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Abstract

Human brain networks based on neuroimaging data have already proven useful in characterizing 

both normal and abnormal brain structure and function. However, many brain disorders are 

neurodevelopmental in origin, highlighting the need to go beyond characterizing brain 

organization in terms of static networks. Here, we review the fast-growing literature shedding light 

on developmental changes in network phenotypes. We begin with an overview of recent large-

scale efforts to map healthy brain development, and we describe the key role played by 

longitudinal data including repeated measurements over a long period of follow-up. We also 

discuss the subtle ways in which healthy brain network development can inform our understanding 

of disorders, including work bridging the gap between macroscopic neuroimaging results and the 

microscopic level. Finally, we turn to studies of three specific neurodevelopmental disorders that 

first manifest primarily in childhood and adolescence/early adulthood, namely psychotic disorders, 

attention-deficit/hyperactivity disorder, and autism spectrum disorder. In each case we discuss 

recent progress in understanding the atypical features of brain network development associated 

with the disorder, and we conclude the review with some suggestions for future directions.
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Childhood and adolescence are critical periods during which several brain disorders develop. 

Characterizing how atypical developmental trajectories diverge from normal brain 

development is essential to understand and ultimately treat these disorders. Network models 

of neuroimaging data have already highlighted key drivers in brain organization (1–3), for 

example, the role of hubs in coordinating information transfer (4) and the economic trade-off 

brain networks navigate between the cost of long-distance connections and their topological 

benefits, enabling efficient information processing by connecting distant brain regions (5). 

Figure 1 summarizes commonly used graph metrics. However, owing to the difficulty and 

cost of recruiting and scanning large cohorts, historically many network studies of 

neurodevelopmental disorders have focused on static patient/control differences, 

disregarding the changing structure of brain networks over time. What can network models 

tell us about healthy brain development and how developmental trajectories differ in 

disease? Several neuroimaging studies have begun to tackle this question, including the 

Human Connectome Project Development study (6), the Developing Human Connectome 

Project (7), the NeuroScience in Psychiatry Network (8), and the Philadelphia 

Neurodevelopmental Cohort (9), among others. These collaborative projects benefit from 

large sample sizes with several hundred participants, which is crucial to obtain enough 

power to detect statistically significant, potentially nonlinear changes with age. Perhaps the 

most exciting feature of some of these projects is the longitudinal neuroimaging data being 

acquired (Box 1). While cross-sectional data can provide important insights into average 

group changes, longitudinal data are essential to study development at an individual level 

because significant individual differences exist even between healthy individuals of similar 

ages (10,11), which may confound cross-sectional analyses (12). In atypical development, 

the trajectory of changes in an individual’s brain network may be a more useful biomarker 

than the absolute values (13).

Here, we build on previous reviews (14–20), with particular emphasis on how healthy 

development can provide insights into abnormal development and the importance of 

longitudinal data. We begin by reviewing cross-sectional and longitudinal studies of healthy 

brain network development and their implications for understanding neurodevelopmental 

disorders. We then turn to studies of three specific neurodevelopmental disorders that first 

manifest primarily in childhood and adolescence/early adulthood, namely psychotic 

disorders, attention-deficit/hyperactivity disorder (ADHD), and autism spectrum disorder 

(ASD). We conclude with suggestions for future directions.

Healthy Development

The human brain undergoes extraordinary changes during development, from conception to 

birth and throughout childhood. Before birth, neurogenesis is largely completed by week 20 

after conception; axons begin to grow and synapses start to form between neurons (19,21). 

After birth, a further proliferation phase in which the number of synapses continues to 

increase is followed by a consolidation phase characterized by cell loss, synaptic pruning, 

and myelination of axons, which is thought to continue into adolescence (22). Neuroimaging 

provides a noninvasive, albeit indirect, way to study these developmental changes. Table 1 

lists cross-sectional and longitudinal studies performed in healthy children and adolescents, 
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using structural magnetic resonance imaging (sMRI), diffusion-weighted imaging (DWI), 

and functional MRI (fMRI).

Structural MRI

sMRI provides several metrics characterizing brain morphology, for example, gray and 

white matter volumes and cortical thickness (CT). The first longitudinal pediatric 

neuroimaging study was performed in 1999 and showed that gray matter volume increases in 

early childhood before decreasing in later childhood/adolescence, forming an inverted U–

shaped trajectory, which peaks at different ages in different brain regions (23). These peaks 

occur later than expected from cross-sectional studies (13), although recent longitudinal 

studies have suggested that methodological issues might have confounded these results and 

CT may decrease from earlier in childhood (24–26). For example, Mills et al. (25) found that 

gray matter volume decreased from 8 to 30 years of age in four longitudinal samples. One 

potential confound is that in-scanner movement can lead to reduced CT and volume 

estimates (27,28), which can bias developmental trajectories. A recent multisample study 

analyzed longitudinal changes in cortical volume, surface area, and thickness from 7 to 29 

years of age and found that cortical thinning is the dominant contributor to volume 

reductions during adolescence (29). In Giedd et al. (23), white matter volumes increased 

from 4 to 20 years of age, in agreement with recent results (24). Microscopically, these 

changes are thought to be driven by the pruning of synapses, dendrites, or cell bodies and the 

myelination of axons. Several studies have shown that lower-order somatosensory and visual 

cortices mature first, followed by higher-order association cortices (30–34), in line with the 

order of cognitive and behavioral changes during childhood. These studies used a variety of 

developmental benchmarks, e.g., age at attainment of adult brain volume or at other 

inflection points.

To study the relationships between brain regions, morphological metrics can be correlated 

between regions across subjects to create one structural covariance network per subject 

group (35). The network’s nodes correspond to brain regions and the edges represent cross-

correlations of morphological metrics between pairs of regions taken across subjects. While 

this approach cannot elucidate intersubject differences, it can provide insights into average 

developmental changes. For example, volumetric covariance networks suggest that small-

world, modular topology is already present at 1 month (36). Later work found that network 

measures follow nonlinear trajectories (37,38); for example, in a longitudinal study, global 

efficiency and CT peak at 7 years of age, and at the same time local efficiency is lowest and 

cortical folding becomes stable (38). Correlations between fractional anisotropy (FA) (see 

below for details) and CT covariance matrices suggest that white and gray matter 

development is synchronized (39).

Like individual morphometric measures, in structural covariance networks different brain 

regions follow different developmental trajectories (37,40–42). Several studies have shown 

early maturation of primary regions followed by protracted development of high-order 

regions (37,40,41). One study of 108 adolescents with three to six longitudinal scans per 

participant created both structural and maturational covariance networks, in which 

maturational networks were derived from the rate of change of CT in different regions (42). 
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Structural and maturational covariance networks exhibited similar topological properties and 

spatial organization, suggesting that correlated anatomical structure between brain regions 

results from similarities in maturational trajectories. In other words, brain regions with high 

structural covariance might have developed in similar ways.

Other work has highlighted the importance of hub regions (37,43,44). Khundrakpam et al. 
(37) found that both the number and the distribution of hubs change over development; the 

number of hubs peaks in late childhood, then the distribution of hubs shifts toward frontal 

regions during adolescence. Whitaker et al. (43) also pointed to a key role for hubs in 

association cortices during adolescence, showing that they are less myelinated at 14 years of 

age than other regions, but have faster rates of myelination and cortical shrinkage between 

14 and 24 years of age. These results are consistent with the idea that primary sensory and 

motor regions develop early on, while hub regions of the association cortex that are 

responsible for more complex integrative function mature more slowly.

Recently Seidlitz et al. (45) proposed a new approach for calculating sMRI networks at the 

individual level, based on interregional similarity of several morphological metrics such as 

CT, gray matter volumes, surface area, and curvature. Future studies based on these 

morphometric similarity networks could enable a deeper understanding of how individual 

sMRI connectivity develops.

Diffusion-Weighted Imaging

DWI exploits the diffusion of water molecules to generate contrast between different types 

of brain tissue. It can be used to measure mean diffusivity, axial diffusivity, or radial 

diffusivity, and FA, which is believed to reflect fiber density, axonal diameter, and 

myelination. Finally, white matter fibers can be tracked to create a tractography (diffusion 

tensor imaging [DTI]) network where predefined gray matter regions of interest are 

connected by an edge if white matter fibers are inferred between them (46). As in sMRI, 

DWI is susceptible to motion artifacts, particularly DTI networks, due to their long 

acquisition times (47,48).

During development, diffusivity decreases with age while anisotropy increases (19). These 

changes are believed to reflect increasing myelination. Changes occur most rapidly up to 2 

years, then continue throughout childhood and adolescence, until at least 18 years of age and 

possibly into early adulthood (49,50).

Many global topological properties of DTI networks are already established at birth, 

including small-worldness and the presence of hubs (46,49). However, several studies report 

substantial reorganization of DTI networks during childhood and adolescence, including 

monotonic increases in integration and global efficiency and decreases in clustering 

(46,49,51–53). The studies use several approaches to calculate edge weights, including 

binarization, radial diffusivity, and mean diffusivity values, and span age ranges from birth 

to 30 years of age. The monotonic changes are consistent with increasing white matter 

volume. Recently, Baum et al. (54) observed that while global efficiency increases with age, 

surprisingly both participation coefficient and between-module connectivity decrease, 

suggesting that networks become both more modular and more integrated. These changes 
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were driven by strengthening of network hub edges. Other studies agree that connectivity 

between hubs or association regions changes disproportionately to other regions, particularly 

in adolescence (52,55). Recently, Wierenga et al. (56) also showed increases in connectivity 

between rich-club nodes and peripheral nodes. We note that some studies observe decreasing 

global efficiency with age (57,58). These different results may be due to using different 

measures, as Lim et al. (57) used networks weighted by streamline count, while Baum et al. 
(54) used FA. In line with these results, in Koenis et al. (58) networks weighted by 

streamline count showed decreasing global efficiency with age, while FA-weighted networks 

showed increasing global efficiency. In Lim et al. (57), the proportion of intermodule 

connections increased with age, again unlike Baum et al. (54), and possibly owing to 

differences in network construction.

Functional MRI

In fMRI brain images, each voxel is associated with a time series. There are several 

approaches to analyzing fMRI networks, including 1) independent component analysis, a 

data-driven approach that identifies components that group voxels into regions with similar 

response patterns; 2) seed-based maps, which study correlations between a particular seed 

region and other areas of the brain; 3) regional maps, which study correlations between brain 

regions selected a priori; and 4) whole-brain network analysis, in which an atlas is used to 

parcellate the brain into regions and correlations are studied between regions. We note that 

there are still questions about how to preprocess fMRI data. As for other modalities, 

movement can bias estimates of functional connectivity (59–61). Several authors have 

proposed methods to address this problem (61–64); however, older studies may still be 

affected. The role of intersubject differences in mean connectivity and whether to perform 

global signal regression are also topics of debate (65,66).

In contrast to structural networks, in fMRI networks global topological metrics including 

efficiency and clustering generally remain stable across development (67–69), although Gao 

et al. (70) observed some changes in global efficiency between neonates and 1-year-olds, 

and Gao et al. (71) and Wu et al. (72) observed some changes in clustering at later stages of 

development.

Despite these broadly constant global topological properties, several authors have shown that 

long-range connections strengthen during development and short-range connections weaken 

(67,69,70,73,74). Although this result may be exaggerated by motion artifacts in early 

studies, the effect remains significant after motion correction (74).

Consistent with structural results, several developmental changes focus on hub regions 

(71,75,76), and intermodular integration also increases with development (67,77). Recent 

evidence from 780 subjects from 8 to 22 years of age suggests that different modules follow 

distinct developmental trajectories: for example, the default mode system shows increasing 

inter- and intrasystem connectivity, while sensorimotor systems become increasingly 

segregated from other systems (78).

Finally, recent work found that subjects develop more stable, individual functional 

connectomes during adolescence (79). In particular, for 797 subjects from 8 to 22 years of 
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age, the identification accuracy of one resting-state fMRI (rs-fMRI) or task fMRI scan from 

a subject based on other fMRI scans from the same subject (termed connectome 

distinctiveness) increases with age (see Figure 2). Machine-learning approaches like this one 

offer an alternative, individual-centric perspective on development.

A Window into Atypical Development

Developmental studies on healthy subjects provide a crucial benchmark for 

neurodevelopmental disorders. They can also provide further insights, e.g., by 1) studying 

individuals from a general population with disorder-like traits or (subclinical) symptoms; 2) 

highlighting which network properties/regions change at which stages of development and 

linking them to the disorders separately shown to affect the same network properties/regions; 

and 3) associating brain development with genes that are known to be implicated in 

disorders.

Here, we discuss studies that take these approaches to explore what large healthy 

developmental cohorts can teach us about brain disorders. Above, we discussed work by 

Kaufmann et al. (79), which showed that connectome distinctiveness increases from 8 to 22 

years of age. The authors also showed that this increase is delayed in subjects from the 

general population with increased clinical symptom scores for a range of disorders. This 

delay in connectome distinctiveness reflects both a delay in stabilization of an individual’s 

brain network over time and a delay in the individualization of the subject’s brain network 

with respect to the other subjects.

Healthy subjects can also inform our understanding of disorders by highlighting the network 

features that change during development and are therefore particularly vulnerable to 

abnormal development. As discussed above, one of the main results from several healthy 

developmental studies, across multiple modalities, is that developmental changes often focus 

on hub regions. For example, Whitaker et al. (43) showed that the greatest rates of 

myelination and cortical shrinking during adolescence are focused on hub regions of the 

association cortex. Disruptions to hub connectivity have been observed in patients: for 

example, a meta-analysis showed that hub regions are more likely to be anatomically 

abnormal than nonhub regions in nine different brain disorders, including Alzheimer’s 

disease and schizophrenia (80). Together, these results suggest that disorders may be linked 

to abnormal development of these key regions. In Whitaker et al. (43), the authors combined 

neuroimaging with the Allen Institute for Brain Science dataset on brainwide gene 

expression (81) (see Figure 3). The hub regions with greatest rates of myelination and 

cortical shrinkage from 14 to 24 years of age show overexpression of a set of genes enriched 

for both synaptic processes and schizophrenia risk-genes. The involvement of these risk 

genes in normal maturational processes during adolescence could explain why this period is 

particularly vulnerable to the onset of schizophrenia. The study provides an example of the 

way in which genetic and genomic datasets can link the brain development of healthy 

individuals and disorders for which there is a known set of risk genes (82). It also shows 

how macroscopic brain imaging results can be linked to a microscopic understanding of the 

brain (83–88). Similar methods are currently being applied to other disorders, including 

autism (89) and Huntington’s disease (90).
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Abnormal Development

Despite the significant insights that can be gained from healthy developmental studies, 

ultimately building a comprehensive picture of disorders requires longitudinal studies of 

patients. Below we review longitudinal and cross-sectional studies on ASD, ADHD, and 

psychosis, which are listed in Tables 2, 3, and 4, respectively.

Autism Spectrum Disorder

ASD manifests in the first few years of childhood and strongly impacts subsequent 

development. Zielinski et al. (91) found that CT development in boys with ASD undergoes 

three phases: in childhood cortical expansion is accelerated compared with control subjects; 

in late childhood/adolescence cortical thinning is accelerated; and in early adulthood cortical 

thinning is decelerated. The wide age range studied, from 3 to 36 years of age, was made 

possible by an accelerated longitudinal design (see Box 1). Topologically, studies comparing 

adult ASD patients and control subjects have found evidence for reduced efficiency and 

long-range connections in patients’ fMRI and DTI networks (92,93), although increased 

local connectivity has also been observed (93,94). Network changes may be state dependent 

(e.g., sustained attention vs. at rest) (95). Disruption has also been observed in hub regions 

and regions related to social interaction, which is abnormal in ASD (96,97).

In DTI networks, reduced local efficiencies in low-level sensory processing regions have 

been observed in high-risk infants as young as 6 months of age and correlate significantly 

with 24-month symptom severity (98). Later in development, ASD patients fail to show the 

increases in rich-club organization observed in typically developing subjects (99). 

Nonnegative matrix factorization can be used to identify developmental subnetworks in ASD 

and subnetworks that discriminate between patients and control subjects. For example, 

Ghanbari et al. (100) identified one subnetwork with reduced interhemispheric subcortical 

connections that can discriminate groups but does not correlate with age, and another 

subnetwork involving frontal regions that is both discriminative and developmental. In 

contrast, other work taking a similar approach found increases in local connectivity in the 

cingulate cortex in ASD (101). Functional resting-state networks show a similarly complex 

picture. One study showed decreased default mode network (DMN) connectivity in 

independent component analysis networks of ASD children and adolescents, which 

normalizes by adulthood (102). Chen et al. (103) also observed reduced connectivity in 

some network edges, although other edges showed increased connectivity. A recent study 

suggested that rs-fMRI can predict whether 6-month-old infants develop autism at 24 

months, although the sample size was relatively modest (59 infants, including 11 with ASD) 

(104). Further work is needed to clarify how connectivity develops in ASD.

Attention-Deficit/Hyperactivity Disorder

ADHD is one of the most common neurodevelopmental disorders and is often diagnosed 

between 6 and 12 years of age. Adult patients’ rs-fMRI networks show reduced integration 

and increased segregation compared with control subjects (105,106), and a DTI study 

observed local reductions in efficiency and increases in clustering (107). Several authors 

have highlighted the importance of development in ADHD. Patients exhibit reduced brain 
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volumes, which normalize in some regions during development but not in others (108). 

There is also a delay in the age at which ADHD patients’ CT peaks, which was first 

established by Shaw et al. (109) using a mixed longitudinal and cross-sectional design.

Most work to date on brain network development in ADHD has focused on rs-fMRI 

networks, which exhibit higher clustering and lower global efficiency in children with 

ADHD than in age-matched control subjects (110,111), in line with results in adults. These 

measures correlate with behavioral symptoms including inattention and hyperactivity/

impulsivity symptoms and differ between clinical subtypes (110). Early results showed that 

the rs-fMRI connectivity of the DMN is reduced in 23 ADHD patients compared with age-

matched control subjects (112). Based on previous work on healthy development, this 

suggested a delay or disruption to development in ADHD patients. Later, Sripada et al. (113) 

showed that the connectivity within the DMN and between the DMN and task-positive 

networks in ADHD patients does indeed lag behind control subjects in a large cross-

sectional sample from 7 to 22 years of age. Recently, Kessler et al. (114) used an 

independent component analysis approach to chart the development of brain connectivity 

networks in 519 subjects from 8 to 22 years of age, including 25 with ADHD. They found 

evidence for disrupted maturation in ADHD patients’ functional networks, which involves 

the DMN, although interestingly maturation is reduced (downshifted) in patients rather than 

delayed. It would be interesting to see if these results could be replicated in a larger, 

longitudinal sample and related to structural network changes.

Psychosis

Psychotic disorders are often associated with brain dysconnectivity. sMRI studies show 

reduced CT and volume in adults with schizophrenia (115), DTI network connectivity is 

often reduced (116), and patients’ rs-fMRI networks exhibit lower mean correlations and 

more randomized topologies (117). Psychotic disorders normally manifest in late 

adolescence/early adulthood, although earlier developmental changes could be valuable to 

identify individuals at risk.

Longitudinal studies show greater volume reductions in patients than in control subjects 

during adolescence, particularly in the frontal and temporal regions (118). Similarly, CT 

shows exaggerated thinning in patients (119). Alexander-Bloch et al. (120) found both age-

constant deficits of CT and faster cortical thinning in childhood-onset schizophrenia patients 

compared with control subjects. They used structural covariance to derive five brain 

development modules with similar maturational trajectories in normal subjects and found 

that deviations in patients are primarily in the cingulofrontotemporal module. Other 

longitudinal work using CT structural covariance networks observed that left hemisphere 

occipitotemporal connectivity is significantly reduced in patients and siblings at 12 years of 

age compared with control subjects (121). By 17 years, siblings catch up with control 

subjects, but patients exhibit further delayed development, reminiscent of other disorders 

(79,114). Few DWI studies have focused on brain network development in psychosis, 

although in older subjects (19 to 54 years) longitudinal results show decreasing global 

efficiency over a 5-year period in patients with schizophrenia, compared with increases in 

the same period in control subjects (122).
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There are few functional brain network studies of schizophrenia patients during childhood/

adolescence. One study found that local degree, local clustering, and local path length are 

reduced in most cortical regions in adults compared with children/adolescents, and reduced 

in adults with schizophrenia compared with control subjects in the thalamus and midbrain 

regions (123). However not all healthy development studies show similar trends, as 

discussed previously. Other work has found a complex pattern of increases and decreases in 

local connectivity in early-onset schizophrenia patients (124). Further studies are required to 

resolve these differences. A recent rs-fMRI study of at-risk mental state subjects found that 

those who transitioned to psychosis exhibited less segregated networks and disrupted 

network communities (125).

An alternative approach to studying developmental disorders is using generative models 

(126,127), algorithms that generate synthetic networks with certain topological properties. 

Vértes et al. (126) proposed a generative model incorporating a term that penalizes long-

distance connections and a topological term that favors connections between nodes with 

shared nearest neighbors. The model reproduces several topological properties of healthy rs-

fMRI brain networks. Simulations of schizophrenia patients’ networks required a reduced 

distance penalization parameter, which increased the probability of long-distance 

connections, producing more randomized networks. Generative models could shed light on 

microscopic changes during disease. For example, increased probability of long-distance 

connections in disease could be related to the dysregulation of normal maturational 

processes such as pruning and myelination (43).

Conclusions and Future Directions

Larger sample sizes and the availability of longitudinal data are enabling more accurate 

assessments of the developmental changes of healthy children and adolescents across 

modalities. Healthy brain connectivity evolves during development, with evidence for 

stronger long-distance connections with age (74), more integration (52,67,128), and 

increasing connectome distinctiveness (79). Certain results have been observed across 

modalities, for example, the importance of hubs during brain network development 

(37,43,55), although other results vary by modality in ways that are not always clearly 

understood, for example, the changes in global efficiency with age observed in sMRI results 

are often not replicated in fMRI networks (38,67). Overall, healthy studies provide an 

important benchmark for neurodevelopmental disorders, for which atypical developmental 

trajectories may be a key biomarker.

Patient developmental studies are important to understand precisely how and when network 

properties change in disorders. Many results point toward delayed or disrupted development 

in patients (68,102,109) and to changes in network hubs and rich-club nodes, which are 

known to be vulnerable during development. Characteristics of specific disorders are likely 

to be related to their developmental timing. ASD patients exhibit a mixture of increased/

decreased connectivity in different brain regions from childhood, which may be age and/or 

state dependent. ADHD patients show a clearer pattern of reduced local efficiency, which 

lags behind control subjects. In psychosis, patients exhibit increased cortical thinning during 
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adolescence, which is likely coupled to functional changes although more work is required 

to elucidate this relationship.

Large, longitudinal datasets are essential to build a clearer picture, and making data openly 

accessible is an important step toward more reproducible research. Table 5 lists large open 

datasets for typical and atypical development. There are noticeable gaps, e.g., a paucity of 

developmental rs-fMRI data from patients with schizophrenia. Several ongoing psychosis 

projects will go some way to address this problem [e.g., (9,129–131)]. Similar initiatives are 

underway for other disorders (132,133).

Another advantage of large collaborative projects is that they often collect data from 

multiple modalities, enabling the relationships between modalities to be assessed. Networks 

provide an excellent framework to compare or combine different data types across temporal 

and spatial scales, for example, by using multilayer networks. Combining neuroimaging 

results with nonneuroimaging data also represents an exciting avenue for future research. 

For example, gene expression data from the Allen Institute for Brain Science has already 

provided a link between the developmental changes in hub regions during adolescence and 

genes implicated in schizophrenia (43). Ultimately, using networks to bridge the gap 

between macroscopic neuroimaging results and the microscopic level could open the door to 

a new depth of understanding and treatments for neurodevelopmental disorders.
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Box 1

From Cross-Sectional to Longitudinal Analysis

To understand developmental change, it is crucial to distinguish individual age-related 

changes from subject heterogeneity. Cross-sectional studies only contain a single 

observation per individual in a cohort of varying age and therefore cannot make this 

distinction (135,136). In contrast, longitudinal studies incorporate repeat measurements 

of the same individuals at multiple time points. Longitudinal studies increase the 

complexity of design and analysis, but the scientific benefits to understanding 

developmental changes are substantial.

Mixed-effects models are an established approach to analyzing longitudinal data 

(24,137–139) and include (as special cases) other well-known techniques such as change-

score regression and repeated-measures analysis of variance. However, standard mixed-

effects models are not without issues, notably, assumptions of Gaussian errors and the 

need to specify the random-effects structure (139). Longitudinal data also bring issues of 

attrition, which if associated with a biomarker or outcome of interest may lead to 

differential missingness, also known as missing not at random (140). Another challenge 

is the so-called age-period-cohort problem (141)—including the difficulty of separating 

changes owing to aging from changes due to external factors at different calendar 

periods, which is especially pertinent for long-term studies.

Study design is particularly important for longitudinal studies and requires balancing 

robust and reliable inferences against recruitment and costs to determine not only how 

many participants, but also how many visits per subject are needed. A classical 

longitudinal design follows a single cohort of subjects for the duration of interest, 

observing each subject multiple times. However, this makes the duration of many 

developmental studies untenable.

An alternative is the accelerated longitudinal design (142), also called the cohort-

sequential design (143), in which multiple cohorts are followed with overlapping follow-

up. This introduces two new design considerations, the number of cohorts and the 

overlap, which affect the acceleration of the design. An accelerated longitudinal design 

with sufficient overlap can disentangle age-period-cohort effects and the number of 

observations per subject is the primary determinant of power to detect an age-related 

trajectory (144).
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Figure 1. 
An illustration of commonly used network metrics. (A) Degree, hubs, and rich clubs: The 

degree of a node is the number of links or connections it makes. Hubs are nodes with a 

significantly higher degree than other nodes in the network. In many networks, these nodes 

preferentially connect to one another, forming an elite group of nodes called a rich club. (B) 
Path length and efficiency: the minimum path length between two nodes i and j is the 

minimum number of edges that need to be traversed to go from one node to another, and 

efficiency is inversely related to path length. (C) Clustering and local efficiency: the 

clustering coefficient measures the number of connections that exist between the first 

neighbors of a node i as a proportion of the maximum possible number of such connections. 

These edges form triangular connections around the node i, which increases the local 

efficiency by decreasing the path length locally between the node’s neighbors. (D) 
Modularity: Many complex networks have a modular community structure, whereby they 
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contain subsets of highly interconnected nodes called modules. Many of these features are 

highlighted in a brain functional network shown in both (E) anatomical space and (F) 
topological space. Node size is proportional to degree and rich-club nodes are highlighted as 

squares in panel (F). The modular organization is highlighted by assigning different colors 

to nodes of different modules. Reproduced with permission from Vértes et al. (14) and 

Crossley et al. (134).
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Figure 2. 
(A) Average identification accuracy using testing and training functional magnetic resonance 

imaging scans from a working memory task (WM), emotion recognition task (ER), and 

resting state (RE). (B) Statistics from a linear model of connectome distinctiveness. (C) 
Changes in connectome distinctiveness with age. Male subjects developed later than female 

subjects. Similar results were obtained using independent component analysis. Reprinted 

with permission from Kaufmann et al. (79). tSNR, temporal signal-to-noise ratio.
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Figure 3. 
Schematic of the methodology in Whitaker et al. (43). Gene expression data can be used to 

link magnetic resonance imaging (MRI) observations and network phenotypes to a 

microscopic understanding of the brain. (A) In vivo MRI observations are used to (B) 
identify network phenotypes. Multivariate statistical methods can then (C) combine this 

information with brainwide gene expression data and (D) identify genes that are associated 

with the network phenotype. (E) Cellular processes that are known to be enriched in those 

genes can provide information about the processes that are particularly important in the 

regions highlighted by MRI. PLS, partial least squares.
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Table 1
Cross-Sectional and Longitudinal Neuroimaging Brain Network Studies Performed in 
Healthy Children and Adolescents, Using sMRI, DWI, and fMRI

Author Date No. of Subjects Age Longitudinal Data Type

Alexander-Bloch et al. (42) 2013                  108 9–22 years Yes sMRI, rs-fMRI

Fan et al. (36) 2011                    28 0–2 years Yes sMRI

Khundrakpam et al. (37) 2013                  203 5–18 years No sMRI

Moura et al. (39) 2017                  249 7–14 years No sMRI

Nie et al. (38) 2013                  445 3–20 years Yes sMRI

Váša et al. (44) 2018                  297 14–24 years No sMRI

Whitaker et al. (43) 2016                  297 14–24 years No sMRI

Zielinkski et al. (40) 2010                  300 5–18 years No sMRI

Baker et al. (55) 2015                    31 15–19 years Yes DWI

Baum et al. (54) 2017                  882 8–22 years No DWI

Dennis et al. (53) 2013                  439 12–30 years No DWI

Koenis et al. (58) 2015                  162 9–15 years Yes DWI

Lim et al. (57) 2013                  121 4–40 years No DWI

Tymofiyeva et al. (51) 2013                    33 0–6 months No DWI

Wierenga et al. (52) 2016              85, 38 7–23 years No DWI

Wierenga et al. (56) 2017           146, 141 4–13 years, 8–13 years Yes DWI

Yap et al. (46) 2011                    39 2 weeks to 2 years Yes DWI

Hagmann et al. (49) 2010                    30 2–18 years No DWI/rs-fMRI

Uddin et al. (76) 2011 23 children, 22 adults 7–9 years, 19–22 years No DWI/rs-fMRI

Cao et al. (71) 2014                  126 7–85 years No rs-fMRI

Fair et al. (67) 2009                  210 7–31 years No rs-fMRI

Fair et al. (128) 2007                  139 7–9 years, 10–15 years, 20–31 years No rs-fMRI

Fransson et al. (68) 2011   18 infants, 18 adults 39 weeks, 22–41 years No rs-fMRI

Gao et al. (70) 2011                  147 2 weeks to 2 years No rs-fMRI

Gu et al. (78) 2015                  780 8–22 years No rs-fMRI

Hwang et al. (75) 2013                    99 10–20 years No rs-fMRI

Marek et al. (77) 2015                  192 10–26 years No rs-fMRI

Satterthwaite et al. (74) 2013                  780 8–22 years No rs-fMRI

Supekar et al. (69) 2009 23 children, 22 adults 7–9 years, 19–22 years No rs-fMRI

Wu et al. (72) 2013                    51 6–18 years No rs-fMRI

Dosenbach et al. (73) 2010                  115 7–30 years No fMRI

Kaufmann et al. (79) 2017                  797 8–22 years No fMRI

Studies were identified using the PubMed search terms: brain, network, or graph theory, longitudinal or cross-sectional or development, image or 
imaging or MRI or DTI or scan, and healthy or normal. Studies were only included if they included subjects below 21 years of age, discussed 
network or graph theoretical properties, and were either cross-sectional (studying changes in age across a population) or longitudinal.
DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; fMRI, functional magnetic resonance imaging; rs-fMRI, resting-state functional 
magnetic resonance imaging; sMRI, structural magnetic resonance imaging.
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Table 2
Cross-Sectional and Longitudinal Neuroimaging Brain Network Studies Performed in 
Patients With ASD

Author Date No. of Subjects Age Longitudinal Data Type

Chen et al. (103) 2015 735 6–40 years No rs-fMRI

Nomi and Uddin (102) 2015 26 children, 28 adolescents, 18 adults 7–39 years No rs-fMRI

Ball et al. (101) 2017 196, 51 5–86 years, 8–18 years No DWI

Ghanbari et al. (100) 2014 24 ASD, 59 control subjects 6–18 years No DWI

Lewis et al. (98) 2017 260 6 months, 12 months Yes DWI

Watanabe and Rees (99) 2015 45 ASD, 36 control subjects 9–18 years No DWI

Inclusion criteria were the same as for Table 1, except the search terms ASD and autism were used instead of healthy or normal.
ASD, autism spectrum disorder; DTI, diffusion tensor imaging; DWI, diffusion-weighted imaging; rs-fMRI, resting-state functional magnetic 
resonance imaging.
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Table 3
Cross-Sectional and Longitudinal Neuroimaging Brain Network Studies Performed in 
Patients With ADHD

Author Date No. of Subjects Age, Years Longitudinal Data Type

Fair et al. (112) 2010 23 ADHD, 23 control subjects 7–16 No rs-fMRI

Kessler et al. (114) 2016 519, including 25 ADHD 8–22 No rs-fMRI

Sripada et al. (113) 2014 133 ADHD, 288 control subjects 7–22 No rs-fMRI

Inclusion criteria were the same as for Table 1, except the search terms ADHD and attention deficit disorder were used instead of healthy or 
normal.
ADHD, attention-deficit/hyperactivity disorder; rs-fMRI, resting-state functional magnetic resonance imaging.
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Table 4
Cross-Sectional and Longitudinal Neuroimaging Brain Network Studies Performed in 
Patients With Psychotic Disorders

Author Date No. of Subjects Age, Years Longitudinal Data Type

Alexander-Bloch et al. (120) 2014 106 schizophrenia, 102 control subjects 8–30 Yes sMRI

Zalesky et al. (121) 2015 109 COS, 86 siblings, 102 control subjects 12–24 Yes sMRI

Sun et al. (122) 2016 31 schizophrenia, 28 control subjects 19–54 Yes DWI

Jiang et al. (124) 2015 20 adult-onset/26 early-onset schizophrenia patients, 
17/25 age-matched control subjects

26 ± 8, 15 ± 2,
30 ± 11,
14 ± 3

No rs-fMRI

Tomasi and Volkow (123) 2014 40 children/adolescents, 69 schizophrenia, 74 control 
subjects

13 ± 4, 38 ± 14,
36 ± 12

No rs-fMRI

Wang et al. (125) 2017 76 ARMS nontransition, 12 ARMS transition, 48 
control subjects

21.7 ± 3.6,
19.7 ± 3.1
21.5 ± 4.2

Yes rs-fMRI

Inclusion criteria were the same as for Table 1, except the search terms psychosis and schizophrenia were used instead of healthy or normal.
ARMS, at-risk mental state; COS, childhood-onset schizophrenia; rs-fMRI, resting-state functional magnetic resonance imaging; sMRI, magnetic 
resonance imaging.
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Table 5
Some Example Large Open Datasets Relevant to Healthy and Atypical Development

Dataset Disorder No. of Subjects Age, Years
Longitudinal 

Neuroimaging Data Type Availability

Child Mind Institute 
Healthy Brain 
Network (145)

Population 10,000 5–21 No fMRI, sMRI, 
DWI, EEG

Ongoing, 664 
subjects available 
in first release

IMAGEN (146) Population 2000 14–22 Yes fMRI, sMRI, 
DWI

Open to project 
proposals

NKI/Rockland 
Study (147)

Population 1000 expected 6–85 Yes rs-fMRI, sMRI, 
DWI

Ongoing, some 
data available

PNC (9) Population 1000 8–21 Obtained but not 
openly available at 

present

fMRI, sMRI, 
DWI

Available

ADHD-200 (148) ADHD 491 HC, 285 
ADHD

7–21 No rs-fMRI, sMRI Available

ABIDE I (149) Autism 539 ASD, 573 HC 7–64 No rs-fMRI, sMRI Available

ABIDE II (132) Autism 521 ASD, 593 HC 5–64 Partially (n = 38) rs-fMRI, sMRI, 
DWI

Available

NUSDAST (150) Schizophrenia 171 SCZ, 170 HC, 
44 SCZ siblings, 
66 HC siblings

13–67 Yes sMRI Available

Datasets were only included if they had large numbers of subjects (N > 300), with subjects from a range of ages, including significant numbers of 
subjects under 21 years of age, and are (or will be) openly available.
ABIDE, Autism Brain Imaging Data Exchange; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; DTI, diffusion 
tensor imaging; DWI, diffusion-weighted imaging; EEG, electroencephalography; fMRI, functional magnetic resonance imaging; HC, healthy 
control; NKI, Nathan S. Kline Institute for Psychiatric Research; NUSDAST, Northwestern University Schizophrenia Data and Software Tool; 
PNC, Philadelphia Neurodevelopmental Cohort; rs-fMRI, resting-state functional magnetic resonance imaging; SCZ, schizophrenia; sMRI, 
structural magnetic resonance imaging.
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