRODUCTION

Organic chemicals such as pesticides, pharmaceuticals, or
personal-care products are ubiquitously used and have
increasingly been detected in surface water and groundwater.1,2

Even though the concentrations are low (submicrograms-per-
liter), levels are still high enough to be of potential concern.3

For instance, atrazine concentrations investigated in this study
are, although low (20−50 μg/L), still above threshold values
for drinking water worldwide (0.1 μg/L).4,5 These trace
organics have received increased attention as micropollutants.6

While many micropollutants are biodegradable at high
concentrations, their microbial degradation is observed to
decrease at trace levels, down to a threshold at which natural
attenuation appears to diminish.7 The question whether the
reason is physiological adaptation of microorganisms (i.e.,
down-regulation of catabolic enzymes in response to substrate
scarcity8), or bioavailability limitation of substrate (i.e., rate-
limiting mass transfer into microbial cells when enzyme
kinetics is no longer zero-order9,10) has been a long-standing
debate. An answer to this question may offer a new perspective
on the behavior of microorganisms at low concentrations.
Until now, it has been difficult to observe the onset of mass-

transfer limitations directly. Even though the concept of
bioavailability limitations is well-established,10 so far it is
uncertain at which exact concentrations such a mass-transfer

restriction comes into play, and how this relates to
physiological adaptation. Recently, isotope fractionation has
been brought forward as a new opportunity to accomplish
precisely such a direct detection of mass transfer limita-
tions.11−13 Basically, the isotope ratio of a micropollutant
changes during a biochemical reaction since molecules with
heavy isotopes are transformed at a slightly different rate than
those with light isotopes.14−16 These changes, however, can
only be observed if there is a rapid exchange of molecules
within the cell interior at the enzyme level (bioavailable) with
those outside the cell (bulk) where samples are taken for
analysis. The exchange rate between bioavailable and bulk
domains is described by a linear model in which the mass-
transfer coefficient of the cell membrane is included.9,10,13 In
the presence of mass transfer limitations (i.e., when mass
transfer coefficients are small), the slow exchange rate of
isotopologues between these domains generates pools of
different isotopic ratios across the exchanging interface (i.e.,
the cell membrane). At the scale of a cell, this means molecules
diffuse into or out of the cell at a rate much slower than the
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rate at which the enzymatic isotope effect occurs. The
phenomenon has been usually referred to as masking of
isotopic signatures meaning that the measured isotopic
fractionation at bulk domain is notably different than the
actual, transformation-induced isotopic fractionation occurring
at bioavailable domain (i.e., the cell interior).12,13 As such,
carbon and nitrogen isotope signatures provide direct evidence
of mass-transfer limitations and have the potential to be used
to quantify associated mass-transfer coefficients.
Previous studies examined such mass-transfer effects at

relatively high concentration levels where bacteria were
cultivated at sufficiently high substrate concentrations and
then suddenly exposed to a low substrate concentration.11,12

The drawback was that cells could not adapt to a specific
concentration in batch experiments, obstructing the inter-
pretation of measured concentrations and isotope ratios. Thus,
to assess the degree of influence that mass-transfer limitations
exert at steady low concentrations, an experimental system is
required that continuously maintains the contaminant
concentration at a low and environmentally relevant level for
a reasonably long time so that cells have enough time to adapt
to low-energy conditions. This was beyond the reach of
previously conducted batch experiments involving atrazine.14

A solution is offered by chemostats and retentostats that run
at very low dilution rates. Here, substrate is continuously
added and residual substrate and cells are continuously washed
out from the bioreactor. Such chemostats are operated in a way
that the essential growth rate equals the dilution rate so that
biomass and residual concentrations remain constant within
the reactor. While chemostat experiments have a long tradition
in bioengineering,17,18 few studies have used them to study
isotope fractionation.19,20 To our knowledge all preceding
isotope studies in chemostat have measured isotope fractiona-
tion by taking the difference between substrate and product.
This is particularly true for studies on photosynthesis which
were run on nitrate limitation so that although mass transfer of
carbon dioxide was addressed, bicarbonate was always present
in great excess and was never the limiting substrate.21,22 In
contrast, none has determined isotope fractionation by relating
isotope ratios of the same substrate from the feed and the
outflow of a reactor. In an experimental study submitted along
with this contribution23 we therefore set out to study
degradation of atrazine by the strain Arthrobacter aurescens
TC1 in a chemostat at very low dilution rates (and thus low
concentration levels) with the aim to pinpoint the onset of
mass transfer limitation by compound-specific isotope analysis
(CSIA).
Application of CSIA can unravel the underlying dynamics if

validated by a chemostat model that is able to account for the
mechanisms of mass transfer and transformation-based
isotopic fractionation at low dilution rates. Furthermore, the
model allows the delineation of the interactions between these
processes in a traceable manner and thus provides a platform
to critically evaluate the experimental setup, guide the
experimental approach, precheck possible pitfalls, and assist
in quantification of the results. The first aspect is the usual
concern associated with chemostats running at very low
dilution rates where a dropwise input may create disconti-
nuities in substrate levels and result in adverse consequences.
For instance, too-slow drip feeds may create “feast and famine”
conditions for microorganisms preventing adaptation to a
certain condition.24 As a consequence, the typical analyses of
chemostats, which are based on the assumption of constant

inflow conditions,25 do not accurately resolve the change of
concentrations and isotopic values in waiting times between
two subsequent droplets. To overcome this issue, we present a
chemostat/retentostat model that considers the transient
behavior under rapid changes of boundary conditions (here
addressed by a periodic inlet). The model then enabled us to
illustrate the extent of influence that inlet discontinuities may
have on the steady-state observations. The second aspect is the
new way in which degradation-associated isotope fractionation
is evaluated in chemostats. Isotope fractionation has so far
been calculated as a function of remaining substrate in batch
experiments according to the Rayleigh equation.26,27 In
chemostats, however, the substrate continuously enters and
leaves the reactor, and the observed isotope fractionation must
thus be derived from the difference between isotopic ratios of
the same compound in inlet and outlet. This is again different
from previous approaches which also considered the substrate
in the inlet, but determined isotope fractionation by
comparison to the product in the outlet. Using the model,
we were able to confirm the validity of the experimental
approach in the companion paper.23 The third aspect is the
inclusion of mass transfer across the cells’ membrane (i.e.,
between the monitored bulk solution and the cell interior9)
into the chemostat equations. It is worth noting that due to
high stirring speeds in chemostat the effects of incomplete
mixing in the bulk phase are negligible so that the transfer
through the cell membrane remains as the only physical
barrier. The model offers a platform to describe mass transfer
through the cell wall and to derive tentative quantitative
estimates on mass-transfer coefficients. The fourth and final
aspect is related to sensitivity and error propagation analyses of
the model in order to understand the relationships between the
uncertainty of input parameters and model estimates. Global
sensitivity analysis further contributes to our understanding of
how the variation in the model estimates can be apportioned to
the variation in the input parameters. The model was then
applied to the experimental study of atrazine degradation by
Arthrobacter aurescens TC1 at low concentrations, detailed in
the companion paper.23

The overall aim of this contribution is to introduce a
comprehensive modeling tool in order to quantitatively analyze
the interactions between the following processes: (1) mass
transfer through the cell membrane, (2) enzymatic trans-
formation, and (3) transformation-induced compound-specific
isotope fractionation in chemostats/retentostats with (4)
periodic input of substrate.

■ MATERIALS AND METHODS

Model Equations. We consider the concentrations of light
and heavy isotopologues of a substrate (lS and hS [ML−3]), and
the biomass concentration (X[ML−3]) as dynamic state
variables. Note that the dimensions of all variables are
introduced by bracketed variables T, M, and L, respectively,
referring to the units of time, mass, and length. The turnover of
substrate is described by Monod kinetics28 with competitive
inhibition among the isotopologues, and is coupled to the
input and output of substrate through the inflow and the
outflow of the reactor, respectively. Biomass growth is assumed
proportional to the substrate turnover via a yield factor. This
leads to the following system of ordinary differential equations:
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where rD[T
−1] is the dilution rate coefficient (flow rate divided

by the reactor volume), qmax[T
−1] denotes the maximum

specific conversion rate, Km[ML−3] is the half-saturation
constant, m[T−1] is the maintenance term, α[−] indicates
the isotopic fractionation factor, Y[−] is the yield coefficient,
and f [−] denotes the fraction of biomass filtered at the
outflow, ranging between zero (biomass leaves the system at
the reactor current concentration; chemostat) and one
(complete filtration of biomass thus no biomass discharges
from the outlet; perfect retentostat). The maximum specific
growth rate μmax[T

−1] is related to qmax by μmax = Y(qmax −
m).29,30

The chemostat equations accounting for the mass-transfer
through the cell membrane are modified such that the
concentrations outside the cells (S) differ from the
concentrations inside the cells (Sbio). Thus, S and Sbio are
referred to as the substrate concentrations in the bulk and
bioavailable phases, respectively.9,31,32 A linear-driving force
model with the mass-transfer coefficient ktr[T

−1] was assumed
to control the exchange between these two phases. Including
such mass-transfer limitations, eqs 1a to 1c change as follows:
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in which the observable isotope fractionation in the bulk phase
is affected by the transformations inside the cell and the mass
transfer between bulk and bioavailable phases. The initial
concentrations for the substrate and biomass are indicated by
Sini[ML−3] and Xini[ML−3]. The isotope ratio of the heavy and
the light isotopologues of the substrate is evaluated in the
common δhS[‰] notation:
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R
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typically expressed in parts per thousand, where R is the
reference isotope ratio of VPDB (Vienna Pee Dee Belemnite).
The model is presented in a general form and in principle can

be applied to any stable isotope element. In this study, we
examined the carbon isotope effects of atrazine and thus hS and
lS are respectively replaced by 13S and 12S, representing the
concentrations of substrate isotopologues containing heavy
(13C) and light (12C) carbon isotopes. As a result, the δ13C
notation replaces δhS and represents the observed isotopic
signatures of carbon.

Model Solution. We solved the above systems of ordinary
differential equations, ODE, (eqs 1a to 1c and eqs 2a to 2e)
with the MATLAB ODE suite (e.g., the ode15s solver).33,34 To
avoid unintended numerical instabilities, the input pulses were
smoothed using forth-order analytical expressions.35 For
smoothing the pulses, the user can choose the time period
over which the pulse is smoothed, which may be interpreted as
the mixing time in the system depending on agitation, droplet
size, and reactor volume. A higher numerical stability is
achieved when the smoothing intervals are larger. However,
the smoothing interval should be substantially smaller than the
interval between the pulses in order to avoid flattening the
periodicity of the incoming droplets. Increasing the smoothing
intervals will negate the very purpose of examining the droplet
effect, as extreme smoothing would in principle be identical to
having a continues feed (averaging the droplet volume over the
time period and resulting in a constant feed). The smoothing
type can be chosen between the following two polynomial
spike functions:
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producing either a smoothed pulses with a constant area
underneath (in case of eq 4a) or a pulse that is set to reach to a
specific peak height (in case of eq 4b). t[T] denotes the time
variable which varies between zero and the time until the next
droplet, s[T] denotes the length of the smoothing interval.
Although both approaches are available in the model, we used
the first smoothing function eq 4a as the other expression
overestimates the introduction of mass into the system. We
also skipped the maintenance term in the chemostat model
since its effect on isotope signatures was found to be negligible
(discussed in more details in Ehrl et al.23). According to Pirt,30

μmax = Yqmax when m is small enough to be treated as zero. The
forthcoming sensitivity and uncertainty analyses then considers
μmax as an input parameter instead of qmax. The parameter
values are taken from the companion paper of Ehrl et al.23 for
degradation of atrazine by the strain Arthrobacter aurescens
TC1 in chemostat, and are listed in Table 1.

Model Accuracy and Stability. The model is validated by
comparing the results with the experiment23 and its accuracy is
evaluated through the comparison with the analytical model of
Thullner et al.13 Although eqs 1 and 2 are written in a general
perspective and include essential terms such as maintenance
energy, additional processes can still be introduced within the
existing potentials of the model. For instance, the model allows
introducing degradation mechanisms other than Monod (or
Michaelis−Menten) kinetics, for example, at very small
concentration levels ([S] ≪ Km) using a first-order kinetics
might describe the system behavior more effectively, or in cases
where the concentrations of both reaction partners (electron
donor and acceptor) become rate-limiting, a dual Monod
kinetics can be introduced. A similar flexibility holds for
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changing the mechanism controlling the rate of exchange
across the cell membrane, which is currently expressed by a
linear term and can be substituted by more sophisticated
nonlinear expressions.
Use of MATLAB ODE suite as the internal solver increased

model stability on handling relatively stiff problems. However,
it should be noted that the model can still turn out numerically
unstable if the smoothing interval of droplet is not sufficiently
large with respect to the time period between droplets. As a
rule of thumb, the smoothing interval should be around 15% of
the period between droplets, that is, the time between each
input cycle.

■ RESULTS AND DISCUSSION
Model Results. Regarding the first questionthe effect of

discontinuitiesFigures 1 and 2 show that the model is well

capable of capturing the transient behavior caused by drip-
feeding of substrate (as it is perceived in the chemostats at very
low dilution rates). The results confirm that the effects from a
discontinuous input on concentrations and isotope composi-
tions are small at the given dilution rate. Figure 2 displays the
same data as Figure 1 over a short time period when dynamic
steady state has been reached, and magnifies the recurrent
fluctuations for better recognition of details. Under dynamic
steady-state conditions the periodic input of droplets causes
concentrations to fluctuate by 3% at most, which justifies the
steady-state treatment adopted in the companion paper.23

To address the second aspect, the evaluation of isotope
fractionation from the inlet and the outlet of chemostat: the
model was provided with the actual, enzymatic, intrinsic
isotopic fractionation for degradation of atrazine by strain
Arthrobacter aurescens TC1 ϵ13C = α−1 = −5.4‰ as input
parameter (see Table 1). This value had been determined in
batch experiments with bacterial cultures degrading atrazine at
high (mg/L) concentrations14,31 and with pure enzyme in the
absence of bacterial cells.16 In all of these cases, mass-transfer
limitations are either absent or insignificant. Therefore, in the
absence of a mass-transfer term (solving eqs 1a to 1c), the
model should predict that the carbon isotope signatures δ13C
inside the chemostat differs from that in the inflow by almost
the same enrichment factor ϵ13C of batch studies
( δ δϵ = − = −C C C 5.4‰13 13

inlet
13

outlet ). Figure 1 shows the
simulated time series of concentrations and δ-values for this
case where the concentration inside the cells equals the
concentration in the bulk solution (eqs 1a to 1c). As shown,
the obtained δ13C values at steady-state eventually approach
the actual fractionation coefficient reported from the batch

Table 1. Model Solution. Model Parameter Values Taken
from Ehrl et al.23

reactor volume (V) 2000 mL
dilution rate (rD) 0.009 hr−1

average droplet size (Vd) 0.1 mL
average time between droplets (td) 20 s
atrazine concentration at the inlet (Sin) 30 000 μg/L
maximum specific conversion rate (qmax) 6.01 hr−1

half-saturation constant (Km) 237 μg/L
yield factor (Y) 0.018
isotopic fractionation factor (α) 0.9946
initial atrazine concentration in reactor (Sini) 65 μg/L
initial concentration of biomass in reactor (Xini) 550 μg/L
fraction of biomass retained from chemostat outflow ( f) 0

Figure 1. Solution of eqs 1a to 1c (in the absence of mass-transfer limitations across the cell membrane) for the following set of parameters: Sin =
30 000 μg/L, μmax = 0.11hr−1, Km = 237 μg/L, Y = 0.018, α = 0.9946, Sini = 65 μg/L, Xini = 550 μg/L, and rD = 0.009 hr−1. For better illustration of
the droplet spikes, the dilution rates together with the changes of concentration, biomass, and δ13C at steady-state are shown over a short time span
(100 s) in Figure 2. Although the concentrations of the substrate isotopologues decrease monotonically, the slight shift of timing between the light
and heavy isotopologues cause a nonmonotonic behavior of the isotope ratios. As a result, the values of δ13C exceed slightly above the final value
between times 500 and 1000 s.
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experiments (δ13C = 5.4‰),14,16 validating the method of
calculating the evaluation of ϵ13C between the inlet and the
outlet of chemostat experiments. ϵ13C has been traditionally
determined as the difference between isotope values of an
infinitely large reservoir of bicarbonate in the chemostat and
the biomass formed.21,22 The approach clearly does not work
for our experiments for the following reasons. In previous
studies, bicarbonate was present in excess and nitrate was the
limiting source for growth whereas in our experiments the
carbon-containing substrate (atrazine) is the limiting source
and required to be depleted in order to mimic the
environmentally related conditions. Hence, the only way to
determine epsilon is to measure it as the difference between
atrazine in inflow and outflow (as theoretically derived by
Hayes36). In addition, the flow-through rate in a chemostat
must be reasonably slower than the rate of degradation in

order to be able to identify and measure the substrate decay,
and to prevent overwriting the enzymatic isotope fractionation
by isotope ratios of the inflow. Solving eqs 1a and 1b at steady-
s t a t e a n d a s s u m i n g t h a t
λ [ ] = [ ] [ ] + [ ] +−T q X S S K/( )app

1
max

12 13
m is the apparent

first-order decay coefficient, the following equation can be
derived:

δ δ δ
α λ

λ

Δ = − = −ϵ
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−
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C C C C

r
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(1 )

13 13
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13
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13
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which is analogous to eq (8) in Farquhar et al.37 (see also the
derivation in “Materials and Methods” of Ehrl et al.23). Thus,
the difference between inflow and outflow would be expected

Figure 2. Solution of eqs 1a to 1c at steady-state. The figure is a close-up snapshot of the last 100 s in Figure 1 at which the system has reached
steady-state. Based on size of droplet (0.1 mL), volume of chemostat (2 L), and the dilution rate (rD = 0.009 hr−1) the droplet frequency is
calculated as one drop per every 20 s. The smoothing interval is assumed 5 s. For this setup, the results at steady-state are averaged as δ13C = 5.4 ±
0.2‰, 12S = 20.66 ± 0.6 μg/L, X = 550.74 ± 0.01 μg/L.

Figure 3. Solution of eqs 2a to 2e (in the presence of mass-transfer limitations across the cell membrane) for the set of parameter values in Figure 1
and ktr = 0.0025s−1. Note that due to mass-transfer limitations the observed δ13C = 2.2‰ at steady-state notably reduced from 5.4% in Figure 1. It
is worth mentioning that inside cells (i.e., at the bioavailable domain) the δ13C is equal to the expected value of 5.4‰ (data not shown).
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to approach ϵ13C under realistic, sufficiently small dilution
rates as it is also confirmed by the model.
Regarding the third aspectin order to assess how

observable isotope fractionation is influenced by mass-transfer
limitationswe applied the model to the experimental data
obtained in chemostat experiments of our companion paper.23

At high dilution rates (>0.018 hr−1) and at high bulk
concentrations (>100 μg/L), the measured difference between
isotopic ratios in the inlet and the outlet perfectly matched the
isotope fractionation from batch experiments, similar to our
model predictions in the absence of the mass transfer limiting
term (see above). In contrast, Ehrl et al.23 observed lower
isotope fractionation with decreasing chemostat dilution rates.
At a dilution rate of 0.009 hr−1 an isotopic fractionation of ϵ13C
= −2.2‰ was measured which was noticeably smaller in
magnitude than the previously reported values for this reaction.
This revealed the importance of mass transfer through the cell
membrane under low-energy conditions. To reproduce a
dilution rate of 0.009hr−1 in our model, a periodic input of
every 20 s was assumed with droplets of approximately 0.1 mL
into a chemostat with 2 L volume. Figure 3 shows the
concentration and isotope time-series for this case (solution of
eqs 2a to 2e). By solving eqs 2a to 2e, in which mass-transfer
mechanisms are taken into account, the model was able to
reproduce smaller δ13C values in the outlet (and, hence,
smaller apparent isotope fractionation ϵ13C) when the
exchange rate through the cell membrane was slowed by
assigning low values of the mass-transfer coefficient ktr. In
order to determine the value of ktr in the experiment, we used a
trial and error fitting procedure. In this procedure, the value of
ktr is constrained such that the late-time δ13C-values (at steady-
state) equal the value observed in the experiment. At the
dilution rate of 0.009 hr−1 using ktr value of 0.0025 s−1, we
achieved an apparent isotopic enrichment value of ϵ13C =
−2.2‰ which corresponds well to the reported value in Ehrl et
al.23 Figure 3 shows the concentration and isotope time-series
for this case (solution of eqs 2a to 2e). Here, the simulated
concentrations inside the cell Sbio were found to be only about
40% of the concentrations S outside the cell. Boosting the
exchange rate between bulk and bioavailable domains through
gradually increasing the value of the mass-transfer coefficient
ktr in the model increased the late-time δ13C-values and
eventually reached the value of the actual, transformation-
induced, intrinsic isotopic fractionation coefficient ϵ13C =
−5.4‰ (identical to the late-time δ13C-value in Figure 1).
The evaluation of the forth aspectsensitivity of model

estimates to the input parameters (Table 1)is detailed as
follows.

■ SENSITIVITY AND UNCERTAINTY ANALYSES
Uncertainty Propagation Analyses. A Monte Carlo

simulation was used to propagate the uncertainty originating
from experimental and analytical variability of the parameters
ktr, Km, μmax, and Sin onto concentrations and isotopic
signatures. In order to reduce the total runtime of the
Monte Carlo simulations, we reduced the walltime needed for
simulating a single scenario to 7.5 s on a quad-cores Intel Core
i5−4590 CPU at 3.30 GHz with 16GB RAM by optimizing the
code and performing parallel computations.
Eqs 2a to 2e were solved for 50 000 randomly generated sets

of parameters, which took about 105 h walltime. In each
realization, the parameters of eqs 2a to 2e were perturbed at
random, scaled to the experimentally obtained standard error.

Mean values and standard deviations were calculated from
repeated replicates (237 ± 57 μg/L for Km, 0.11 ± 0.02 hr−1

for μmax, and 30 000 ± 600 μg/L for Sin). In case of ktr, since
the value is not experimentally determined, a relative standard
error of 20% was presumed (0.0025 ± 0.0005s−1). All
parameters were drawn from normal distributions and no
correlation was assumed between the input parameters.
The Monte Carlo simulations showed probability distribu-

tions of the model outputs (δ13C, 12S, 13S, 12Sbio,
13Sbio, and X)

as the result of the input parameter variabilities. Figure 4 shows

the 16−84% probability range of model outcomes which
corresponds to ±1 standard deviation of a normal distribution.
Table 2 lists the average and standard deviation of all model
predictions at late time. There is a small offset between the
mean output of the ensemble calculation and a single run using
the mean input parameter values which can be attributed to
the nonlinear dependence of model outputs on the parameters.
Figure 4 shows that the parameter uncertainty translates into a
large uncertainty of model predictions, with coefficients of

Figure 4. Uncertainty analysis using a Monte Carlo simulation. The
68% confidence intervals are shown for all the output parameters,
from top to bottom, isotopic signature, biomass concentration,
bioavailable, and bulk substrate concentrations (for both heavy and
light isotopologues respectively). Note that the perturbations resulting
from the periodic inlet are more visible at the profiles for bulk
concentrations and δ13C-values.
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variation (also known as relative standard deviations) between
20% and 33% for solute concentrations and δ-values. Among
all model predictions, biomass (X) was clearly the least affected
by uncertainties.
The 95% confidence interval of δ13C ≈ 2.17 ± 0.92‰ does

not cover the value of δ13C = 5.4‰ expected from the isotope
fractionation of the reaction.14,16 This clearly illustrates the
ability of the model to pinpoint the limitations of mass transfer
across the cell membrane as the origin of masked isotope
fractionation in chemostats at low dilution rates. As a result,
the observed isotopic signatures (δ13C) are noticeably smaller
than the expected transformation-induced isotopic signatures.
Sources of uncertainty exist that are not addressed by the
Monte Carlo simulations, for example, the error in measuring
the dilution rate or the uncertainties associated with the size of
droplets. The error propagation of these factors is assumed to
be insignificant and is partly lumped into the uncertainty of the
inlet concentration (Sin).
Local Sensitivity Analysis. A tornado diagram is used

here to depict the local sensitivity of the simulated δ13C-value
at steady state with respect to the changes in the input
parameters: ktr, Km, μmax, Sin, and the time between droplets 1/
rD. To compare the relative importance of the above input
parameters, we varied the value of one input parameter at a
time by 20% while keeping all the other input parameters at
their base values. As expected, the results (depicted in Figure
5) show a strong sensitivity toward the mass-transfer

coefficient ktr in the chemostat model accounting for mass-
transfer limitations eqs 2a to 2e. The modeled isotope
signatures show a similar but weaker sensitivity to Sin and
Km whereas variations of μmax and 1/rD inversely influence the
values of δ13C noting the absolute sensitivity to μmax is on par
with that to ktr. The results clearly indicate that the impact of

physiological parameters (Km and μmax) are as significant as
that of the physically motivated parameter (ktr).
A similar sensitivity analysis was performed with the model

neglecting mass-transfer limitations, eqs 1a to 1c. Unlike the
previous model, the simulated late-time δ13C-values showed no
sensitivity to the changes of the input parameters Km, μmax, Sin
and 1/rD (data not shown). This implies that in the presence
of mass transfer limitations, the sensitivity of the observed
δ13C-values even to other input parameters (e.g., Km and μmax)
is affected by the magnitude of the mass-transfer coefficient ktr.

Global Sensitivity Analysis. We used the variance-based
analysis of Sobol38 for global sensitivity analysis (GSA). The
benefit of a global over a local sensitivity analysis is that it
accounts for the entire range of all parameter values rather than
focusing on one parameter value at a time. As such, GSA offers
a more robust solution in elucidating the impact of an
individual parameter considering that all other parameters are
also uncertain. To this end, a quasi Monte Carlo method (here,
a Latin hypercube sequencing sampler) was employed to
generate 60 000 sample scenarios that uniformly covered the
space of input parameters. The first-order index (FOi) and the
total-order index (TOi) were then calculated similar to Pianosi
et al.39 and Sobol and Levitan.40 FOi indicates the effect of an
individual parameter variation alone on an output variable,
whereas TOi includes also the effects caused by the
interactions of that parameter with all other parameters.
The pie charts in Figure 6 demonstrate the sensitivity of

output variables: δ13C-values, biomass (X), bioavailable (Sbio)
and bulk concentrations (S) to the input parameters Sin, μmax,
Km, and ktr. The GSA confirms the relatively equal sensitivity of
the δ13C-values to Km, μmax and ktr as previously estimated from
the local sensitivity analysis (Figure 5). Bulk concentration
showed a relatively high sensitivity of about 50% to the ktr
values which is in the range of the combined sensitivity to all
other input parameters. Among the model predictions, bulk
concentrations are affected the most by mass transfer followed
by δ13C-values at the second place. To our surprise, the
bioavailable concentrations showed no sensitivity to mass-
transfer effects. The variation of Km showed a predominant
effect on the variation of all predicted quantities except
biomass. In fact, biomass showed no sensitivity to variation of
any input parameter. This might be due to the reason that in
all scenarios the biomass concentration hardly changed with
time (see Figure 4).
The TOi pie charts provide a measure on the importance of

interactions (of any order) between the input parameters. As
shown in Table 3, the total order indices TOi and the first-
order indices FOi were almost identical, indicating that the
interactions between parameters did not impose any significant
effect on variability of the model predictions except for
biomass (X). We extended our GSA for another 60 000 sample
scenarios to the total amount of 120 000 scenarios to check the
consistency of the results and to see whether the sensitivity
indices can be improved. Similar indices as those listed in

Table 2. Uncertainty Analysisa

δ13C‰ 12S (μg/L) 13S (μg/L) 12Sbio (μg/L)
13Sbio (μg/L) X (μg/L)

model run with mean input parameters 2.21 50.72 0.57 20.75 0.23 549.82
Monte Carlo simulations 2.17 ± 0.47 52.89 ± 10.25 0.59 ± 0.12 21.60 ± 7.18 0.24 ± 0.08 549.77 ± 0.31

aThe estimated average and standard error of output parameters calculated from Monte Carlo analyses of 50 000 randomly generated sample
scenarios based on the error variability of input parameters (Km = 237 ± 57 μg/L, μmax = 0.11 ± 0.02hr−1, Sin = 30 000 ± 600 μg/L, and ktr =
0.0025 ± 0.0005s−1).

Figure 5. Local sensitivity analysis. Tornado plot showing the
sensitivity of the observed δ13C values to the input variables ktr, Km,
μmax, Sin, and the inlet periodic time (1/rD) when mass-transfer
limitations across the cell membrane are present eqs 2a to 2e.
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Table 3 were calculated for all model outputs except for the
biomass (data not shown). The inconsistency between biomass
indices (obtained from 60 000 and 120 000 sample scenarios)
indicates that the calculated sensitivity indices for biomass are

possibly incorrect. This might have been caused by numerical
errors originating mainly from the negligible change of biomass
with time.

Temporal Dynamics of Biomass Growth. The model
accounts for the temporal dynamics of biomass growth and
washout in the chemostat system eqs 1c and 2e. We assumed
standard Monod kinetics28 in which biomass growth is
proportional to the turnover rate. Growth depends only on
the concentration of a single substrate, indicating that all other
compounds required for growth are available in excess. The
only removal term is described by washout via outflow. This is
a reasonable assumption for a chemostat system, in which the
loss due to washout is considerably greater than the biomass
death rate. Maintenance terms are also not considered since
the energy demand for maintenance is constant under quasi
steady-state conditions. Hence, the maintenance effect is
conveniently assumed to be subsumed in the yield factor (for
an explicit treatment of maintenance energy see the Supporting
Information of Ehrl et al.23). Furthermore, we did not consider
a prescribed carrying capacity, or maximum biomass
concentration, since the simulated biomass concentration
remained fairly low as a result of limited supply of substrate
and continuous washout of cells. Such an assumption is not
valid for a model of a perfect retentostat where washout of
biomass is prohibited and as a result biomass growth must be
balanced by the maintenance energy requirement, biomass
decay, or reaching the maximum carrying capacity.
In Figure 3, the biomass decreases at late times while

substrate concentrations reach steady state. This can be
explained by the initial biomass concentration being higher
than the steady-state biomass which is controlled by the
balance between bacterial growth and dilution rate. Here, a
high initial biomass concentration mimics the conditions of an
inoculum at high concentration levels.

Comparison with the Analytical Model of Thullner et
al. (2008). We compared our model to the analytical model of
Thullner et al.13 which estimates the observed isotopic
fractionation factor α under steady-state conditions in relation
to the intrinsic isotropic fractionation of the enzymatic reaction
α°,

α α
α

= ◦ + + +

+ ◦[ + + ]

T a k T

T a k T

1 /2 / /4

1 /2 / /4

tr
2

tr
2

(6)

where T = (a/ktr − S/Km − 1) is a dimensionless term and a =
μmax/Km is the specific affinity of the microorganism promoting
the enzymatic reaction. For an arbitrary case of ktr = 0.002s−1,
Km = 50 μg/L, μmax = 0.027 hr−1, Y = 0.036, Sini = 65 μg/L, Xini
= 1000 μg/L, α° = 0.994 and rD = 2.5× 10−6s−1, the observed
δ13C at steady-state was calculated by our model to about

Figure 6. Global sensitivity analysis. The pie charts show the
contributions of variability in the parameters ktr, Km, μmax, and Sin to
the steady-state δ13C-values, X, Sbio, and S (Table 3) for the case
where mass transfer is limited across the cell membrane eqs 2a to 2e.

Table 3. Global Sensitivity Analysisa

FOi TOi

δ13C X Sbio S δ13C X Sbio S

Sin 0.0014 0 0.0152 0.0377 0 0.01119 0.0049 0.0165
μmax 0.2706 0 0.4153 0.2663 0.2658 0.2217 0.4108 0.2559
Km 0.4010 0 0.5737 0.3584 0.4052 0.3194 0.5914 0.3690
ktr 0.3294 0 0.0114 0.5780 0.3276 0.1208 0 0.5531

aThe first-order index (FOi) and the total-order index (TOi) of the output parameters (δ13C-values, X, Sbio, and S) in respect to the input
parameters (Sin, μmax, Km, and ktr). The higher the value, the more impact the input variability exerts on the variance of the output parameter. Note
that both heavy and light isotopologues showed a similar sensitivity trend in bulk and bioavailable domains.
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2.64‰. Using eq 5, the apparent fractionation factor α was
calculated as 0.99738 which yields the observed δ13C = 2.62‰.
This means that the two models estimated similar observed vs
expected isotopic signatures. It is worth noting that unlike the
analytical model,13 the presented numerical model can
determine the observed isotopic signatures also under transient
conditions.
Implications for Natural Systems. The model validated

the approach of isotope fractionation measurements between
the outflow and the inflow of a chemostat where a steady, low,
and environmentally related concentration of a micropollutant
is maintained for a time long enough to allow the adaptation of
bacterial cultures. The model elucidates the role of mass-
transfer limitations across the cell membrane in regulating the
observed vs expected compound-specific isotopic signatures in
chemostats. In addition, our results confirm that slow mass
transfer across the cell membrane can mask the true isotope
fractionation of a chemical transformation. So far the
differences between observed isotopic signatures from
laboratory and field were attributed to other factors, such as
leakage from other contaminant sources or hydrologically
driven mechanisms (e.g., by transverse dispersion at plume
fringes41). As shown here, such differences in isotope
fractionation can also stem from bioavailability limitations
and may even originate from mass-transfer limitations across
the cell membrane. The effect from bioavailability limitations is
much more pronounced at low concentrations, and therefore is
of high relevance for many micropollutants of which
concentrations typically do not exceed micrograms-per-liter.
Recognition and understanding of the interplay of bioavail-
ability limitations with other existing processes thus enhance
the overall interpretation of isotope signatures under field
conditions.
Under the influence of other processes the isotopic

signatures show no dependency on enzymatic reaction rates.
Thus, one way to identify the masking of isotope signatures as
the result of mass-transfer through a cell membrane is to focus
on the fact that isotopic signatures are highly sensitive to
enzymatic transformation rates in the presence of mass-transfer
limitations (see the sensitivity of δ13C to μmax in the presence
of ktr). Therefore, two strains with different metabolic activities
when feeding on a single substrate must exhibit different
isotopic signatures under mass-transfer limitations, assuming
both have an identical isotopic fractionation factor and similar
cell membrane characteristics.
Potential Model Applications. The presented model

improves the mechanistic understanding of contaminant
degradation in microbial ecosystems. While the model in its
current form is only applied to fully mixed reactors, it can be
easily coupled to solute transport equations42−44 contributing
to the development of models that more realistically describe
fixed-bed reactors and natural subsurface systems.
A practical aspect of our model is its capacity to calculate the

membrane permeability of a specific cell in conjugation with
chemostat/batch experiments. The differences between the
observed isotopic signatures (δ13C) in batch and chemostat
experiments are linked to mass-transfer limitations through the
cell membrane which is widely referred to as membrane
permeability. The formulation on how to obtain the value of
membrane permeability Papp[LT

−1] and the diffusion coef-
ficient through the membrane Dmem[L

2T−1] from the mass-
transfer limiting coefficient ktr[T

−1] is presented and discussed
by Ehrl et al.23 According to the model results, atrazine

permeation through the cell wall of Arthrobacter aurescens TC1
was approximated as Papp = 3.5 × 10−5ms−1 and Dmem = 1.9 ×
10−16m2s−1, which are close to the values reported for a typical
range of small organic molecules.45−47 While different
techniques are used in pharmaceutical studies to determine
the membrane permeability, the present model provides an
alternative way of estimating it.
Sensitivity analysis of the model enables users to inspect the

influence of different physical and physiological parameters on
the observable isotopic signature before performing the
experiments. The results provide clarity into the specific
features influencing isotopic signatures in chemo- and
retentostats. The modeling framework used in this study
allows for a delineation of features such as (i) biodegradation
dynamics of a contaminant, (ii) metabolic activity of the
microbial degrader, (iii) the role of bioavailability limitations
and typical mass-transfer restrictions through a cell’s
membrane, and (iv) whether the interplay between these
mechanisms is responsible for observing uncommon isotopic
signatures at low concentration levels. As shown above, these
results have relevant implications for both theory building and
practical application.
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