
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic 
disorders characterized by ß-cell dysfunction. MODY accounts for between 2% and 5% of all 
diabetes cases, and distinguishing it from type 1 or type 2 diabetes is a diagnostic challenge. 
Recently, MODY-causing mutations have been identified in 14 different genes. Sanger DNA se-
quencing is the gold standard for identifying the mutations in MODY-related genes, and may 
facilitate the diagnosis. Despite the lower frequency among diabetes mellitus cases, a correct 
genetic diagnosis of MODY is important for optimizing treatment strategies. There is a discrep-
ancy in the disease-causing locus between the Asian and Caucasian patients with MODY. Fur-
thermore, the prevalence of the disease in Asian populations remains to be studied. In this re-
view, the current understanding of MODY is summarized and the Asian studies of MODY are 
discussed in detail. 
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Introduction 

Monogenic diabetes is caused by mutations in one of the genes 
that control insulin levels [1,2]. Forms of monogenic diabetes in-
clude neonatal diabetes, maternally inherited diabetes with deaf-
ness and genetic syndromes, such as Bardet-Biedl syndrome, and 
Wolfram syndrome; however, maturity-onset diabetes of the 
young (MODY) and neonatal diabetes are the most common. 
MODY was first described in 1974 by Tattersall [3] as a mild fa-
milial diabetes with dominant mode of inheritance. MODY is a 
clinically heterogeneous group of monogenic diabetes mellitus 
characterized by ß-cell dysfunction. The diagnostic criteria report-
ed in 2008 include onset before 25 years of age in at least one of the 
family members, ß-cell dysfunction without autoantibodies, and 
family history of autosomal dominant diabetes for at least two gen-
erations [4]. In the 1990s, molecular methods for the diagnosis of 
MODY were introduced, after which the mutations associated 
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with the disease were identified. To date, MODY-associated muta-
tions have been reported in 14 different genes (Table 1) [5-10]. 
MODY is the most common type of monogenic diabetes and 
comprises between 2% to 5% of all diabetes cases in Europe 
[11,12]. Among these genes, mutations in HNF1A, GCK, HN-
F4A, and HNF1B are the underlying cause in more than 95% cases 
of MODY; the other mutations are rare in the Caucasian popula-
tion [12-14]. There is a discrepancy in the disease-causing locus 
between the Caucasian and Asian patients with MODY. Moreover, 
the exact prevalence of the disease in the Asian population has not 
been reported. This review summarizes the current understanding 
of MODY and discusses the Asian studies of the disease.  

MODY2 (GCK-MODY) 

Glucokinase (GCK) is a major enzyme in glucose metabolism, 
which catalyzes the conversion of glucose to glucose-6 phosphate, 
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and thus, controls glucose-mediated insulin secretion. Until 2009, 
more than 600 mutations in GCK had been identified in over 1,400 
families [15]. The inactivating heterozygous mutations in GCK el-
evate the glucose threshold for insulin secretion resulting in mild 
fasting hyperglycemia (5.6–8.0 mmol/L, glycosylated hemoglobin 
range of 5.6%–7.3%) [16]. Mutations in GCK are some of the 
most common causes of MODY, and affect 32% of the total num-
ber of patients with MODY in the United Kingdom [17]. Patients 
with GCK-MODY are usually asymptomatic; hence, the majority 
are diagnosed through routine examination, such as urine glucose 
screening at school or during pregnancy. Mutations in GCK were 
found in 40%–50% of incidental hyperglycemia cases in children; 
therefore, the prevalence of GCK-MODY is high in countries 
where the school glucose screening test is performed [18,19]. 
However, only 2.5% of 40 studies of MODY and early onset type 2 
diabetes in Korea reported GCK mutations [20]. This implies that 
there might be a discrepancy between the Caucasian and Asian pa-
tients. The clinical manifestations of GCK-MODY may be mild 
and non-progressive as long-term complications rarely develop de-
spite chronic mild hyperglycemia. Therefore, patients with this 
mutation usually do not require treatment, except during preg-
nancy [21]. 

MODY3 (HNF1A-MODY) 

Hepatocyte nuclear factor 1α (HNF1A) is a transcription factor 
expressed in various organs, such as the pancreas, kidney, liver, 
and intestine. HNF1A knockout mice develop diabetes due to im-
paired glucose-induced insulin secretion [22,23]. Prevalence of 
this mutation is the highest in Europe, North America, and Asia 
[17,20,24]. Over 400 different HNF1A mutations have been 
identified in approximately 1,200 families; among these, a muta-
tion in exon 4 of the gene (P291fsinsC) is the most frequently ob-
served [25,26]. These mutations alter the expression of proteins 
related to glucose transport, such as glucose transporters, as well 
as that of key enzymes involved in mitochondrial glucose metabo-
lism. In HNF1A-knockout mice, reduced ß-cell proliferation and 
increased apoptosis leads to a progressive decline in ß-cell func-
tion [27]. HNF1A mutations have high penetrance, with almost 
63% of their carriers developing diabetes by the age of 25, and al-
most 96% by the age of 55 [28]. Since HNF1A is also expressed in 
tissues other than the pancreas, patients with HNF1A-MODY can 
display extra-pancreatic manifestations such as glycosuria, which 
can develop even before the onset of diabetes because of a low re-
nal threshold for glucose [29]. Hyperglycemia induced by hetero-
zygous HNF1A mutations might be deteriorating and progressive, 

Table 1. Genes related to MODY and clinical characteristics of each MODY subtype

Subtype MODY gene Gene function Pathophysiology Other features Treatment
MODY 1 HNF4A  Transcription factor ß-cell dysfunction Hyperinsulinism during infancy, 

low triglyceride level
Sulfonylureas

MODY 2 GCK Enzyme in the first step of glu-
cose metabolism

ß-cell dysfunction Mild fasting hyperglycemia No medications, diet

MODY 3 HNF1A Transcription factor ß-cell dysfunction Glycosuria Sulfonylureas
MODY 4 PDX1 Transcription factor ß-cell dysfunction Pancreatic agenesis in homozy-

gote/compound heterozygote
Diet or OAD or insulin

MODY 5 HNF1B Transcription factor ß-cell dysfunction Renal anomalies, genital anom-
alies, pancreatic hypoplasia

Insulin

MODY 6 NEUROD1 Transcription factor ß-cell dysfunction Neonatal diabetes, neurological 
abnormalities in homozygote

OAD or insulin

MODY 7 KLF11 Transcription factor ß-cell dysfunction Similar to type 2 diabetes OAD or insulin
MODY 8 CEL Controls exocrine and endo-

crine functions of pancreas
Pancreas endocrine and exo-

crine dysfunction
Exocrine dysfunction, lipoma-

tosis
OAD or insulin

MODY 9 PAX4 Transcription factor ß-cell dysfunction Possible ketoacidosis Diet or OAD or insulin
MODY 10 INS Encode the proinsulin precursor Insulin gene mutation PND Diet or OAD or insulin
MODY 11 BLK Tyrosine kinase functions in 

signal transduction
Insulin secretion defect Overweight Diet or OAD or insulin

MODY 12 ABCC8 Regulating insulin release ATP-sensitive potassium chan-
nel dysfunction

PND, TND Sulfonylurea

MODY 13 KCNJ11 Regulating insulin release ATP-sensitive potassium chan-
nel dysfunction

Neonatal diabetes in homozy-
gote

OAD or insulin

MODY 14 APPL1 Insulin signal pathway Insulin secretion defect Dysmorphic phenotype, devel-
opmental delay

Diet or OAD or insulin

MODY, maturity-onset diabetes of the young; OAD, oral antidiabetic agents; PND, permanent neonatal diabetes; TND, transient neonatal diabetes.
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and the risk of developing long-term complications in HNF1A-MO-
DY is similar to that in type 1 and type 2 diabetes [30]. Therefore, 
rigorous glucose control is needed in these patients. 

Patients with HNF1A-MODY show marked sensitivity to the 
oral hypoglycemic agent sulfonylurea, which elicits a five-fold 
greater response than metformin although the two agents show 
similar efficacy in type 2 diabetes [31]. Consequently, many pa-
tients with HNF1A-MODY achieve better glycemic control with 
sulfonylurea than with insulin treatment [32,33]. Therefore, low-
dose sulfonylurea should be considered the first-line treatment for 
HNF1A-MODY, although some patients might need additional 
insulin therapy as the diabetes progresses [34]. 

MODY1 (HNF4A-MODY) 

HNF4A is a transcription factor primarily expressed in the liver 
and, to a lesser extent, in the kidney and pancreas. HNF4A regu-
lates the transcription of genes involved in glucose transport and 
metabolism [35]. Mutations in the HNF4A gene are uncommon 
and account for only approximately 3%–5% of all MODY cases; 
more than 100 HNF4A mutations have been identified in 173 
families [25,36]. Patients with heterozygous HNF4A mutations 
display progressive ß-cell dysfunction similar to that observed in 
patients with HNF1A mutations. Fetal heterozygous HNF4A mu-
tation results in diazoxide-responsive form of neonatal hyperinsu-
linemic hypoglycemia and subsequent macrosomia [31]. There-
fore, close monitoring of the baby of an affected mother is recom-
mended. The hyperinsulinemia usually resolves during infancy 
and the insulin production gradually decreases leading to the de-
velopment of diabetes in adolescence [24]. Unlike HNF1A-MO-
DY, HNF4A-MODY is not associated with glycosuria. Instead, 
low levels of apolipoproteins (apoAII, apoCIII, and apoB) can be 
a clue to diagnosing this subtype [37]. HNF4A-MODY is charac-
terized by sensitivity to sulfonylureas similar to that of HN-
F1A-MODY; therefore, low-dose sulfonylurea is recommended 
as the first-line treatment [31]. 

MODY5 (HNF1B-MODY) 

HNF1B is a transcription factor associated with early organogen-
esis of the pancreas, kidney, liver, lungs, gut, and genito-urinary 
tract [38]. Patients with HNF1B mutations develop abnormalities 
in all these organs; however, renal manifestations, such as renal 
cysts, renal dysplasia, renal tract malformations, and familial hy-
poplastic glomerulocystic kidney disease, are the most common 
[39,40]. The association of renal cysts and diabetes mellitus with 
mutations in the HNF1B gene is termed the renal cysts and diabe-

tes syndrome. Renal dysfunction is usually developed by the age 
of 45, and approximately 50% of the patients progress to end-
stage renal failure requiring renal replacement therapy without di-
abetic renal disease [41]. Therefore, carriers of HNF1B mutations 
should be monitored for the development of diabetes and non-di-
abetic nephropathy. Diabetes associated with MODY5 develops 
in adolescence or early adulthood and presents with hepatic insu-
lin resistance before progressing to insulin-dependent status due 
to pancreatic hypoplasia. HNF1B mutations can reduce the birth 
weight by up to 900 g [42,43]. In contrast to patients with 
MODY3, those with MODY5 progress to insulin-dependent sta-
tus and do not respond to sulfonylurea; therefore, they usually re-
quire early insulin therapy. Patients with HNF1B mutations mani-
fest highly variable phenotypes, which might even differ between 
family members carrying the same mutation. Hence, patients with 
HNF1B-MODY should seek endocrinology, as well as nephrolo-
gy, urology, and gynecology consultation. 

MODY4 (IPF1-MODY) 

Insulin promoter factor 1 (IPF1) is a transcription factor that regu-
lates ß-cell development and insulin expression in pancreatic islets, 
and has roles similar to those of the HNF family of transcription 
factors [44,45]. IPF1-MODY was first discovered in 1997 and is a 
very rare subtype of MODY [46]. Heterozygous mutation in the 
IPF1 gene causes ß-cell dysfunction and MODY, while homozy-
gous mutation in the IPF1 gene results in neonatal diabetes [47]. 

MODY6 (NEUROD1-MODY) 

NEUROD1 encodes neurogenic differentiation 1, a basic he-
lix-loop transcription factor involved in the development of endo-
crine cell lineage as well as neuronal development. Although het-
erozygous mutations in NEUROD1 result in MODY, homozy-
gous mutations cause a novel syndrome of permanent neonatal 
diabetes and neurological abnormalities [48]. 

MODY7 (KLF11-MODY) 

The Krüppel-like factor (KLF) 11 gene is located on chromo-
some 2 and encodes a zinc-finger transcription factor. Mutations 
in KLF11 cause ß-cell dysfunction by modulating the expression 
of free radical scavengers. Two rare variants of KLF11 that impair 
its transcriptional activity (Ala347Ser and Thr220Met) were 
identified in families with early-onset type 2 diabetes [49]. 
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MODY8 (CEL-MODY) 

The CEL gene encodes the bile salt-stimulated lipase, a major 
component of the pancreatic juice that is secreted by the pancreas 
into the digestive tract. The enzyme aids in the digestion of cho-
lesterol and lipid-soluble vitamins, ester hydrolysis, and absorp-
tion of dietary fat from the intestine. In 2006, a heterozygous mu-
tation in the CEL gene was identified in two families [50]. Exo-
crine pancreatic dysfunction (defined by fecal elastase deficiency) 
and ß-cell failure were found in a patient with single-base deletion 
in CEL. To date, heterozygous mutations in CEL have only been 
identified in three families [51].  

MODY9 (PAX4-MODY) 

PAX4 is a homeodomain transcription factor that plays a central 
role in ß-cell development and function [52]. Two variants of 
PAX4 (R164W and IVS7-1G > A) were identified in two Thai 
probands [53]. 

MODY10 (INS-MODY) 

Dominant misfolding mutations in the INS gene are a common 
cause of isolated permanent neonatal diabetes; however, the age at 
which the disease develops can vary [54]. These mutations cause 
a severe folding defect, unfolded protein response, and ß-cell 
apoptosis. 

MODY11 (BLK-MODY) 

B-lymphocyte kinase (BLK) is a nonreceptor tyrosine-kinase 
from the Src family of proto-oncogenes. It is expressed in ß-cells 
where it promotes insulin synthesis and secretion by up-regulat-
ing the transcription factors PDX1 and NKX6.1 [55]. These tran-
scription factors enhance pancreatic ß-cell mass. Decreased BLK 
activity reduces the insulin content and renders the ß-cells less re-
sponsive to glucose, leading to decreased insulin secretion and, 
eventually, diabetes. 

MODY12 (ABCC8-MODY) 

The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) 
subunit of the pancreatic ß-cell ATP-sensitive potassium channel 
(KATP), which directly regulates insulin release. Recessive loss-of-
function mutations in ABCC8 lead to the development of con-
genital hypoglycemic hyperinsulinism (CHI) [56], while domi-
nantly inherited ABCC8 mutations may cause CHI with predis-

position to insulin deficiency and diabetes later in life. Heterozy-
gous activating mutations in ABCC8 cause MODY without a his-
tory of diabetes or hyperinsulinism in the neonatal period, and 
produce clinical manifestations similar to those of HNF1A/4A 
MODY [57]. Patients with mutations in ABCC8 respond to high-
dose sulfonylurea therapy. 

MODY13 (KCNJ11-MODY) 

KCNJ11 encodes the Kir6.2 subunit of the hetero-octameric KATP 
channel, which is highly expressed in pancreatic ß-cells. Homozy-
gous or heterozygous mutations in this gene lead to the develop-
ment of either transient or permanent neonatal diabetes within 
the first 6 months of life. Heterozygous KCNJ11 mutations were 
identified in 6 out of 96 families with early-onset type 2 diabetes 
[58]. Some of these carriers stopped the insulin therapy and 
switched to sulfonylurea. 

MODY14 (APPL1-MODY) 

APPL1 (adaptor protein, phosphotyrosine interaction, PH do-
main, and leucine zipper containing 1) is the most recently identi-
fied MODY-related gene (first reported in 2015). APPL1 is an an-
chor protein with multiple functional domains that interact with 
other proteins, including the key components of the insulin-sig-
naling pathway. Two loss-of-function mutations in the APPL1 
gene have been identified in 60 families through whole-exome se-
quencing [9]. 

Ways to avoid misdiagnosing patients with 
MODY 

The diagnostic criteria for MODY are as follows: (1) presence of 
overt diabetes in at least three consecutive generations, with auto-
somal dominant mode of inheritance, (2) at least one family 
member diagnosed with diabetes before the age of 25, (3) ab-
sence of ß-cell autoantibodies, and (4) relatively preserved endog-
enous insulin secretion with a serum C-peptide level of > 0.6 ng/
mL. These diagnostic criteria can help discriminate MODY from 
type 1 and type 2 diabetes. Nevertheless, distinguishing MODY 
from type 1 or type 2 diabetes at presentation is often challenging 
[24,59,60]. 

Various algorithms have been developed to identify diabetic pa-
tients who should undergo genetic testing for MODY. Shields et 
al. [61] proposed a clinical prediction model to distinguish 
MODY from type 1 and type 2 diabetes. According to the model, 
patients with MODY have lower HbA1c levels than those with 
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type 1 diabetes. Further, compared to type 1 diabetics, patients 
with MODY tend to have an older age at diagnosis and higher 
probability of being female and having a parent with diabetes. 
Compared to type 2 diabetics, patients with MODY tend to have 
a lower body mass index, lower HbA1c level, younger age at diag-
nosis, higher probability of being female and having a parent with 
diabetes, and lower probability of prior treatment with oral hypo-
glycemic agents or insulin. Although this model calculates a stan-
dardized probability of being diagnosed with MODY, it is import-
ant to bear in mind that the clinical manifestations of MODY may 
vary. 

Sanger DNA sequencing, which is the gold standard for identi-
fying mutations in MODY-related genes, might improve the 
chances of a correct diagnosis. However, genetic testing for 
MODY is expensive and may only be offered in specialist centers. 
Therefore, considerable efforts have been made to identify 
non-genetic biomarkers to facilitate the differential diagnosis of 
MODY. Persistent postprandial C-peptide level, which is mea-
sured in a spot urine sample, can discriminate HNF1/4A-MODY 

from type 1 diabetes [62]. Moreover, compared to type 2 diabet-
ics, patients with HNF1A-MODY tend to have a lower level of 
high-sensitive C-reactive protein [63]. A proposed diagnostic al-
gorithm for the identification of diabetic patients who might ben-
efit from MODY genetic testing is presented in Fig. 1. 

Conclusion 

The genetic etiology and pathophysiology of MODY have been 
widely researched. The biosynthesis and secretion of insulin from 
pancreatic beta cells are changed at various stages depending on 
the specific gene mutations (Fig. 2). In a recent study from Korea, 
109 patients with clinically suspected MODY underwent targeted 
panel sequencing. The diagnosis was confirmed in 23 patients 
(21.1%) [64]. The diagnostic rate was similar to that in a large 
study on monogenic diabetes performed in the United Kingdom 
(27%) [14]. In the latter study, molecular genetic testing con-
firmed a diagnosis of GCK-MODY, i.e. the most common sub-
type of MODY, in 50% of the patients. This result was in agree-

Fig. 1. Clinical algorithm to aid the diagnosis of maturity-onset diabetes of the young. MODY, maturity-onset diabetes of the young; 
BMI, body mass index.

Diabetes onset age before 30 years old

Possible type 1 diabetes

Clinical assessment:
Beta-cell antibodies, ketones, C-peptide

BMI ≤30 kg/m2, no insulin resistance
Family history of diabetes 

Diagnosed before 6 months

Genetic testing for neonatal 
diabetes

Young onset deafness in 
family or patient

Genetic testing for MODY Possible type 2 diabetes

Genetic testing for 
mitochondrial diabetes

Abrupt onset/diabetic ketoacidosis
Positive beta-cell antibodies
C-peptide <0.6 ng/mL

BMI >30 kg/m2, no insulin resistance
Acanthosis nigricans

Ketone negative
Beta-cell antibodies negative
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ment with that of studies in the Caucasian population [65,66]. In 
contrast, in a China-based study, HNF1A-MODY and GCK-MO-
DY comprised only 9% and 1% of the total tested cases, respec-
tively [67]. These results were similar to those obtained in Japa-
nese studies [68-70]. A possible explanation for these discrepan-
cies is that a large proportion of the MODY cases in China have 
defects in unknown MODY genes [67]. The studies from Korea, 
Japan, and China suggest that East Asia has a high prevalence of a 
not yet identified form of diabetes, i.e., ‘MODY X’ [64,67-72]. 
Next generation sequencing is one of the most powerful tools to 
discover unknown genetic defects [71,73], and attempts to iden-
tify new causative gene variants in MODY using whole-exome se-
quencing have been undertaken in Korea [72]. 

MODY is estimated to be the cause of 2%–5% of diabetes cases 
in Europe [11,12]. Owing to the increase in molecular genetic 
testing, the frequency of its detection has increased worldwide. 
Correct molecular diagnosis can help to ensure that patients with 
MODY receive optimal treatment. Metabolic profiling can also be 
an important diagnostic tool in patients with MODY. 
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