Skip to main content
. 2020 Jan 22;7:485. doi: 10.3389/fbioe.2019.00485

Table 1.

Prediction performances with different dataset sizes and angles on the DeepSnap-Deep Learning.

Angles 120° 180° 240° 300° 360°
tra:val:test Means SD Means SD Means SD Means SD Means SD
AUC 1: 1: 1 0.996 0.004 0.997 0.002 0.997 0.001 0.996 0.002 0.855 0.012
AUC 2: 2: 1 0.997 0.003 0.996 0.002 0.997 0.002 0.996 0.003 0.874 0.016
AUC 3: 3: 1 0.999 0.001 0.999 0.001 0.999 0.001 0.998 0.001 0.905 0.020
AUC 4: 4: 1 0.999 0.001 0.998 0.002 0.999 0.001 0.999 0.001 0.911 0.025
AUC 5: 5: 1 0.997 0.002 0.998 0.002 0.998 0.001 0.998 0.001 0.909 0.017
AUC 5: 5: 1 PMT 0.519 0.028 0.527 0.019 0.527 0.025 0.527 0.014 0.526 0.019
Acc (Test) 1: 1: 1 0.984 0.007 0.982 0.007 0.982 0.006 0.981 0.008 0.712 0.027
Acc (Test) 2: 2: 1 0.985 0.011 0.981 0.009 0.983 0.006 0.979 0.008 0.747 0.025
Acc (Test) 3: 3: 1 0.985 0.007 0.990 0.005 0.986 0.004 0.983 0.011 0.812 0.042
Acc (Test) 4: 4: 1 0.987 0.008 0.986 0.006 0.990 0.005 0.988 0.007 0.836 0.045
Acc (Test) 5: 5: 1 0.989 0.006 0.987 0.008 0.983 0.009 0.981 0.012 0.814 0.055
Acc (Test) 5: 5: 1 PMT 0.408 0.208 0.511 0.183 0.412 0.179 0.457 0.212 0.426 0.193
MCC 1: 1: 1 0.924 0.028 0.911 0.030 0.911 0.026 0.907 0.036 0.352 0.015
MCC 2: 2: 1 0.924 0.049 0.905 0.040 0.914 0.028 0.898 0.035 0.391 0.026
MCC 3: 3: 1 0.927 0.032 0.946 0.025 0.927 0.018 0.916 0.046 0.462 0.053
MCC 4: 4: 1 0.932 0.038 0.930 0.029 0.947 0.022 0.938 0.034 0.489 0.067
MCC 5: 5: 1 0.942 0.028 0.935 0.036 0.917 0.040 0.909 0.050 0.489 0.063
MCC 5: 5: 1 PMT −0.038 0.044 −0.012 0.067 −0.015 0.068 −0.030 0.101 −0.009 0.079

Parameters (MPS:100, ZF:100, AT:23%, BR:14.5mÅ, BMD:0.4Å, BT:0.8Å, LR:0.0008, BS:108, GoogleNet).

5:5:1 PMT showed permutation test using Tra:Val:Test = 5:5:1.

ZF, zoom factor; AT, atom size; BR, bond radius; BMD, minimum bond distance; BT, bond tolerance; LR, learning rate; BS, batch size.