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Abstract

To test for association between a disease and a set of linked markers, or to estimate relative risks 

of disease, several different methods have been developed. Many methods for family data require 

that individuals be genotyped at the full set of markers and that phase can be reconstructed. 

Individuals with missing data are excluded from the analysis. This can result in an important 

decrease in sample size and a loss of information. A possible solution to this problem is to use 

missing-data likelihood methods. We propose an alternative approach, namely the use of multiple 

imputation. Briefly, this method consists in estimating from the available data all possible phased 

genotypes and their respective posterior probabilities. These posterior probabilities are then used 

to generate replicate imputed data sets via a data augmentation algorithm. We performed 

simulations to test the efficiency of this approach for case/parent trio data and we found that the 

multiple imputation procedure generally gave unbiased parameter estimates with correct type 1 

error and confidence interval coverage. Multiple imputation had some advantages over missing 

data likelihood methods with regards to ease of use and model flexibility. Multiple imputation 

methods represent promising tools in the search for disease susceptibility variants.
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Introduction

To identify variants involved in disease susceptibility, a traditional approach consists in 

testing for association between a disease and a set of markers. This is usually performed by 

comparing allele or genotype frequencies at the markers in samples of cases and controls. It 

is also possible to use case-parent trios and compare the alleles or genotypes transmitted to 

the affected child to the corresponding non-transmitted alleles or genotypes [1,2]. A major 

advantage of these family-based tests is their robustness to population stratification. 

Moreover, the familial structure allows the testing of both linkage and association. A 
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disadvantage is the difficulty to recruit large samples of case-parent trios and consequently, 

sample sizes are generally smaller than that achievable with the case-control approach, 

leading to a possible lack of power as compared to the case-control approach.

Often association studies are faced with a problem of missing data, either in the form of a 

missing genotype or in the form of unknown phase. Current genotyping technologies do not 

provide phase information and so we need to reconstruct it from the observed genotype 

information, which is not always possible. For case-parent trio data, the presence of an 

affected offspring does not ensure the data availability on his parents. Refusal to participate, 

death, false paternity or genotyping failure are different factors which can generate a missing 

genotype. With the availability of high-density SNP maps, the number of genotyping failures 

is expected to increase (it is obvious that the higher the number of polymorphisms 

genotyped, the less the number of complete families likely to be available) and there is more 

phase ambiguity. There is a temptation to simply ignore the missing data and only use the 

complete and phase-known observations, but it has been shown that this can induce bias [3] 

and/or loss of efficiency [2]. It might also result in a significant reduction in sample size and 

consequently a loss in power. When the level of missing data differs from one marker to 

another, focusing only on the complete data in the analysis will make it very difficult to 

compare the different markers. It may lead to false conclusions regarding which marker(s) 

are most likely to explain the detected association and thus on the location of sites involved 

in disease susceptibility. Indeed, if the disease susceptibility site is among the studied sites 

but is poorly genotyped, it is possible that one marker in linkage disequilibrium with this site 

obtains a better association score than the disease susceptibility site itself.

Several methods have been developed to infer the missing data from the rest of the data. In 

the context of family-based association studies, specific methods have been developed 

mostly based on likelihood approaches (see for example TRANSMIT [4], TDTPHASE [5] 

or Haplotype FBAT [6]). One problem with these methods and their corresponding software 

is their lack of flexibility. Different realisations of these methods are required if, for 

example, one wants to account for environmental risk factors and potential gene-

environment interactions in the analysis, or to account for different sets of SNP loci within a 

small genetic region. By performing missing data/haplotype inference and estimation/testing 

of effects together, in a single stage procedure, these approaches usually limit one to using 

the same set of genetic loci for both purposes. In addition, the approaches in FBAT and 

TRANSMIT are focused on testing the null hypothesis (of no genetic effects) rather than on 

estimation of effects.

In this context, it is of interest to develop methods to test for association with genetic risk 

factors in the framework of traditional statistical packages such as Stata, S-Plus/R or SAS, 

which allow the inclusion of arbitrary genetic and/or environmental predictor variables in a 

model and estimation of their effects. Indeed, for family-based data as well as for cases and 

controls, such methods have previously been proposed [2,7]. The main drawback of using a 

standard statistical software package is the difficulty to deal with missing data, and families 

with missing data are usually discarded from the analysis. Multiple imputation (MI) [8] 

provides a convenient solution to the problem. The idea of the method is to fill in missing 

data by values that are predicted by the observed data. MI is a Monte Carlo technique in 
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which the observed data set containing missing values is replaced by m simulated versions, 

where m is typically small (e.g. 3-10). Each of the simulated complete datasets is analyzed 

by standard methods, and the results are combined to produce estimates and confidence 

intervals that incorporate the missing-data uncertainty [8–10]. MI has already been used for 

quantitative traits [11] and matched case-control studies [12], a MI method is implemented 

in SNPHAP program (www-gene.cimr.cam.ac.uk/clayton/software/) and the performance of 

the method to estimate genotype relative risks in case control studies has recently been 

evaluated and compared to likelihood-based methods [13]. In this paper, we adapt the MI 

method to the case-parent trio design. In this design, the familial structure of the data 

imposes constraints on the possible phased genotypes compatible with the observed 

genotype data, allowing a better reconstruction of the missing values. The performance of 

our method is evaluated by simulations for different levels of missing data and different 

disease susceptibility models. We investigate the power to detect an association and the 

efficiency of the method to identify the disease susceptibility sites among several markers. 

We also investigate the performance of the method with regard to estimation of genotype 

relative risk parameters, and (for some genetic models) find improved performance from use 

of MI with case-parent trios compared to its performance with unrelated cases and controls.

Methods

Multiple Imputation Approach

Given observed unphased genotype data (with possibly missing values) for a set of case-

parent trios, we generate complete phase-known data sets using a MI approach via a data 

augmentation (IP) algorithm [14]. For case-parent trio data, this algorithm proceeds as 

follow:

1. (I-step) Given current parameter values for population haplotype frequencies and 

phase-known genotype frequencies in affected offspring, sample from the 

posterior probability of phase-known haplotype configurations for each family 

(given the observed genotype and phenotype data) to obtain a complete data set. 

For each family containing a missing value, a haplotype assignment is picked 

from all the possible assignments with a probability given by the current 

posterior distribution. At the starting point, the posterior distribution is unknown 

but a starting value can be derived from the observed data by using an EM 

algorithm. Here, we use the ZAPLO/PROFILER software (www.molecular-

haplotype.org/zaplo/zaplo_index.html, www.molecular-haplotype.org/profiler/) 

[15] for this purpose and obtain for the different families in the sample a listing 

of the phased genotype configurations that are compatible with the observations, 

and their initial posterior probabilities.

2. (P-step) The population haplotype frequency and phase-known affected-offspring 

genotype frequency parameters are then updated by sampling them from their 

posterior distribution given the current complete data file. Under the assumption 

that the prior distribution of haplotype (genotype) frequencies is a Dirichlet 

distribution with constant degrees of freedom (df) on all possible haplotypes 

(genotypes), the full conditional posterior distribution is also Dirichlet with 
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degrees of freedom equal to the observed number of haplotypes (genotypes) in 

the complete data file + the prior df.

We cycle round the I and P steps a large number of times, to reach a stationary distribution 

(in this study we used a burn-in period of n=1000 iterations). At intervals (e.g. every 1000 

iterations) we output the current complete data file. The IP algorithm is repeated until we 

have output m replicates of complete data sets (imputations) that will then be analysed. The 

number of iterations between two imputations must be large enough to ensure a statistical 

independence between imputed data files. In this analysis, 1000 iterations are run between 

each output imputation.

At the I-step, the new familial configuration posterior probabilities are calculated by 

computing their relative likelihood which corresponds to the likelihood of the familial 

configuration. Denote the frequency of the affected child phased genotype i/j as gij and the 

frequencies of the untransmitted haplotypes k and l as hk, hl, then:

relative likelihood =
gi j × hkhl

∑
(m, n, o, p ∈ H)

gmn × hohp
(1)

where the sum in the denominator is over all possible familial configurations defined by the 

affected child phased genotype m/n and untransmitted haplotypes o and p. Note that by 

considering affected child phase-known genotype frequencies rather than transmitted 

haplotype frequencies, we avoid making an assumption of Hardy Weinberg equilibrium in 

the affected sample, which is a necessary assumption when using MI with case-control data 

[10].

At the P-step, given a complete data realisation, to update the genotype frequencies and the 

untransmitted haplotype frequencies we simply count genotypes in affected children and 

count untransmitted haplotypes. Then, we add a data augmentation parameter that 

corresponds to the prior Dirichlet df. In practice, we set this to be high at the first iteration 

(typically two times the size of the population) and then decrease it linearly (data 

augmentation parameter decreases by two times the size of the population divided by the 

number of iterations) at each iteration, resetting it back to the high value after outputting 

each of the m replicate imputed data sets.

The optimal number of imputations m depends on the rate of missing data. Indeed, as shown 

by Rubin [16], the efficiency of an estimate based on m imputations is:

efficiency = 1 + γ
m

−1
(2)

where γ is the missing information rate which depends of the variability between the m 
complete data sets induced by missing data. For a small number of replicates m (typically in 

the range of 3-10), we can obtain a very good efficiency [17].

Each of the m complete data sets are analysed by a statistical method. In this paper, the 

method used for the data analysis is conditional logistic regression [2,18,19] which 
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compares the genotype of each affected child (the case, denoted as person 1) to the three 

possible genotypes (the pseudocontrols, denoted as persons 2-4) that can be formed by the 

untransmitted parental alleles (or haplotypes when several loci are considered). Given a 

reference genotype with baseline risk termed β0, (which in fact will cancel out of the 

likelihood), each genotype relative risk βi (i=1, …, n) is estimated by maximization of the 

likelihood :

L1 = ∏
k

∑
j = 1

1
exp(β0 + β1x1 jk

+ … + βnxn jk
)

∑
j = 1

4
exp(β0 + β1x1 jk

+ … + βnxn jk
)

(3)

where xijk is an indicator taking value 1 if person j in family k has genotype i, and 0 

otherwise. Under the null hypothesis of no association, the likelihood is simply L0 

corresponding to βi =0 (i=1,…, n).

To compare with the results obtained with TRANSMIT (REF à ajouter), a one-df allele test 

will also be performed under the same logistic regression framework but considering allele 

relative risks rather than genotype relative risks.

For each of the m complete data files i, we calculate the likelihood ratio test di

di = 2[ln(L1) − ln(L0)] (4)

The m results are then combined using the method described in [9,10]. Briefly, for each set 

of imputed data set, we calculate the average of the di statistics.

d = ∑ di
m

(5)

and derive

D =
d
k − m + 1

m − 1r

(1 + r)
(6)

where k is the the number of degrees of freedom of the likelihood ratio test and r is the 

variance between the m imputed datasets which can be calculated by the following 

expression:

r = 1 + 1
m

1
m − 1 ∑

i = 1

m
di − ∑

i = 1

m di
m

2
(7)

D follows a F distribution with k and v degrees of freedom and
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v = k
−3
m m − 1 1 + 1

r
2

(8)

The combined p-value over the m imputations is then:

p‐value = F(k, v) (9)

We may also perform parameter estimation and confidence interval (CI) construction for the 

genotype or haplotype relative risks,

β = 1
m ∑

i = 1

m
βi and CI = β ± 1.96 V (10)

where the variance V is the sum of the variance within imputations

Vwithin = 1
m ∑

i = 1

m
σ

βi

2
(11)

and the variance between imputations

Vbetween = 1
m − 1 ∑

i = 1

m
βi − β 2

(12)

weighted by a term that depends on the number m of imputations:

V = Vwithin + 1 + 1
m Vbetween (13)

Simulation Study

The performance of the MI algorithm was tested by simulations. Genotypes of case-parent 

trios were simulated at five completely linked loci under different genetic models with one 

or two disease susceptibility loci. The five loci were in linkage disequilibrium (LD) and the 

haplotype frequencies and resulting pattern of LD are shown in Table 1 and in 

supplementary information, Figure 1. Briefly the simulation process is the following: for 

each parent, two haplotypes are randomly picked from the population of 17 possible 5-locus 

haplotypes where each haplotype has a frequency as reported in Table 1. Then, one 

haplotype is randomly drawn from each parent to generate the child’s genotype and, based 

on the penetrance associated with this genotype, an affection status is generated for the 

child. If the affection status is "unaffected", the trio is discarded and the process is repeated 

until we obtain sufficient trios with an “affected” child. Finally, missing data are generated 

completely at random, that is to say with the same percentage of missing data on each of the 

five SNPs and on each member of the family (the patient as well as his parents). This results 
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in a data set in which both phase information and genotype data may be missing for any or 

all of the individuals in the trio, as is the case with real genetic studies.

Concerning the genetic models, for one-locus models, the disease susceptibility (DS) locus 

was assumed to be the second marker (SNP2) and dominant or recessive models with 

genotype relative risks (GRR) of 1.5 or 3 were considered (see Table 2a). An additional 

model with no effect (GRR=1 for all genotypes) was also considered to evaluate the type I 

errors. For two-locus models, SNP2 and SNP3 were assumed to be the DS loci and both a 

multiplicative and non multiplicative models were considered (see Table 2). For each set of 

simulation, 500 simulated data sets were generated and run through the MI algorithm (with 

the following parameters: burn-in period = 1000 iterations, interval between two imputation 

n=1000 iterations and number of imputations m=9). For the different models, the power/type 

I error to detect the association was evaluated by determining, the proportion of replicates 

among the 500 replicates where the combined p-value (as defined in equation 9) at SNP2 

(the disease susceptibility site) was smaller than or equal to 5%. The performance of the 

algorithm for parameter estimation was also studied by reporting the bias and 95% CI 

coverage for the different GRR estimations. We also (where possible) compared the MI 

approach with the approach implemented in the program TRANSMIT [4], both with, and 

without, the presence of population stratification.

Results

Type I error rates for a nominal value of 5% are presented in Figure 1 for different levels of 

missing data. As expected, when families with missing data are ignored, we find that type I 

errors are not inflated by the presence of missing data, since these missing data are at 

random with respect to genotypes (see curve without MI). The use of the MI method does 

not increase the type I errors for up to 30% of missing data. Above 30%, we observe a 

significant increase in type I error rates. For 50% of missing data, there is a three fold 

increase in the type I error (0.16 instead of 0.05). In contrast, we find that the TRANSMIT 

program maintains correct type 1 error for all except the highest level of missing data.

Figure 2 shows the power to detect association at nominal significance level 5% under the 

different one locus models. Without the MI algorithm, the power of detection of the DS site 

is sensitive to missing data due to the decrease of the sample size. The more the percentage 

of missing data increases, the more the number of informative families decreases and 

consequently, the more the power to detect the DS site decreases. A similar decrease in 

power is seen with the TRANSMIT program, which, unlike MI, is unable to use information 

from linkage disequilibrium patterns with flanking markers when testing at a single locus. In 

this context, the MI algorithm allows good power for detection of the DS site. For the 

recessive model (Figure 2a), we see a loss in power of 14.2% with 30% of missing data 

(without the MI algorithm, we observed a loss in power of 58% in the same configuration). 

For the dominant model (Figure 2b), the power remains at approximately 80% with 30% of 

missing data (so basically no loss in power as compared to a 59.1% power loss when MI 

algorithm is not used). Power results for MI with >30% missing data should not be 

considered since we know from Figure 1 that the nominal type 1 error at this level of 

missing data is not maintained.
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To check the utility of the MI method, the correlation between p-values obtained on the true 

complete data sets (available to us since this is simulated data) and p-values obtained by 

using the MI algorithm on the same data, after adding a percentage of missing data, were 

investigated (supplementary information, Figure 2). With 5% missing data, we note a very 

good correlation rate in both models. With 50% of missing data, correlations are obviously 

lower: on the recessive model (model 1) p-values are often decreased and consequently a lot 

of non significant tests became significant. In contrary, p-values are slightly increased for the 

dominant model (model 2). Consequently, the utility of the MI is limited when the 

percentage of missing information is high; nevertheless, for up to 30% missing data this 

method gives acceptable performance.

We performed analysis to examine how often the DS site gives the highest score (i.e. the 

highest test statistic conditional on the fact the highest score is significant) as a function of 

the percentage of missing data (Figure 3). For the recessive model, we see a loss of detection 

of the true DS site of 22% with 30% missing data (without the MI algorithm, we observed a 

loss of detection of 62%). On the dominant model, we see an over detection of 7% with 30% 

missing data against a loss of detection of 42% without using the MI algorithm.

To investigate parameter estimation under the MI method, results with and without using the 

algorithm were compared. With or without the MI algorithm, when the same percentage of 

missing data is used for all loci, no bias is expected. Without MI, when conditional logistic 

regression is used, only families genotyped for all markers are taken into account. So, 

missing data will involve a decrease in the sample size (e.g. only 15% of informative 

families are available for analysis with 50% missing data) but not a change in the properties 

of the model. Table 1 of the supplementary information confirms this point: for each of the 

models considered, the bias between the observed and the expected values of the genotype 

relative risks is near 0, and the 95% confidence intervals for the genotype relative risk 

parameters correctly cover the true values approximately 95% of the time (for a missing data 

proportion of up to about 30%). We also investigated the correlation between the parameter 

estimates obtained from the true complete data set and those obtained using the MI approach 

(supplementary information, Figure 3) and found that as expected the correlation decreases 

as the percentage of missing data increases but even with 50% of missing data, there is still a 

strong correlation.

Two 2-locus models were also investigated. Figure 4 shows the bias between the expected 

and the observed haplotypic risks for different rates of missing data under the multiplicative 

model only, since risk estimation on haplotypes only have a sense if haplotypes have a 

multiplicative effect. For up to 10% of missing data, bias is weak with and without MI. For a 

larger percentage of missing data and when missing data are ignored, we observe a strong 

increase in the bias for all the haplotype relative risks. In contrast, when we use the MI 

algorithm, the bias stays reasonably low. For example, with 50% of missing data the bias is 

in the range [26.5, 29.1] without MI compared to [0.15, 1.17] with MI.

Figure 5 presents the bias obtained under the two models on phased genotypic risks. The 

median bias over the 10 genotype relative risks is reported. As for haplotypic risks, we note 

a high increase in the bias when the percentage of missing data increases. Without MI the 
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median bias reaches 32.89 for the multiplicative model and 30.47 for the non multiplicative 

model opposed to a weak increase with MI (1.16 for the multiplicative model and 4.47 with 

the non multiplicative model). However, observed bias could be very different from one 

genotype to another and as expected, strong bias may be observed especially for rare 

genotypes.

These results confirm the ones obtained by Cordell [13] when using MI on case-control data. 

An important difference however between case-control and trio data is the fact that under a 

non-multiplicative model, the case-control data do not allow the distinction between the two 

following genotypes: the one composed by haplotypes aA and bB and the one composed by 

haplotypes aB and bA. Use of an MI algorithm with case/control data [10] distinguishes 

between these configurations by borrowing information (when it is possible) from resolvable 

genotypes under a Hardy Weinberg equilibrium assumption which corresponds to assuming 

multiplicative haplotype effects. Consequently, this method fails for case/control data when 

the underlying haplotypic effects are not multiplicative [10]. However, with family data, 

information from the parents can allow knowledge of this phased genotype for the affected 

child. We performed simulations under different multiplicative and non-multiplicative 

models to check this property of the case/parent trio data. We choose to present in this paper 

results obtained with one of the non-multiplicative models used in [13] with 10 percent of 

missing data. Table 3 shows the bias and coverage when using the MI approach in a case/

control and in a case/parent trio data set. As expected, we note the presence of a bias higher 

than 0.3 with the case/control data with poor confidence interval coverage (near 0.8) for both 

genotypes 1-1/2-2 and 1-2/2-1. The use of case/parent trio families generally gives less bias, 

particularly for the two phased genotypes (bias of 0.012 and 0.019 respectively). 

Consequently, we confirm the capacity of the method to correctly estimate these two phased 

genotype configurations with family data, which is not the case for case/control data.

To illustrate the similarity between the MI approach and other methods, we also compared 

MI to TRANSMIT using the non-multiplicative model, and we noted no difference between 

the P values obtained by MI and TRANSMIT (supplementary information, figure 4). 

However, the main motivation for the development of TRANSMIT (and indeed the original 

motivation to recruit and use case-parent trio datasets) is to achieve robustness to population 

stratification. To check this point, from a dataset of 500 families composed by two 

populations described in supplementary table 2, the type 1 error rates have been calculated 

for different levels of missing data using both the MI approach and the TRANSMIT 

program. Results are presented in supplementary figure 5. We note that for up to 30% 

missing data, both methods give similar values and correct type 1 error rates. For over 30% 

missing data, we note an increase of the type 1 error rate with MI while TRANSMIT 

maintains a type 1 error rate around 5%. These results show that the MI approach provides 

some protection against population stratification even if not complete protection. For 

comparison, this level of population stratification leads to a type 1 error rate of 

approximately 71% (simulation results, data not shown) in case/control analysis with no 

missing data, indicating that the population stratification problem is much more severe for 

case/control data than it is for case/parent trios, even in the presence of missing data.
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Discussion

We have proposed an MI algorithm for testing and estimation of genotype and haplotype 

effects using case/parent trio data. Through simulations, we have examined the utility of the 

MI algorithm on several one and two locus models. Results show the usefulness of the MI 

approach with conditional logistic regression, this approach allows us to work with three 

pseudocontrols for each family whereas in the original case/pseudocontrol approach, only 

one pseudocontrol can be generated for families with unknown phase. When the percentage 

of missing data is small, parameter estimation can be correct without the use of MI. 

Nevertheless, MI increases power and allows better comparison of results at different loci 

and detection of the true disease susceptibility site. Obviously, the MI algorithm is only one 

of the possible methods to take into account uncertainty due to missing data. The MI 

approach proposed here shares some similarities with Gibbs sampling and also with the 

stochastic EM algorithm [20–22]. Indeed, the sampling mechanism used in the IP algorithm 

that we describe is virtually identical to that used in Gibbs sampling. The main difference 

between MI and Gibbs sampling or an EM algorithm (either in its original or stochastic 

version) is that in a Gibbs sampling or EM algorithm framework, one runs the algorithm 

until convergence and uses the final parameter estimates obtained to make inference. In the 

MI approach, one instead writes out imputed data sets at intervals (e.g. every 1000 

iterations), analyses these imputed data sets using standard statistical methods (e.g. 

regression) and then uses methods described in the MI literature [9,16,17] to produce a 

combined parameter estimate or make combined inference from all of the imputed data sets.

Compared to Gibbs sampling or an EM algorithm, MI is thus a two stage procedure. In the 

first stage one performs imputation to generate 3-10 imputed data sets; in the second stage 

one performs analysis on these imputed data sets and produces a combined result. The main 

advantage of this from an operational point of view is that one need not actually fit the full 

model at the second stage. For instance, one could do the imputation assuming that 3 loci in 

a region influence disease, but then at the analysis stage one could fit the full model where 

all 3 loci influence disease, or one could fit a restricted model where just 2 of the loci 

influence disease, or indeed a further restricted model where just one of the loci influences 

disease. To compare all of these nested models in an EM or Gibbs sampling procedure, one 

would have to run the EM/Gibbs sampling algorithm 3 separate times, whereas in the MI 

approach one runs the IP algorithm only once, then fits the different nested models at the 

analysis stage.

In this paper, we focus on a pattern of missing data where the percentage of missing data is 

the same for each marker and for a given marker does not depend on the genotype. In 

presence of different percentage of missing data at the different markers, we have shown that 

the method works very well. In the case where missing data concentrate exclusively on the 

disease susceptibility locus, it will allow to regain the association signal at this locus and as 

compared to the naïve approach that consists in discarding families with missing data, will 

better allow to identify the true DS site (GAW15 unpublished results). If the percentage of 

missing data also depends on the genotype, the method will probably have more problem 

inferring missing data but depending on the pattern of LD with adjacent markers, it should 

still be rather successful. Some further simulations will be required to investigate this 
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particular point. Note that our method will also work when there is no missing genotype data 

(i.e. all markers are genotyped perfectly) but when phase information (i.e. the two 

haplotypes present in an individual) is missing or uninferable.

Another particularity of the pattern of missing data investigated here is the fact that within a 

family, we assume that there is the same chance that any of the member (father, mother or 

affected sib)is missing. Some other patterns have been tested to check the influence of this 

pattern of missing data on the efficiency of the method. One in particular (data not shown) 

presents missing data exclusively on parents where no loss in power is observed even with a 

high level of missing data. Information brought by the affected child allows a good 

imputation of the missing values. Thus, MI approach can be a good solution for the data 

analysis of late-onset diseases.

Conceptually and in practice, therefore, it appears that MI is a promising approach for use in 

the search for disease susceptibility genes. Future work will involve extending this approach 

for association analysis using larger family structures (e.g. extended pedigrees) and with 

quantitative as opposed to merely dichotomous (disease) traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Professor David Clayton for his help with multiple imputation algorithm. We also thank the 
REFGENSEP for sharing data. Support for this work was provided by the ARSEP and by a Wellcome Senior 
Fellowship (Reference 074524) from The Wellcome Trust.

References

1. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: The insulin 
gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993; 52:506–516. 
[PubMed: 8447318] 

2. Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects 
of polymorphisms within a gene using case/control or family data: Application to hla in type 1 
diabetes. Am J Hum Genet. 2002; 70:124–141. [PubMed: 11719900] 

3. Dudbridge F, Koeleman BP, Todd JA, Clayton DG. Unbiased application of the transmission/
disequilibrium test to multilocus haplotypes. Am J Hum Genet. 2000; 66:2009–2012. [PubMed: 
10775523] 

4. Clayton D. A generalization of the transmission/disequilibrium test for uncertain-haplotype 
transmission. Am J Hum Genet. 1999; 65:1170–1177. [PubMed: 10486336] 

5. Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol. 2003; 
25:115–121. [PubMed: 12916020] 

6. Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM. Family-based tests for associating 
haplotypes with general phenotype data: Application to asthma genetics. Genet Epidemiol. 2004; 
26:61–69. [PubMed: 14691957] 

7. Cordell HJ, Barratt BJ, Clayton DG. Case/pseudocontrol analysis in genetic association studies: A 
unified framework for detection of genotype and haplotype associations, gene-gene and gene-
environment interactions, and parent-of-origin effects. Genet Epidemiol. 2004; 26:167–185. 
[PubMed: 15022205] 

Croiseau et al. Page 11

Hum Hered. Author manuscript; available in PMC 2020 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



8. Schafer JL. Multiple imputation: A primer. Stat Methods Med Res. 1999; 8:3–15. [PubMed: 
10347857] 

9. Schafer, JL. Analysis of incomplete multivariate data. Chapman & Hall/CRC; 1997. 

10. Little, RJA, Rubin, DB. Statistical analysis with missing data. 2nd ed. Wiley-interscience; 2002. 

11. Kistner EO, Weinberg CR. A method for identifying genes related to a quantitative trait, 
incorporating multiple siblings and missing parents. Genet Epidemiol. 2005; 29:155–165. 
[PubMed: 16025442] 

12. Kraft P, Cox DG, Paynter RA, Hunter D, De Vivo I. Accounting for haplotype uncertainty in 
matched association studies: A comparison of simple and flexible techniques. Genet Epidemiol. 
2005; 28:261–272. [PubMed: 15637718] 

13. Cordell HJ. Estimation and testing of genotype and haplotype effects in case-control studies: 
Comparison of weighted regression and multiple imputation procedures. Genet Epidemiol. 2006; 
30:259–275. [PubMed: 16496312] 

14. Tanner M, Wong W. The calculation of posterior distributions by data augmentation (with 
discussion). J Amer Stat Soc. 1987; 81:528–550.

15. O'Connell JR. Zero-recombinant haplotyping: Applications to fine mapping using snps. Genet 
Epidemiol. 2000; 19(Suppl 1):S64–70. [PubMed: 11055372] 

16. Rubin, DB. Multiple imputation for non reponse in surveys. New York: 1987. 

17. Li K, Meng X, Raghunathan TE, Rubin DB. Significance levels from repeated p-values with 
multiply-imputed data. Statistica Sinica. 1991; 1:65–92.

18. Self SG, Longton G, Kopecky KJ, Liang KY. On estimating HLA/disease association with 
application to a study of aplastic anemia. Biometrics. 1991; 47:53–61. [PubMed: 2049513] 

19. Schaid DJ. General score tests for associations of genetic markers with disease using cases and 
their parents. Genet Epidemiol. 1996; 13:423–449. [PubMed: 8905391] 

20. Tregouet DA, Escolano S, Tiret L, Mallet A, Golmard JL. A new algorithm for haplotype-based 
association analysis: The stochastic-em algorithm. Ann Hum Genet. 2004; 68:165–177. [PubMed: 
15008795] 

21. Deltour I, Richardson S, Le Hesran JY. Stochastic algorithms for markov models estimation with 
intermittent missing data. Biometrics. 1999; 55:565–573. [PubMed: 11318215] 

22. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from 
population data. Am J Hum Genet. 2001; 68:978–989. [PubMed: 11254454] 

23. Alizadeh M, Babron MC, Birebent B, Matsuda F, Quelvennec E, Liblau R, Cournu-Rebeix I, 
Momigliano-Richiardi P, Sequeiros J, Yaouanq J, Genin E, et al. Genetic interaction of ctla-4 with 
hla-dr15 in multiple sclerosis patients. Ann Neurol. 2003; 54:119–122. [PubMed: 12838528] 

Croiseau et al. Page 12

Hum Hered. Author manuscript; available in PMC 2020 January 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. 
Type 1 error at α=0.05 on simulated data as a function of the percentage of missing data 

when using or not the MI approach. The number of complete families available for the study 

without MI is plotted on the second y axis.
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Figure 2. 
Power at α=0.05 on simulated data as a function of the percentage of missing data when 

using or not the MI approach for a recessive model (a) and a dominant model (b) with 

genotype relatve risks 1.5. The number of complete families available for the study without 

MI is plotted on the second y axis.
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Figure 3. 
Number of replicates among the 500 replicates where the disease susceptibility site (locus 2) 

gives the best score, conditional on the fact the highest score is significant, in function of the 

percentage of missing data when using or not the MI approach for a recessive (a) and a 

dominant model (b) with a genotype relative risks of 1.5.
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Figure 4. 
haplotypic bias between the expected and the observed haplotypic relative risk in function of 

the percentage of missing data in the case of the 2-locus multiplicative model when using or 

not the MI algorithm. Haplotype relative risks hr2, hr3 and hr4 correspond to the relative 

risks for haplotypes 12, 21 and 22 respectively (relative to haplotype 11).
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Figure 5. 
Median of the absolute genotypic bias in function of the percentage of missing data in the 

case of the 2-locus multiplicative and non multiplicative model when using or not MI 

algorithm.
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Table 1

Haplotype frequencies for the five loci considered in the simulations.

haplotypes frequencies

1 1 1 1 1 0.310

1 1 1 1 2 0.005

1 1 1 2 1 0.099

1 1 2 1 1 0.018

1 2 1 1 1 0.002

1 2 2 1 2 0.002

2 1 1 1 1 0.003

2 1 1 2 1 0.002

2 1 2 1 1 0.060

2 1 2 1 2 0.003

2 1 2 2 1 0.002

2 2 1 1 1 0.017

2 2 1 1 2 0.002

2 2 2 1 1 0.376

2 2 2 1 2 0.094

2 2 2 2 1 0.002

2 2 2 2 2 0.003
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Table 2

a. List of the different 1-locus models used in simulation where parameters correspond to the genotype relative 

risks for genotypes 1/1, 1/2, 2/2 respectively.

b. Multiplicative 2-locus model where parameters correspond to the genotype relative risk arising from the 

association of the two transmitted haplotypes, with the four possible haplotypes denoted 11, 12, 21, 22 

respectively.

c. Non-multiplicative 2-locus model where parameters correspond to the genotype relative risk arising from 

the association of the two transmitted haplotypes, with the four possible haplotypes denoted 11, 12, 21, 22 

respectively.

a parameter model1 model2 model3 model4

one locus models

11 1 1 1 1

12 1 1.5 1 3

22 1.5 1.5 3 3

b parameter 11 12 21 22

multiplicative model

11 1 3 5 6

12 3 9 15 18

21 5 15 25 30

22 6 18 30 36

c parameter 11 12 21 22

non multiplicative model

11 1 2 2 2

12 2 8 2 2

21 2 2 12 2

22 2 2 2 16
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Table 3

Bias and 95% confidence interval coverage of genetic parameter estimates from two-locus simulation study 

when using case/control or case/parent trio data with 10% missing data. The second column corresponds to the 

expected relative risk associated with each genotype.

case/control trios families

genotypes relative risk Bias Coverage Bias Coverage

1-1/1-2 2 -0.089 0.968 0.027 0.959

1-1/2-1 2 0.002 0.971 0.070 0.971

1-1/2-2 2 -0.315 0.792 -0.012 0.968

1-2/1-2 8 -0.170 0.950 -0.141 0.956

1-2/2-1 2 0.371 0.783 -0.019 0.950

1-2/2-2 2 0.191 0.953 -0.014 0.950

2-1/2-1 12 -0.063 0.950 -0.054 0.968

2-1/2-2 2 0.212 0.868 0.050 0.962

2-2/2-2 16 -0.056 0.962 -0.031 0.974
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