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Abstract

Metastable brain dynamics are characterized by abrupt, jump-like modulations so that the neural 

activity in single trials appears to unfold as a sequence of discrete, quasi-stationary ‘states’. 

Evidence that cortical neural activity unfolds as a sequence of metastable states is accumulating at 

fast pace. Metastable activity occurs both in response to an external stimulus and during ongoing, 

self-generated activity. These spontaneous metastable states are increasingly found to subserve 

internal representations that are not locked to external triggers, including states of deliberations, 

attention and expectation. Moreover, decoding stimuli or decisions via metastable states can be 

carried out trial-by-trial. Focusing on metastability will allow us to shift our perspective on neural 

coding from traditional concepts based on trial-averaging to models based on dynamic ensemble 

representations.

Recent theoretical work has started to characterize the mechanistic origin and potential roles of 

metastable representations. In this article we review recent findings on metastable activity, how it 

may arise in biologically realistic models, and its potential role for representing internal states as 

well as relevant task variables.

Introduction

Brain circuits consist of large neural networks, where populations of neurons are recurrently 

coupled via synaptic connections. These circuits can be interpreted as dynamical systems 

with many coupled degrees of freedom and therefore capable of generating a wealth of 

dynamical behaviors on very diverse timescales [1]. Those include transient relaxations 

towards a point or line attractor, oscillatory patterns, chaotic dynamics or metastable activity 

[2,3]. These dynamical behaviors have been implicated in important brain functions. 

Transient relaxation to stable neural activity (such as a point or line attractor) may subserve 

memory [4,5] and perceptual decisions [6,7]. Oscillatory dynamics may subserve 
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respiration, locomotion, and other rhythmic forms of behavior [8,9]. Chaotic dynamics 

amplify random perturbations and, when successfully tamed by learning, can generate 

complex computations [10,11]. Metastable dynamics, initially characterized in the presence 

of a sensory stimulus [12,13], might underlie a range of internal computations during 

cognitive tasks [14••,15,16••,17••].

Relaxations to an attractor, oscillations and chaotic dynamics typically describe neural 

activity as smoothly varying over time [18,19]. In contrast, metastable dynamics are 

characterized by abrupt, jump-like modulations so that neural activity appears to unfold as a 

sequence of discrete, quasi-stationary ‘states’. Metastable activity is being found in an 

increasing number of brain structures of different species engaged in a variety of tasks, and 

is the focus of this opinion. The intuitive appeal of metastable activity is that it resonates 

with our intuition that our thoughts and actions proceed along a sequence of distinct 

episodes, as we scan alternatives and ponder potential options during everyday tasks. It is 

natural to think that such episodes are being represented in transient but well-defined neural 

patterns in our brains. Recent models have started to clarify how metastable activity could 

emerge spontaneously as a collective phenomenon via attractor dynamics in spiking 

networks [20••,21,22••,23••]. These models have proved powerful tools to investigate the 

circuit origin of metastable states and their potential role in sensory and cognitive processes.

In this article we review recent progress in the analysis of metastable state sequences, 

focusing on issues of detection, modeling and interpretation.

Observing metastable activity

Metastable states were first characterized in electrophys-iological recordings from the 

prefrontal cortex of monkeys performing a delayed localization task [12,24,25]. Spike 

counts from simultaneously recorded neurons were analyzed with a hidden Markov model 

(HMM), a popular latent variable model for analyzing sequential data arising, for example, 

in time series analysis, speech recognition [26], DNA sequence analysis [27], behavioral 

analysis [28], and many other problems [29,30].

Under the most common application of HMM to neural data, population activity from 

simultaneously recorded neurons unfolds through a sequence of ‘hidden’ states, each state 

being a set of ensemble firing rates (Figure 1a). Stochastic transitions between states occur 

at random times according to an underlying Markov chain, and neurons discharge as Poisson 

processes with state-dependent firing rates, though the model can be extended to include 

refractory periods and other history-dependent factors [31]. The number of hidden states 

may be selected using information criteria [15,32,33••], cross-validation [14••], or 

nonparametric Bayesian methods [34,35••]. Several measures have been used to assess the 

goodness-of-fit of inferred sequences, including variance explained [14••], comparison to 

shuffled datasets [16••], and comparison of single-neuron transitions to ensemble state 

transition [22••]. The strength of HMM is to allow a principled, unsupervised method for 

segmenting neural activity into a sequence of discrete metastable states, and its use has led 

to intriguing new observations in ensemble dynamics, as we discuss next.
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Consistent features of metastable activity

HMM and related procedures for detecting hidden states have established a number of 

consistent features across datasets, animals and tasks. Ensemble activity unfolds as a 

sequence of metastable states, each lasting from a few hundred ms to a second or more, with 

sharp transitions among the states [12,13,15,22••] (Figure 1b). The transitions are typically 

one order of magnitude faster than the state durations, are close to their theoretically 

observable lower bound, and are not an artifact of the HMM [12,13,15]. When the start of 

the sequence is aligned to an external event such as stimulus onset, specific state sequences 

are observed (Figure 1b), raising the possibility that stimuli are coded by dynamic state 

sequences [12,13].

Among the most significant early results of applying HMM to the analysis of neural data 

were the demonstration that (i) the hidden states identified in response to a stimulus tend to 

recur during most of the recorded activity, not just in response to the stimulus, and (ii) 

pairwise correlations among simultaneously recorded neurons depend on an underlying 

global activity state, and not just on neural connectivity [12,24]. These two observations are 

very relevant for current issues in neuroscience, including the origin and role of ongoing 

activity [36,37], the importance of the connectome [38,39], and the meaning of correlations 

[40-42].

It is worth remarking that the ability of HMM analysis to segment the neural activity into 

distinct states in an unsupervised manner – that is, without knowledge of external triggers 

such as stimulus timings, – has been crucial to obtaining the results reviewed above. It is 

also important to point out that the HMM analysis on ensemble data allows to decode the 

neural activity on a trial-by-trial basis, avoiding the necessity of averaging across trials. Most 

findings discussed in this review would go undetected if data were averaged across trials, 

because ensemble transitions occur at different times in each trial. This latter feature also 

allows the time-warping of state sequences, explaining why, for example, the method is so 

useful for speech recognition and for the analysis of neural activity during birdsongs [43]. 

This could also explain part of the trial-to-trial variability observed in cortex after aligning 

spike trains across different trials to, for example, stimulus onset [13].

Metastability of ongoing cortical activity

One central question in contemporary neuroscience is why ongoing cortical activity is so 

rich in structure and resembles so closely stimulus-evoked activity [36,37,44-49]. The origin 

of ongoing activity and the nature of its interaction with evoked activity can potentially 

reveal much about the way cortical networks are functionally organized and how this may 

support flexible coding (see Refs. [36,37] for two recent proposals). However, quantifying 

precisely the similarities and differences between ongoing and evoked activity has proved 

difficult. A recent HMM analysis of ongoing spiking activity in the gustatory cortex of 

behaving rats has demonstrated that ongoing activity, similarly to evoked activity, unfolds as 

a sequence of metastable states [22••]. Transitions among states are characterized by a partial 

degree of coordination, so that ongoing activity is neither completely asynchronous nor 

completely synchronized. Ongoing and stimulus-evoked activity share most of the same 

states, although some of the states occur mostly during ongoing activity and others during 
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evoked activity [33••]. About 50% of the ensemble neurons exhibit three or more different 

firing rates across states, that is, they are ‘multi-stable’ rather than bistable; and this fraction 

is substantially reduced by stimulation [22••]. These findings have all been captured by a 

spiking network model of metastability that might shed light into the link between ongoing 

and evoked activity (see section ‘Spiking network models of metastable activity’).

Metastable sequences as a substrate for internal computations

Do metastable states have precise and specific meanings as neural correlates of external or 

internally generated events? Visual [12], gustatory [13,22••] and vibro-tactile stimuli [15] 

seem represented by reliable sequences of HMM states in primate and rodent cortical areas 

in the context of different tasks.

Even more remarkably, though, aspects of the metastable dynamics seem to subserve 

internal states of attention, expectation, and internal deliberations during decisions, and can 

be used to predict behavior. In monkeys performing a selective attention task, the probability 

of detecting a change in the attended stimulus was significantly greater when occurring 

during an ‘ON’ state (characterized by vigorous multi-unit activity in area V4) than during 

an ‘OFF’ state (characterized by faint multi-unit activity) [14••] (Figure 2a). Similarly, 

different hidden states were preferentially associated to different task conditions in a human 

working memory task, with occupancy rate in each state predicting better performance in the 

corresponding task [35••]. Moreover, changes in patterns of functional connectivity across 

many brain areas co-occurred more reliably with state transitions than with external triggers, 

suggesting that metastable states supported by flexible patterns of functional connectivity 

may reflect internal representations of task demands.

A similar relationship between state occupancy rate and decisions has been found in 

monkeys performing a choice task between differentially rewarded stimuli [17••]. Ensemble 

activity in orbitofrontal cortex (OFC) mostly switched between two states representing the 

values of the stimuli currently being offered, with larger occupancy rate predicting the 

behavioral decision (Figure 2b, left). Intriguingly, slower decisions (reflecting longer 

internal deliberation) occurred when the states had similar occupancy rates and were found 

on trials of the same kind (thus reflecting subjective preferences rather than actual task 

difficulty; Figure 2b, right). These findings are reminiscent of those on dynamic changes of 

mind [50] and complement earlier intriguing results on the possible meaning of state 

transitions, which may underlie the sudden realization that task rules have changed [51] or 

reflect the difficulty of a vibro-tactile discrimination [15].

In the rat hippocampus, HMM states were recently found to represent the position in a linear 

track and in an open field during a navigation task [16••] (Figure 2c), an alternative view to 

decoding spatial maps based on single neurons place fields [52]. The state sequences were 

observed in area CA1 during hippocampal sharp wave ripples when the animal was not 

exploring the track, and could be used to infer a spatial map of the environment without any 

reference to external locations [16••].

In rat gustatory cortex, state sequences after stimulus delivery proceed faster when the 

delivery is expected compared to when it is not expected [33••], which may explain the faster 
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decoding of expected stimuli found in this area [53] (a spiking network model explanation of 

this phenomenon is discussed in the next section).

The examples discussed in this subsection make a convincing case that metastable sequences 

underlie a variety of important cognitive processes, and more examples will likely be found 

across different cognitive domains not yet explored with latent state models.

Spiking network models of metastable activity

In addition to statistical descriptions in terms of HMM and related latent state models, 

mechanistic accounts of metastable activity based on biologically plausible networks of 

spiking neurons have also been given. We shall mostly focus on efforts that have 

purposefully combined spiking network modeling with HMM [22••,33••,54,55], as we 

believe that such an approach is the most promising to understand the potential origin and 

function of metastable activity in neural circuits. Metastable activity naturally occurs when 

multiple hidden states are attractive fixed points of the neural dynamics which are either 

inherently unstable, or can be destabilized by internal noise or external perturbations 

[56-58]. Such fixed points would attract the dynamic trajectories of the neural activity and 

force them to linger in their neighborhood for a finite amount of time. It is natural, therefore, 

to look for models wherein metastability is caused by the coexistence of multiple attractor 

states.

Metastable activity in clustered networks of spiking neurons

Among the class of attractor neural networks with multiple attractor states, spiking network 

models allow to build biologically plausible models capable of generating metastable state 

sequences. Recurrent networks with strong synaptic connections can produce highly 

temporally fluctuating activity [59-67], often the signature of chaotic activity. However, to 

endow a network of spiking neurons with endogenously generated metastable states, a 

specific partition of the network in subpopulations of neurons seems required [20••,21,22••,

23••]. The clustered architecture has emerged as an effective way to generate metastability. 

The models studied so far comprise excitatory and inhibitory spiking neurons with 

(typically) the excitatory neurons organized in clusters, as seems the case in cortical circuits 

[68-70]. The common feature of these models is that the average synaptic strength (and/or 

connectivity) inside clusters is larger than between clusters (Figure 3a, right). A mean field 

analysis of these models [4,22••,54] shows that multiple attractor states are possible 

depending on the average intra-cluster synaptic weight (ICW; Figure 3b). Above a critical 

ICW value (dashed green line in Figure 3b), multiple configurations of the network emerge 

wherein neurons in clusters tend to occupy several states with different values of mean firing 

rates (grey and red lines in Figure 3b), where the firing rates depend on the number of active 

clusters. In an infinite network, those configurations would be stable attractors; but in a finite 

network, or in the presence of sufficient external noise, those configurations become 

metastable. Note that if the ICW is large enough (e.g. full green line in Figure 3b), the 

configuration with no active clusters is unstable even in the infinite network, and at least one 

cluster must be active at any given time.
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It is unclear whether suitable connectivity patterns exist such that metastable itinerant 

dynamics is possible also in a deterministic network of infinite size [71]. In the following, 

we assume that fluctuations originate in finite size effects in a deterministic network [20••,

22••], and later consider alternative models (see subsection ‘Variations on the clustered 

architecture’).

In finite clustered networks above the critical ICW value, a combination of erratic spiking 

activity and recurrent inhibition can ignite an itinerant exploration of multiple configurations 

(as in Figure 3a, right), whose number and features depend on network parameters such as 

the ICW. When an HMM analysis is run on these networks, segmentation of the spontaneous 

ongoing activity in discrete states is found (Figure 3c). Such metastable activity is modified, 

but not removed, by an external stimulus. Since the firing rates depend on the number of 

active clusters, the neurons exhibit multiple firing rates across different HMM states, as 

found experimentally in rat gustatory cortex [22••]. Note that the neurons themselves can 

have graded activity; hence, their multistability is an emergent property of the collective 

network’s dynamics and not an intrinsic property of the units.

Predictions of the clustered spiking network

Clustered spiking networks capture many statistical and dynamical features of the data, 

including a stimulus-induced reduction of: (i) trial-to-trial variability [20••,21,72], 

multistability of the firing rates across states [22••], and neural dimensionality [54], that is, 

the minimal number of effective dimensions (between one and the number of neurons) 

necessary to describe the ensemble dynamics [73-75]. It is worth noticing that while the 

stimulus-driven reduction of trial-to-trial variability has been a catalyst for the development 

of the clustered network model [20••,21], the reduction of multistability and dimensionality 

was found to be a naturally emergent property of the model which led to finding the 

corresponding properties in the data.

These predictions capture aspects of the data and thus help to corroborate the validity of the 

model. However, two other recent predictions link metastability directly with sensory and 

cognitive functions. The first is that visiting metastable states during ongoing activity will 

help to maintain learned stimulus responses and improve performance, suggesting yet 

another role for ongoing activity. This prediction emerged from an attempt to understand 

how neural clusters and metastable states can emerge during learning, and revealed the need 

to complement synaptic plasticity with homeostatic mechanisms [76-78]. The second 

prediction has led to the proposal that a state of expectation could be understood as an 

acceleration of metastable dynamics [33••]. When rats are trained to respond to taste stimuli, 

the identity of the stimuli can be decoded faster from the neural activity if stimulus delivery 

is expected compared to when stimuli are randomly, and passively, administered [53]. In the 

model, the onset of a predictive cue modifies the network’s landscape of metastable 

configurations so as to make state transitions more frequent. Faster state transitions, in turn, 

induce faster onset of stimulus-coding states after stimulus delivery, an effect uncovered by 

an HMM analysis of the model and confirmed in the data.
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Variations on the clustered architecture

Variations of the clustered network architecture and its generated dynamics can explain 

related kinds of metastable activity such as perceptual bistability [79,80], the emergence of 

specific slow oscillations known as ‘up’ and ‘down’ states [81], or networks that can sustain 

bidirectional sequence propagation at slow and tunable speed [82]. These types of 

metastable dynamics are different from those reviewed earlier in subtle, but significant, 

ways.

Clustered spiking networks have also been used to uncover subtle differences between 

mechanisms for decision making. Specifically, spiking networks with multiple attractors 

built for decision making [7,83] can work in two different modes, the ‘ramping’ mode, 

characterized by gradual stimulus-driven firing rate increases, and the ‘jumping’ mode 

[55,56], wherein the stimulus ignites a sequence of metastable states. By leveraging a 

mechanism reminiscent of stochastic resonance, the jumping mode can outperform the 

ramping mode (underlying the so-called ‘integration-to-bound’ models [84]) during 

perceptual decision-making in the face of sensory noise.

Finally, we briefly mention that models with endogenously generated activity are not 

necessary to produce metastable activity. External fluctuations or the presence of firing rate 

adaptation both can create instability and lead to metastability in a finite network with 

multiple attractors [85,86] (including ‘up’ and ‘down’ states at low firing rate, [87]). 

Sometimes both ingredients are required to reproduce the statistics of the empirical data 

[87,88]. Also, it is possible to obtain stimulus-evoked quenching of variability in non-

metastable networks, such as networks with chaotic attractors [89] or the supralinear 

stabilized network (SSN) [90-92]. These models capture the reduction of variability via 

different mechanisms and make different predictions, such as the tuning-dependent 

modulation of variability observed in primary visual cortex and captured by the SSN [92].

Conclusions

We have reviewed recent progress made in elucidating the nature and the role of metastable 

states in brain function. Thanks to the availability of ensemble data from behaving animals, 

the study of metastable activity is changing the way we think about neural coding for both 

external events and internal representations.

We have also reviewed a class of spiking network models that promise to provide a 

mechanistic understanding of the origin and function of metastability. These models have 

demonstrated the importance of a clustered architecture for the spontaneous generation of 

metastability, the coexistence of ongoing and evoked metastability, the benefits of metastable 

sequences to decision making, and the explanation of faster coding of expected events via 

the acceleration of metastable dynamics. Because of their biological plausibility, not only 

can these models shed light on the mechanisms, but they can also be powerful tools for 

analyzing metastable states, predict causal relationships to behavior, and help to design new 

experimental studies.
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In the future, it will be important to establish a causal relationship between metastable states 

and behavior, by manipulating neural activity during behavioral tasks while recording from 

large ensembles across multiple sites. It will also be important to establish the emergence of 

neural clusters and metastable dynamics though development or learning. Recurrent spiking 

network models, in conjunction with latent-state models such as HMM, are likely to play an 

important role in his endeavor.
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Figure 1. Observing metastability in neural populations.
(a) Schematics illustration of a hidden Markov model (HMM) with three states. Hidden 

states (squares) are collections of firing rates across neurons; arrows indicate transition rates 

among the states (thicker arrows denote larger transition rates). (b) HMM applied to 

electrophysiology recordings from the gustatory cortex of a behaving rat. The top panels 

show spike rasters from 10 simultaneously recorded neurons segmented via HMM analysis. 

Two trials are shown, one in which sucrose (left) and one in which quinine (right) was 

administered to the rat. HMM states were assigned to each bin of data when their posterior 

probability exceeded 0.8 (dashed horizontal line). The bottom panels show the state 

sequences in four different trials with either sucrose (left) or quinine (right) as a taste 

stimulus. Transitions may occur at variable times across trials, but the state sequences are 

reliable. Panel (b) modified from Ref. [13].
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Figure 2. Metastable activity and cognitive function.
(a) Left: Multiunit activity from monkey V4 during a selective attention task alternates 

between ON (green) and OFF (pink) HMM states. Right: Behavioral performance improves 

when the decision occurs during ON intervals compared to OFF intervals. (b) Left: 
Probability of being in a state representing the value of the chosen (red), unchosen (blue) 

and unavailable (gray) option from monkey OFC ensembles in a decision-making task. 

Right panels: Comparison of time-course of state probability in quick versus deliberative 

decisions as judged by the dynamics of eye movements (depicted at top). (c) Left: Dynamics 

of HMM states decoded from hippocampal neural activity (top) and position (bottom) of a 

rat running along a linear track (six runs; only data during sharp wave ripples, comprising 

2% of the session, were used). Right: Mapping latent state probabilities to associated animal 

positions yields latent-state place fields describing the probability of each state for every 

position on the track. (a) panels modified with permission from Ref. [14••]; (b) panels 

modified with permission from Ref. [17••]; (c) panels modified from Ref. [16••].
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Figure 3. Spiking network model of metastable activity.
(a) Spike rasters of a spiking network model of excitatory (E) and inhibitory (I) integrate-

and-fire neurons with two different architectures. Left: homogeneous network. Right: 
clustered network. The homogeneous network has uniform connectivity among the E 

neurons. In the clustered network, the E neurons are organized in clusters, so that synaptic 

connectivity is stronger inside each cluster than among clusters. The spiking activity in the 

clustered network is metastable. Insets: graphical description of the topology of each 

network. (b) The mean field theory of a clustered spiking network with 30 E clusters shows 

coexistence of several attractors for intra-cluster synaptic weight (ICW) J+ beyond the 

critical value 4.2 (dashed vertical green line; J+ is in units of the baseline synaptic weights 

outside clusters). The curves represent the firing rates of neurons in each cluster according to 

the number of active clusters (numbers from 1 to 8). Grey and purple curves: E neurons; red 

curves: I neurons. A state on the purple curve is ‘globally inactive’ in the sense that no 

clusters are active and firing rates of E neurons remain low. (c) Raster plot from a typical 

simulation of the model in (b) with ICW corresponding to the full vertical green line. Thirty 

E neurons (one for each separate cluster) are shown, together with the segmentation of the 

rasters in HMM states. Panel (a) adapted with permission from Ref. [20••]; panel (b) adapted 

from Ref. [54]; panel (c) adapted from Ref. [22••].
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