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a  b  s  t  r  a  c  t

Abnormalities  in value-based  decision  making  during  adolescence  have  often  been
attributed  to  non-linear,  inverted-U  shaped  development  of reward-related  processes.  This
hypothesis  is  strengthened  by functional  imaging  work  revealing  an  inverted-U  shaped
relationship  between  age  and  reward-related  activity  in  the  striatum.  However,  behavioural
studies have  mostly  reported  linear  rather  than  non-linear  increases  in reward-related
performance.  In  the present  study,  we  investigated  the  mechanisms  underlying  the devel-
opment  of  reward-  and  punishment-related  processing  across  four  age  groups  using  a
reversal  learning  task  previously  shown  to depend  on  striatal  dopamine.  We  demon-
strate  both  linear  and  non-linear  age  effects  on distinct  components  of  reversal  learning.
Specifically,  results  revealed  a  linear  shift  with  age  in  terms  of  valence-dependent  reversal
learning, with  children  exhibiting  better punishment  than  reward  reversal  learning,  adults
exhibiting  better  reward  than  punishment  reversal  learning  and  adolescents  exhibiting  an
intermediate  performance  pattern.  In  addition,  we  also  observed  a non-linear,  inverted-U

shaped relationship  between  age  and valence-independent  reversal  learning,  which  was
due to  aberrant  ability  of  adolescents  to update  behaviour  in  response  to  negative  per-
formance  feedback.  These  findings  indicate  that  the  (linear  or nonlinear)  nature  of the
relationship  between  age  and  reward  learning  depends  on the  type  of  reward  learning
under  study.

© 2011 Elsevier Ltd. All rights reserved.
. Introduction
Adolescence, or the transition period between child-
ood and adulthood, is characterized by increases in risky
nd reckless behaviour (Arnett, 1999; Casey and Jones,
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2010). Studies using self-report and observational mea-
sures often report a peak in risk-taking and reward-seeking
during adolescence (Arnett, 1999; Steinberg, 2010). Recent
advances in developmental neuroscience propose that
this increase in risk-taking reflects differential develop-
mental trajectories of distinct brain regions (Casey et al.,
2008; Figner et al., 2009; Somerville et al., 2010a,b).
Specifically, evolutionary older subcortical regions, like

the striatum, develop first, followed by development of
prefrontal and parietal areas (Casey et al., 2008; Shaw
et al., 2008). The imbalance between these early matur-
ing subcortical regions, critical for the processing of

dx.doi.org/10.1016/j.dcn.2011.06.007
http://www.sciencedirect.com/science/journal/18789293
http://www.elsevier.com/locate/dcn
mailto:Marieke.vanderschaaf@donders.ru.nl
dx.doi.org/10.1016/j.dcn.2011.06.007


ntal Cog
M.E. van der Schaaf et al. / Developme

affectively salient information, relative to less mature pre-
frontal areas, involved in top-down control, could account
for non-linear, inverted-U shaped changes in risk-taking
during development (Casey et al., 2008; Figner et al., 2009;
Nelson et al., 2005; Somerville et al., 2010a,b). In line
with this, some neuroimaging studies have shown that
adolescents display exaggerated reward-related responses
in the striatum compared with children and adults
(Cohen et al., 2010; Galvan et al., 2006; Geier et al.,
2010; Somerville et al., 2010a,b; Van Leijenhorst et al.,
2010a,b).

Ernst et al. (2005) have found that adolescents show
not only stronger responses to rewards in the striatum, but
also weaker responses to reward omissions in the amyg-
dala than adults. Accordingly, they have suggested that
increased risk-taking during adolescence might reflect an
imbalance between the development of reward-related
mechanisms, such as the striatum, and that of punishment-
related mechanisms, such as the amygdala (Ernst et al.,
2005; Ernst and Fudge, 2009). However, this hypothe-
sis is not consistent with studies showing exaggerated
responses in the amygdala of adolescents to both pos-
itive and negative emotional faces (Guyer et al., 2008;
Hare et al., 2008; Somerville et al., 2010a).  Furthermore,
some studies have reported that reward-related striatal
responses are attenuated, rather than exaggerated in ado-
lescents compared with adults (Bjork et al., 2004, 2010;
Geier et al., 2010). Thus, there is discrepancy in the
literature regarding the nature of the neural response
underlying the non-linear, inverted-U shaped changes in
self-reported risk- and reward-related processing during
development.

In fact, there is also discrepancy regarding the degree
to which self-reported non-linear changes in risk- and
reward-related processing are accompanied by parallel
non-linear changes in terms of performance on well-
controlled laboratory tasks. On the one hand, consistent
with self-report data and the suggested imbalance between
reward- and punishment-related mechanisms (Ernst and
Fudge, 2009), various studies have reported non-linear,
inverted-U shaped changes in performance on reward-
related tasks. For example, Cauffman et al. (2010) have
used an Iowa gambling-like task to show an inverted-U
shaped relationship between age and learning rates for
advantageous decks (albeit not for disadvantageous decks).
Furthermore, adolescents have been shown to exhibit
reduced capacity to inhibit GO responses to happy faces
in a GO-NOGO paradigm, compared with both children
and adults (Somerville et al., 2010a).  By contrast, other
studies have revealed linear changes, for example, when
choosing between high- and low-risk gambles or during
feedback-based learning, so that performance was  bet-
ter in adults than in adolescents (Cauffman et al., 2010;
Crone and van der Molen, 2004; Crone et al., 2008; Galvan
et al., 2006; Koolschijn et al., 2011; van den Bos et al.,
2009; van Duijvenvoorde et al., 2008; Van Leijenhorst et al.,
2010a,b). The lack of consistency in the functional neu-

roimaging data is not surprising given this discrepancy in
the behavioural data. Indeed any analysis of functional neu-
roimaging data is only as good as the behavioural assay
used to probe the neural mechanisms. The various tasks
nitive Neuroscience 1 (2011) 578– 590 579

employed in these studies differed in terms of the particular
demands of the task to measure behaviour. Accordingly, the
differential performance patterns observed in these stud-
ies might reflect differential developmental trajectories of
distinct psychological mechanisms of reward-related pro-
cessing.

Here we  aimed to resolve the discrepancy in the
behavioural data by employing a paradigm that enabled
the separate assessment of distinct components of reward-
related processing. We  aimed to compare age effects on
reward- and punishment-learning, given recent models
suggesting that risk-seeking might reflect an imbalance
in the development of reward- and punishment-related
mechanisms (Ernst and Fudge, 2009). To this end we
employed a well-assessed paradigm measuring reversal
learning based on unexpected reward and reversal learning
based on unexpected punishment.

There are three distinct advantages of this paradigm.
First, the neurobiological mechanisms underlying task-
performance are well-characterized and known to involve
striatum during reward-reversals and amygdala during
punishment-reversals (Robinson et al., 2010a).  In addi-
tion, task performance has been shown to implicate
striatal dopamine as evidenced by studies employing neu-
rochemical positron emission tomography (PET) (Cools
et al., 2009) and dopaminergic manipulations (Cools et al.,
2006, 2009; Robinson et al., 2010b).  This enabled us to
relate known neurobiological and dopaminergic changes
during development (Doremus-Fitzwater et al., 2010;
Kuhn et al., 2010; Shaw et al., 2008; Teicher et al.,
1995; Wahlstrom et al., 2010) with age-related effects on
the task. Second, reward- and punishment-learning are
well-matched in terms of requirements for behavioural
adjustment. Thus unlike prior studies, in which the
expression of adequate punishment-learning depended
more readily on behavioural shifting than did that of
reward-learning, our paradigm required behavioural shift-
ing in both conditions to the same degree. In fact our
paradigm enabled the separate assessment of valence-
dependent learning (in terms of the difference between the
reward and punishment conditions), and of behavioural
shifting (in terms of average performance across both
conditions). Third, unlike most prior studies, the type
of valence-dependent learning required for our task
depends on Pavlovian rather than on instrumental learn-
ing mechanisms, such that adequate reversal requires the
updating of stimulus-outcome rather than of response-
outcome associations. This is particularly pertinent given
recent suggestions that many forms of reward-related
maladaptive behaviours, including enhanced risk-taking,
might reflect abnormal Pavlovian control (Dayan et al.,
2006; Flagel et al., 2008). Thus, we reasoned that a
Pavlovian task might be more sensitive to detecting
developmental changes in reward- and punishment-
related learning than an instrumental task. Specifically,
in accordance with current developmental theories (Ernst
and Fudge, 2009), we hypothesize an inverted U-

shaped relationship between age and valence-dependent
learning, due to aberrant reward- relative to punishment-
learning during adolescence compared with children and
adults.
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. Methods

.1. Participants

Sixty-one participants (22 male) between 10 and 25
ears old were recruited from an elementary school, a
igh school, and Leiden University, in (the surroundings
f) Leiden, the Netherlands. Participants were divided into

 different age groups: Age group 1 with 15 participants
f 10 or 11 years old (elementary school 7th grade), age
roup 2 with 15 participants of 13 or 14 years old (high
chool 2nd grade), age group 3 with 15 participants of 16
r 17 years old (high school 5th grade) and age group 4
ith 16 participants between 20 and 25 years old (Lei-
en University). Participants had no (history of) psychiatric
isorders or learning problems and did not use medica-
ion regularly. Written informed consent was given by
he caretaker when the participant was under the age
f 18, otherwise the participants gave informed consent
hemselves. Elementary school children were compen-
ated with a bowling day, high school children and students
ere compensated with a small amount of money (3

nd 6 euro’s respectively). Non-verbal intelligence quo-
ient (IQ) was measured with the Standard Progressive

atrices (Bauma et al., 1998; Raven et al., 1998). Also,
articipants were asked about the highest education

evel of both parents. Education level was scored as fol-
ows: 1 = primary education, 2 = secondary education/high
chool, 3 = middle-level applied education, 4 = higher
rofessional education/bachelor and 5 = scientific educa-
ion/master.

.2. Task design

The task used in the present study enabled us to assess
he ability to update reward- and punishment-predictions
or pre-selected stimuli based on unexpected reward or
nexpected punishment (Cools et al., 2006, 2008, 2009;
obinson et al., 2010a,b) (Fig. 1). Throughout the exper-

ment, participants were presented with two vertically
djacent stimuli, a face and a scene. One of these stimuli
as associated with a reward, while the other was  asso-

iated with a punishment. On each trial, one of the two
timuli was highlighted with a black border. The task of the
articipants was to learn, based on experience, to predict
hether the highlighted stimulus would be followed by a

eward or a punishment. Participants indicated their pre-
iction with a button press using the right and left hand
or reward and punishment respectively (the outcome-
esponse mappings were balanced across participants, see
able 1). A reward consisted of a green happy smiley, a
+100 euro” sign and a high-frequency jingle tone. Pun-
shment consisted of a red sad smiley, a “−100 euro” sign
nd a low-frequency tone. After the prediction, the actual
utcome was presented. The outcomes were directly cou-
led with the stimulus (100% deterministic) and did not
epend on the participants’ response. Accordingly the out-

ome did not serve as direct performance feedback, or
einforcement. Instead, whether their response was  cor-
ect or wrong had to be inferred from a comparison of
he actual outcome with the predicted outcome. The out-
itive Neuroscience 1 (2011) 578– 590

comes administered in this task were abstract and did not
correspond to actual monetary payoff. Nevertheless, the
assumption that the positive and negative outcomes were
perceived differentially has been confirmed by the empir-
ically observed valence-dependent effects (see Section 3
and Cools et al., 2006, 2009; Robinson et al., 2010a,b).

The stimulus-outcome contingencies reversed multi-
ple times, but only after attainment of a variable learning
criterion which consisted of between 4, 5 or 6 consec-
utive correct predictions, to prevent anticipation of the
reversal. This learning criterion was selected randomly
at the beginning of each reversal stage. Reversals were
signalled to the subject by either an unexpected punish-
ment (presented after a stimulus was highlighted that was
previously followed by reward) or an unexpected reward
(presented after a stimulus was  highlighted that was  pre-
viously followed by punishment). Note that an unexpected
outcome could represent two  types of prediction errors:
(i) a Pavlovian prediction error, which was  positive when
the outcome associated with the highlighted stimulus was
better than expected (i.e. unexpected reward) and nega-
tive when the outcome associated with the highlighted
stimulus was worse than expected (i.e. unexpected pun-
ishment), and (ii) an instrumental prediction error, which
in this case was always negative, as it represented the fact
that the outcome of the response was  worse than expected
(i.e. incorrect prediction). Performance was measured in
terms of the proportion of correctly updated predictions on
reversal trials after unexpected punishment (punishment
reversal) and after unexpected reward (reward reversal)
(see Section 2.3).

The face and scene were presented on a computer screen
(top/bottom location randomized) until a (self-paced)
response was  made, which was  followed by a 1000 ms
delay and a 500 ms  outcome. After the outcome, the screen
was  cleared for 500 ms,  and the next pair of stimuli was
presented. Each participant performed four experimental
blocks: two  reward blocks, in which reversals were sig-
nalled by unexpected rewards, and two punishment blocks,
in which reversals were signalled by unexpected punish-
ment. Participants were not made aware of this difference.
The order of the conditions was  approximately counterbal-
anced between participants (Table 1). Each block consisted
of 120 trials (∼6.6 min), so that participants performed 480
trials in total (∼30 min).

Each block started with an initial acquisition stage
and proceeded with a variable number of reversal stages,
depending on the participant’s performance. If participants
made an incorrect response, the same trial was highlighted
again on the next trial. The stimulus that was highlighted
on the first trial of a reversal stage (i.e. the trial that was
followed by an unexpected outcome signalling a reversal)
was  always highlighted again on the next trial, such that
the participant was  always required to switch responding
on the reversal trials.

Two practice blocks (1 for each condition) were admin-
istered prior to the experiment and consisted of one initial

acquisition stage and one reversal stage (the task pro-
ceeded to the reversal stage after 20 correct trials during
acquisition). The practice block terminated after the par-
ticipant reached 20 correct trials in the reversal stage or
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Fig. 1. Task design. (a) Example of a punishment trial. Two  stimuli, a face (F) and a scene (S), were presented simultaneously. One of the two stimuli was
highlighted with a black border and the task was to predict, with a button press, whether this stimulus was  followed by a reward (R) or a punishment (P), after
which  the actual outcome was  presented (100% deterministic). (b) Example of a trial sequence for the unexpected punishment condition. (c) Example of a trial
sequence for the unexpected reward condition. The participant learned to predict rewards (rw) and punishments (pn) for the scene and face. The stimulus-
outcome associations reversed between 4 and 6 consecutive correct predictions, signalled by either unexpected reward or unexpected punishment.
Performance was measured on reversal trials immediately after the unexpected outcomes. Abbreviations: rw = reward; pn = punishment; ns-r = non-reversal
reward trial; ns-p = non-reversal punishment trials; sw-r = reversal trial after an unexpected reward; sw-p = reversal trial after an unexpected punishment.

Table 1
Subject demographics.

Age N Gender Education RAVEN IQ Mapping Order

M F Participant Father Mother R L rp pr

Age 10–11 13 6 7 Primary 7th grade 113.4 (3.2) 5 8 7 6
Age  13–14 14 6 8 Secondary 2nd grade 4.3 (0.2) 4.0 (0.3) 118.4 (1.8) 6 8 8 6
Age  16–17 15 5 10 Secondary 5th grade 3.7 (0.3) 3.6 (0.2) 120.2 (2.5) 8 7 8 7
Age  20–25 16 5 11 University 4.3 (0.2) 4.0 (0.2) 122.8 (1.5) 8 8 8 8

Total 58  22 36 4.1 (0.3) 3.9 (0.2) 118.7 (2.3) 27 31 31 27

N = Number of participants, Gender: M = number of males, F = number of females, Education parents = average score of education level (standard error).
RAVEN  IQ = Intelligence quotient as measured with the RAVEN progressive matrices (standard error), Mapping (number of participants): R = reward
prediction with right hand, L = reward prediction with the left hand. Order (number of participants): rp = reward condition − punishment condition,
pr  = punishment condition − reward condition.
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Table  2
Total number of trials.

Age-group Unexpected punishment condition Unexpected reward condition

Reversal Non-reversal
reward

Non-reversal
punishment

Reversal Non-reversal
reward

Non-reversal
punishment

Age 10–11 15 (1) 88 (4) 79 (4) 15 (1) 93 (7) 78 (5)
Age  13–14 20 (1) 92 (2) 86 (2) 19 (1) 90 (2) 84 (2)
Age  16–17 23 (1) 89 (2) 83 (1) 23 (1) 89 (3) 81 (2)
Age  20–25 22 (1) 85 (2) 86 (2) 23 (1) 89 (2) 83 (2)

Average 20 (1) 89 (3) 84 (2) 20 (1) 90 (4) 81 (3)
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verage number of trials (standard error) per age-group and across partic

f the maximum of 80 trials was completed. All but one
ubject reached learning criterion in both stages of both
ractice blocks, indicating that they understood the task.
nly one subject from age-group 3 failed to reach criterion

n the acquisition stage of one of the practice blocks, but did
nderstand the task as revealed by adequate performance
n the second practice block and by the total number of
ompleted reversal stages in the experimental blocks (20)
see Table 2 for the average number of reversals across the
roups).

.3. Data analysis

Adequate reversal learning on this task depended
n two separate forms of learning. First, it required
articipants to learn Pavlovian associations between stim-
li and their rewarding or punishing outcomes. An
nexpected reward constituted a positive Pavlovian pre-
iction error, because it indicated that the stimulus was
etter than expected. Conversely, an unexpected punish-
ent constituted a negative Pavlovian prediction error,

ecause it indicated that the stimulus was worse than
xpected. Second, the task also required participants to
earn from instrumental prediction errors. In instrumen-
al terms, an unexpected reward constituted a negative
ather than a positive prediction error, because the actual
utcome of the response (unexpected reward) did not
atch the predicted outcome (punishment). Similarly,

n unexpected punishment also constituted a negative
nstrumental prediction error. Accordingly, the ability
o learn from instrumental prediction errors could be
uantified in terms of the valence-independent reversal
core, and the ability to learn from Pavlovian prediction
rrors could be quantified in terms of the valence-
ependent, reward-signed reversal score. This enabled
s to assess both valence-dependent (reward-signed)
nd valence-independent (unsigned) reversal learning.
alence-dependent, reward-signed reversal scores were
alculated by subtracting the proportion of correct
esponses after unexpected punishment from the pro-
ortion of correct responses after unexpected reward.
onversely, valence-independent reversal scores were cal-
ulated by averaging the proportion of correct responses

n reward- and punishment-based reversals. In addition,
e also measured performance on the non-reversal trials,
hich were all trials that did not require stimulus-outcome
pdating (i.e. all trials except reversal trials).
or all six trial types.

All trials in the acquisition stage (before the first
reversal) were excluded from analysis. In total, there
were six different trial-types: three for the unexpected
reward condition and three for the unexpected pun-
ishment condition. These three trial-types per condition
were (i) reversal (i.e. trials that followed an unex-
pected outcome), (ii) non-reversal reward (i.e. trials that
required reward-prediction, but no stimulus-outcome
updating) and (iii) non-reversal punishment (i.e. trials
that required punishment-prediction, but no stimulus-
outcome updating). Proportions of correct responses were
arcsine transformed (2 × arcsine(

√
x)) as is appropriate

when the variance is proportional to the mean (Howell,
1997). Transformed proportions of correct responses
and total numbers of reversals were analyzed using
repeated measures ANOVAs (SPSS 16.0 for Windows,
2007) with the within-subject factor valence (2 levels:
unexpected reward and unexpected punishment) and
trial-type (3 levels: reversal, non-reversal reward and non-
reversal punishment), and with the between-subject factor
group (4 age groups). Significant valence-dependent and
valence-independent effects (as revealed by significant
valence × trial-type × group and trial-type × group interac-
tions) were further investigated with one-way ANOVAs to
assess whether these measures changed linearly with age
(as revealed by a linear trend), or showed a peak over age-
groups (as revealed by a quadratic trend). Significant trends
revealed by these analyses were assessed further with
Pearson correlational analyses between age and reversal
learning scores.

IQ (as measured with the Standard Progressive Matrices,
Bauma et al., 1998; Raven et al., 1998) increased linearly
with age-group (F(3,54) = 8.61, p = .005). Thus, we included
IQ as a covariate in the repeated measures ANOVA as well
as in the (partial) correlation analyses. To further inves-
tigate any effects of IQ, participants were divided in 4
groups based on their IQ scores using a quartile split; IQ-
group 1 with 12 participants with IQ scores between 97
and 109, IQ-group 2 with 16 participants with IQ scores
between 112 and 119, IQ-group 3 with 11 participants with
IQ scores between 121 and 123 and IQ-group 4 with 19
participants with IQ scores between 124 and 136. The fre-
quency distribution of the IQ scores did not allow us to

form 4 bins containing exactly equal numbers of partic-
ipants. For example there were 6 participants (10.3% of
all participants) with the median (121) IQ score, cutting
across the 50% boundary. One-way ANOVA with IQ-group
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Fig. 2. Overall accuracy (proportion of correct trials; y-axis) for the four
different age-groups (x-axis). Overall accuracy was  lower for the youngest
M.E. van der Schaaf et al. / Developme

as a between-subject factor was used to assess linear and
quadratic effects of IQ.

Supplementary analyses were conducted to investigate
whether the effects on the reversal trials, which all required
response alternation, could reflect effects on the adoption
of a win-stay, lose-shift strategy. In particular, this supple-
mentary analysis was aimed at excluding the possibility
that the observed age-effect on valence-dependent rever-
sal reflected age-induced overcoming of an, in this case,
maladaptive win-stay, lose-shift strategy. To this end, we
calculated the proportion of correct predictions on non-
reversal reward trials and non-reversal punishment trials
after a correctly predicted reward outcome (win-stay and
win-shift, respectively), and the proportion of correct pre-
dictions on non-reversal reward trials and non-reversal
punishment trials after a correctly predicted punishment
outcome (lose-shift and lose-stay respectively), averaged
over the two blocks. Age-related strategy effects on trials
following reward and punishment were tested separately
with repeated measures ANOVA with the factors strategy (2
levels: stay, shift) and current outcome (2 levels: reward,
punishment) as within-subjects factors and group as the
between-subjects factor.

Greenhouse–Geisser corrections were applied when the
sphericity assumption was violated. Levene’s test was used
to assess homogeneity of variance and Games–Howell cor-
rection was applied for post hoc testing when homogeneity
of variances was violated.

3. Results

3.1. Demographics

Three participants were excluded based on poor per-
formance: Two participants (one from age-group 1 and
one from age-group 2) did not reach learning criterion
in the acquisition stage in at least one of the two condi-
tions, and one participant from age-group 2 performed 2
of the 4 experimental blocks at chance level (50%). After
exclusion of these 3 participants there were 13 partici-
pants in age-group 1 (6 male), 14 participants in age-group
2 (6 male), 15 participants in age-group 3 (5 male) and
16 participants in age-group 4 (5 male). Demographics
of the included participants are listed in Table 1. Edu-
cation of the parents was not recorded in the youngest
age-group. In the other three age-groups, education level of
the parents did not differ between the groups (F(2) = 1.52).
There was a significant effect of group on IQ (F(3,54) = 3.96,
p = .04). IQ measures increased linearly with age-group
(F(3,54) = 8.61, p = .005), although post hoc comparisons
revealed a significant difference only between the youngest
and oldest group (T(27) = 2.840, p = .03). In separate analyses
we assessed whether there were any effects of gen-
der, outcome-response mapping (i.e. whether reward and
punishment was mapped to the left or right hand; coun-
terbalanced across participants), or order of valence block
(counterbalanced across participants). Repeated measures

ANOVA with the factors valence (2 levels) and trial-type
(3 levels) as within-subjects factors and mapping, order
or gender as between-subjects factors did not reveal any
effects of these latter factors. In addition, no effects of gen-
(11–12 years) age-group compared with the three older age-groups. Error-
bars  represent the standard error of the mean. ** = significant difference
at p < .005.

der, mapping or order were found with repeated measures
ANOVA on the reversal trials only with the factors valence
(2 levels) as a within-subjects factor and mapping, order or
gender as between-subjects factors.

3.2. Reversal learning

The average proportions of correct predictions across
all trials for the four age-groups are shown in Fig. 2. The
number of trials per age-group for each of the six trial-types
is shown in Table 2. Accuracy per age-group for each of the
six trial-types is shown in Table 3.

3.2.1. Overall performance irrespective of reversal and
valence

Participants performed increasingly well with age,
with overall performance reaching asymptote at ado-
lescence. Repeated measures ANOVA with valence (2
levels) and trial-type (3 levels) as between-subjects fac-
tor, group as within-subjects factor, and IQ as a covariate
revealed a main effect of group on accuracy across all
trials (F(3) = 16.6, p < .001). One-way ANOVA of accuracy
scores averaged across trial-types revealed a significant
linear trend (F(3,54) = 17.83, p < 001) as well as a signif-
icant quadratic trend (F(3,54) = 6.254, p = .015). Post hoc
comparisons revealed a significant increase in overall accu-
racy between age-groups 1 and 2 (T(25) = 3.234, p = .005), a
marginal increase in overall accuracy between groups 2 and
3 (T(27) = 2.84, p = .056), while accuracy was similar in age-
groups 3 and 4 (T(29) = −.16). Overall accuracy increased
until maximum accuracy (0.89 ± 0.1) in age-group 3. Cor-
relation analysis revealed a relationship between overall
accuracy and IQ (r = .374, ptwo-tailed = .004), but partial corre-
lations between age and overall accuracy, when controlled
for IQ, were still significant (r = .589, ptwo-tailed < 001).
The effect of age-group on overall accuracy was par-
alleled by an effect of age-group on the total number
of completed reversals (F(3,54) = 7.609, p < .001). Impor-
tantly, this overall effect was not accompanied by a
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Table  3
Accuracy per trial-type.

Age Unexpected punishment condition Unexpected reward condition

Reversal Non-reversal
reward

Non-reversal
punishment

Reversal Non-reversal
reward

Non-reversal
punishment

Age 10–11 0.81 (0.03) 0.83 (0.03) 0.86 (0.02) 0.74 (0.03) 0.88 (0.01) 0.86 (0.02)
Age  13–14 0.94 (0.01) 0.91 (0.01) 0.91 (0.01) 0.92 (0.02) 0.91 (0.01) 0.91 (0.01)
Age  16–17 0.94 (0.02) 0.95 (0.01) 0.94 (0.01) 0.91 (0.03) 0.94 (0.01) 0.95 (0.01)
Age  20–25 0.85 (0.03) 0.94 (0.01) 0.95 (0.01) 0.91 (0.02) 0.95 (0.01) 0.94 (0.01)

(0.01) 
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Average 0.89 (0.02) 0.91 (0.01) 0.92 

verage proportion correct trials (standard error) per age-group and acro

alence-dependent effect on the total number of com-
leted reversals: Repeated measures ANOVA on the total
umber of completed reversals with the within-subjects

actor valence (2 levels), the between-subjects factor group
4 levels) and IQ as a covariate did not reveal any differ-
nces between the total number or reward-reversals and
unishment-reversals, or an effect of age on this differ-
nce (main effect of valence: F(1,53) = .204, interaction effect
alence × group: F(3,53) = .63). This enabled us to assess age
ffects on valence-dependent accuracy scores in a manner
hat was not confounded by differences in the total number
f trials included in the analyses.

.2.2. Valence-dependent effects of age on reversal
earning

Inspection of the valence-dependent reversal scores
Fig. 3a and b) revealed a linear relationship with
ge, so that participants performed increasingly well
ith age on reward-reversals relative to punishment-

eversals. This finding was confirmed by repeated
easures ANOVA of the mean proportions of cor-

ect responses, with IQ as covariate, which revealed
 significant 3-way interaction between valence, trial-
ype and group (F(6,106) = 2.554, p = .040). Breakdown of
his 3-way interaction by trial-type confirmed that the
alence-dependent effect was significant for the rever-
al trials (valence × group: F(3,53) = 3.176, p = .031) and not
or the non-reversal trials (valence × group: F(3,53) = .44;
alence × group × trial-type (2): F(3,53) = 2.339). Further
nalysis with one-way ANOVA of the valence-dependent
eversal scores (proportion correct reward-reversals minus
roportion correct punishment-reversals) revealed a sig-
ificant linear trend (F(3,54) = 3.71, p = .005), such that the
alance between reward and punishment reversal learn-

ng shifted from better punishment reversal learning in the
oungest age group to better reward reversal learning in
he oldest age group. Post hoc comparisons revealed a sig-
ificant difference between age group 1 and age group 4
T(27) = 2.92, p = .022). There was no support for a peak in
alence-dependent reversal learning as there was  no sig-
ificant quadratic trend (F(3,53) = 1.42).

The observed linear age-related changes in valence-
ependent reversal learning cannot be explained by
ifferences in IQ between the groups. First, partial corre-
ation analyses revealed a significant association between
ge and valence-dependent reversal scores after control-
ing for IQ (r = .359, ptwo-tailed = .006). Second, repeated

easures ANOVA of the reversal scores with the within-
0.87 (0.03) 0.92 (0.01) 0.92 (0.01)

cipants for all six trial types.

subjects factor valence and the between-subjects factor
IQ-group did not reveal any significant effects of IQ-group
(valence × IQ-group: F(1,54) = 2.46), and one-way ANOVA
of the valence-dependent reversal scores also did not
reveal any linear or quadratic trend effects of IQ (lin-
ear: F(3,54) = 2.25; quadratic: F(3,54) = .16). Third, correlation
analysis did not reveal any significant correlation between
IQ and valence-dependent reversal scores (r = .15).

3.2.3. Differential developmental trajectories of reward
and punishment reversal learning

Inspection of the reversal scores for each valence con-
dition separately revealed that the linear shift with age
towards better reward- relative to punishment-reversal
was  due to differential developmental trajectories of
reward and punishment reversal learning (Fig. 4).

On the one hand, follow-up repeated measures ANOVAs
(with IQ as a covariate) of data from each valence con-
dition separately revealed significant 2-way interactions
between age-group and trial-type (3) for both the reward
(F(6,106) = 5.23, p = .001) and the punishment condition
(F(6,106) = 3.4, p = .013). These 2-way interactions reflected
differences between age-effects on the reversal trials and
age-effects on the non-reversal trials. Specifically, as dis-
cussed below (see Section 3.2.4), there was an inverted
U-shaped relationship between age and reversal scores
(but not non-reversal scores), for both the reward and
the punishment conditions: Adolescents performed bet-
ter than adults on these reversal (relative to non-reversal)
trials, irrespective of valence.

However, in addition to this valence-independent
effect, there was  also a valence-dependent effect: The
degree to which adolescents performed better than adults
on reversal (relative to non-reversal) trials differed as a
function of valence (as confirmed by the 3-way inter-
action, see Section 3.2.2). The nature of this difference
was  revealed by one-way ANOVAs of reward-reversal
scores and punishment-reversal scores separately. The
ANOVA of reward-reversal scores showed both a sig-
nificant linear (F(3,54) = 16.05, p < 001) and a significant
quadratic trend (F(3,54) = 9.73, p = 003), while ANOVA of
punishment-reversal scores revealed only a significant
quadratic trend (quadratic: F(3,54) = 18.36, p < 001, linear:
F(3,54) = .61). Post hoc tests showed that reward-reversal

increased near to maximum performance between age-
groups 1 and 2 (T(25) = 4.79, p < 001), while remaining stable
between age-groups 2 and 3 (groups 2–3: T(27) = .17; groups
1–3: T(26) = 4.35, p < .001) and between age-groups 3 and 4
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Fig. 3. Age-related effects on valence-dependent and valance-independent reversal learning. (a) Valence-dependent effects of age on reversal learning.
Relative reversal learning scores (y-axis) for the four different age-groups (x-axis) are calculated as the proportion correct reward-reversal trials minus
the  proportion correct punishment-reversal trials. (b) Significant linear trend between relative reversal scores and age (F(3,54) = 3.71, p = .005). (c) Valence-
independent effect of age on reversal and non-reversal performance. Accuracy scores on reversal and non-reversal trials (y-axis) for the four different

ediction
ars repre
.

age-groups (x-axis) are calculated as the average proportion of correct pr
between relative reversal scores and age (F(3,54) = 19.45, p < .001). Error-b
points. **Significant difference at p < .005, *Significant difference at p < .05

(groups 3–4: T(29) = .03; groups 1–4: T(27) = 4.57, p < 001).
Punishment-reversal, on the other hand, showed a peak
in performance across age-groups. There was a signifi-
cant increase in performance between age-groups 1 and
2 (T(25) = 3.48, p = .005), no difference between age-groups
2 and 3 (groups 2–3: T(27) = .31; groups 1–3: T(26) = 3.28,
p = .011), and a performance decrease between age-groups
3 and 4 (groups 3–4: T(29) = −2.53, p = .086; groups 2–4:
T(28) = −2.76, p = .045; groups 1–4: T(27) = .88).

3.2.4. Valence-independent effects of age on reversal
learning

Inspection of the valence-independent reversal scores
(Fig. 3c and d) revealed a nonlinear, inverted-U shaped
relationship with age, so that participants performed

best during adolescence, but poorly during childhood as
well as early adulthood. This finding was confirmed by
the omnibus ANOVA, which revealed a significant 2-way
interaction between group and trial-type (F(6,106) = 5.456,
s on both reward- and punishment trials. (d) Significant quadratic trend
sent the standard error of the mean. Symbols represent individual data

p = .001), irrespective of valence, as well as by significant
group × trial-type interactions for each valence condition
separately (see above). Breakdown of this omnibus 2-way
interaction by trial-type revealed significant simple main
effects of age-group both on the reversal trials (irrespective
of valence) (F(3,53) = 8.15, p < .001) and on the non-reversal
trials (F(3,53) = 11.325, p < .001).

The 2-way group × trial-type interaction was due to
the finding that the relationship between age and rever-
sal scores was inverted-U shaped, while that between
age and non-reversal scores was linear (Fig. 3c). This was
revealed by one-way ANOVAs on the reversal and the non-
reversal scores (independent of valence), with age-group as
a between-subjects factor. The ANOVA of reversal scores
showed both linear, and non-linear effects of age-group

(linear: F(3,54) = 7.91, p = .007, quadratic: F(3,54) = 19.45,
p < 001), while the ANOVA of both non-reversal trial-
types revealed only linear, but no non-linear effects of
age (linear: F(3,54) = 40.84, p < 001, quadratic: F(3,54) = 3.93).
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Fig. 4. Age-related effects for the reward and punishment conditions separately. (a) Accuracy on the reversal, non-reversal reward and non-reversal
punishment trials in the reward condition (y-axis) for the four different age-groups (x-axis). (b) Linear and quadratic trend between accuracy on reward-
reversal trials and age (linear: F(3,54) = 16.05, p < .001, quadratic: F(3,54) = 9.73, p < .003). (c) Accuracy on the reversal, non-reversal reward and non-reversal
punishment trials in the punishment condition (y-axis) for the four different age-groups (x-axis). (d) Quadratic trend between accuracy on punishment-
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eversal trials and age (F(3,54) = 18.4, p < .001). Error-bars represent the sta
ifference at p < .005, *Significant difference at p < .05.

ost hoc tests revealed that valence-independent rever-
al scores peaked during adolescence. Reversal scores
ere higher in age-groups 2 and 3 compared with

ge-group 1 (groups 1–2: T(25) = −4.863, p = .018, groups
–3: T(26) = −4.398, p = .009), and decreased again in
dults (groups 1–4: T(27) = −3.131). By contrast, accu-
acy on non-reversal trials did not show such a
ecrease. Non-reversal scores increased until age-group 3
groups 1–2: T(25) = 2.83, p = .049, groups 2–3: T(27) = −3.03,

 = .029) and did not differ between age-groups 3 and
 (groups 3–4: T(29) = −.26, groups 1–4: T(27) = −5.51,

 < 001).

.3. Supplementary analyses

Both the reward- and the punishment-reversal trials
equired response alternation. Accordingly, it could be
rgued that the effects of age reflect effects on the ten-
ency to alternate responses after punishment relative to

eward, i.e., the application of a win-stay/lose-shift strat-
gy. To asses this possibility, we analyzed the application
f such a strategy on the non-reversal trials. This analysis
ndicated that age did not alter the degree to which partic-
rror of the mean. Symbols represent individual data points. **Significant

ipants alternated responding after punishment relative to
reward. Thus there were no main effects of win-stay/lose-
shift strategy or strategy × group interactions on the trials
after reward (main effects of strategy: F(3,54) = .06, strat-
egy × group: F(3,54) = .85) or on the trials after punishment
(main effects of strategy: F(3,54) = 2.24; strategy × group:
F(3,54) = .85).

3.4. Summary

A non-linear, inverted-U shaped relationship was
observed between age and valence-independent reversal
scores, so that participants performed better during ado-
lescence than during both childhood and early adulthood.
Thus, adolescents were more responsive to unexpected
outcomes of their behaviour than were children or adults.
However, this inverted-U shaped relationship was accom-
panied by linear shift with age in terms valence-dependent

reversal scores, with adolescents performing at an interme-
diate level relative to children and adults. Specifically, the
ability to reverse predictions based on unexpected reward
relative to punishment improved linearly with age.
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4. Discussion

The present study examined developmental differences
in reward- and punishment-based reversal learning dur-
ing adolescence in four different age groups between 10
and 25 years old. A reversal learning task was employed
to assess effects of unexpected reward and unexpected
punishment on reversal learning, while requirements
for behavioural adjustments were well-matched between
the conditions. This enabled assessment of the valence-
dependent effects on reversal learning, by comparing
effects of unexpected reward with effects of unexpected
punishment on the updating of stimulus-outcome predic-
tions. Following current theory (see Section 1), we had
predicted that adolescents would display aberrant reward-
relative to punishment-based reversal learning compared
with children and adults.

In contrast to this hypothesis, results revealed a lin-
ear shift from better punishment- relative to reward-based
reversal learning during childhood to better reward- rel-
ative to punishment-based reversal learning in young
adulthood. Thus reward- relative to punishment-reversal
score was not aberrant in adolescents, but rather inter-
mediate relative to those of children and adults. This
linear effect of age was remarkably robust and not medi-
ated by non-specific factors such as IQ or other factors,
such as the need for behavioural adjustment, which was
matched between valence conditions. Moreover, it con-
trasted with the observation of a non-linear, inverted-U
shaped relationship between age and valence-independent
reversal learning. Thus the ability to shift responding fol-
lowing unexpected outcomes (irrespective of the valence
of the outcome) was maximal in 13–17 year olds com-
pared with 10–11 and 18–25 year olds. This age effect
on valence-independent reversal learning could also not
be accounted for by non-specific factors, such as moti-
vation or arousal, because a similar inverted-U shaped
pattern was not observed for the non-reversal trials, which
improved linearly with age. Accordingly, this finding sug-
gests that non-linear changes during adolescence might
involve exaggerated tendency to shift responding based on
negative performance feedback, instead of an imbalance
between systems processing reward and punishment per
se. Together, these data indicate the need to refine current
models of overactive reward systems in adolescence.

One way to refine these models is by recogniz-
ing the existence of multiple mechanisms underlying
reward learning. In particular, distinctions have been made
between Pavlovian and instrumental mechanisms of learn-
ing (Balleine and O’Doherty, 2010; Maia, 2009; Maia and
Frank, 2011). Such ideas have been formalized in actor-
critic-like architectures, where optimal action selection
involves (i) the encoding and updating of Pavlovian predic-
tions of future outcomes associated with specific stimuli or
states in the environment (the critic) and (ii) the instru-
mental selection of actions that, given those stimuli or
states, are associated with the highest reward outcomes

(the actor) (Balleine and O’Doherty, 2010; Maia, 2009;
Sutton and Barto, 1998).

Adequate performance on the current paradigm
depends on both learning mechanisms but their contri-
nitive Neuroscience 1 (2011) 578– 590 587

butions are expressed in different manners. Critic-like
Pavlovian learning depends on Pavlovian prediction errors,
which are positive when the outcome associated with
the highlighted stimulus is better than expected (unex-
pected reward) and negative when the outcome associated
with the highlighted stimulus is worse than expected
(unexpected punishments). Actor-like instrumental learn-
ing, on the other hand, depends on instrumental prediction
errors, which in the present task are negative for both
unexpected outcomes given that the outcome associ-
ated with the response was worse than expected (i.e. an
incorrect prediction). Accordingly, any valence-dependent
reversal effect on this task must reflect modulation of
critic-like Pavlovian learning mechanisms. By contrast,
any valence-independent effect that extends across the
reward- and the punishment-reversal conditions of this
task might reflect modulation of actor-like instrumen-
tal learning mechanisms. Based on this framework, we
hypothesize that the observed linear relationship between
age and valence-dependent reversal learning reflects
a linear developmental trajectory of Pavlovian learn-
ing mechanisms. Furthermore, based on the observation
that adolescents exhibited aberrant valence-independent
learning, we  hypothesize that this linear developmental
trajectory of Pavlovian learning might be accompanied by
a non-linear, inverted-U shaped development trajectory of
instrumental learning.

This hypothesis concurs with current evidence for dis-
tinct neuro-developmental trajectories of the different
learning mechanisms involved in our task. Thus, it has been
suggested that the critic implicates the limbic striatum,
including the ventral striatum and its strong connections
with the amygdala, whereas the actor implicates the dorsal
striatum (Montague et al., 1996). This has been supported
by several human imaging studies, showing prediction
error signals during instrumental learning in both dorsal
and ventral striatum and prediction error signals during
Pavlovian learning only in the ventral striatum (O’Doherty
et al., 2004; Tricomi et al., 2009; Valentin and O’Doherty,
2009). More specifically, previous neuroimaging work with
the present task has revealed neural responses in the ven-
tral striatum for positive reward-signed prediction errors,
and in the amygdala for negative reward-signed prediction
errors while valence-independent responses were found
in the dorsal striatum, dorsolateral prefrontal cortex and
anterior cingulate cortex (Robinson et al., 2010a).

Critically, there is evidence that dopaminergic mecha-
nisms in the dorsal and ventral striatum exhibit differential
developmental trajectories. First, dopamine innervations
of, and receptor density in, the dorsal striatum is maxi-
mal  during adolescence, followed by back-pruning in late
adolescence, while development trajectories of the ven-
tral striatum (nucleus accumbens) develop more linearly
and do not seem to show such declines after adolescence
(Teicher et al., 1995; Doremus-Fitzwater et al., 2010; Kuhn
et al., 2010; Wahlstrom et al., 2010). Furthermore, in the
ventral striatum, D1 receptor density continues to increase

until late adulthood, while D2 receptor density remains
stable between adolescence and adulthood (Teicher et al.,
1995; Wahlstrom et al., 2010). This increase of D1 relative
to D2 receptor density in the ventral striatum is particu-
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arly pertinent here, because valence-dependent reversal
earning on our task has been shown to depend criti-
ally on striatal dopamine transmission: Subjects with low
opamine function exhibit better punishment than reward
eversal learning, while subjects with high dopamine
unction exhibit better reward than punishment reversal
earning (Cools et al., 2006, 2009; Robinson et al., 2010b).
ccumulating evidence from a combination of genetic neu-
oscience and computational modelling work indicates
hat these effects of dopamine on reward and punishment
earning are mediated by action at D1 and D2 recep-
ors respectively (Frank et al., 2007; Frank and Hutchison,
009). Thus the shift from better punishment-based rever-
al learning in children to better reward-based reversal
earning in adults might well reflect a combination of linear
ge-related increases in dopaminergic innervation of the
triatum, and/or increases in the ratio of D1:D2 receptor
ensity in the ventral striatum.

Our hypothesis might account for previous neuroimag-
ng findings showing age-related inverted-U shaped neural
hanges during instrumental learning in the dorsal stria-
um (caudate nucleus), but not the ventral striatum (Cohen
t al., 2010; Van Leijenhorst et al., 2010a)  (but see Galvan
t al., 2006). Interestingly, Cohen et al. (2010) reported that
he location of prediction error-related neural responses
hifted from the dorsal striatum in adolescents to the ven-
ral striatum in adults, regions previously shown to reflect
nstrumental and Pavlovian prediction errors, respec-
ively (O’Doherty et al., 2004). Taken together, the linear
nd non-linear patterns observed for valence-dependent
nd valence-independent reversal learning respectively fit
ell with the neurochemical developmental trajectories

f dorsal striatum associated with instrumental learning
echanisms and of the ventral striatum associated with

avlovian learning mechanisms.
One important implementation of this study is that

ecision making problems and increased risk taking dur-
ng adolescence do not necessarily reflect disproportionate
ensitivity to rewards and/or a lack of behavioural control
Casey et al., 2010; Ernst and Fudge, 2009; Somerville et al.,
010a,b), but instead might reflect aberrant responsive-
ess to recent negative performance feedback. Previous
tudies have used various paradigms that did not dis-
ociate between possible different learning mechanisms.
his study is one of the first to show enhanced feedback-
ased learning in adolescents, a finding that is perhaps not
urprising, given the great number of high-impact tran-
itions that adolescents undergo in this period. At the
ame time, it is also not difficult to imagine how aberrant
esponsiveness to recent negative performance feedback
ould lead to behaviour that is not optimal. In our noisy,
tochastic environment, some feedback is misleading and
hould be ignored and adequate adaptation to this environ-
ent requires integration of more remote reinforcements,

ither in the future or in the past. Thus, behaviour
s driven not only by recent, local reinforcements, but
lso by more remote reinforcements. In adolescents, this

ypothesized aberrant focus on recent feedback at the
xpense of integration of more remote feedback might
ccount for a broader range of decision making abnor-
alities in adolescence than an account that highlights
itive Neuroscience 1 (2011) 578– 590

reward oversensitivity, including paradoxical oversensi-
tivity to immediate short-term feedback, e.g. from peers,
at the expense of longer-term feedback from parents.
Future work should investigate whether aberrant learning
from immediately preceding negative feedback is indeed
accompanied by reduced integration of more remote rein-
forcement either in the future or the past. These insights
have considerable implications for current developmen-
tal models and might provide an interesting functional
framework, within which to investigate developmental
changes and impulsivity in adolescence or developmen-
tal disorders like attention deficit hyperactivity disorder
(ADHD). Recent advances have already revealed interest-
ing changes in ADHD patients compared with controls that
are consistent with this framework. For example, ADHD
is accompanied by reduced responses in the ventral stria-
tum during reward-predictive cues (Scheres et al., 2007)
and anatomical compression and expansion of the ventral
and dorsal striatum respectively (Qiu et al., 2009; Sobel
et al., 2010). Furthermore, insights relating decision mak-
ing deficits during adolescence to dopamine functioning
are pertinent given that various neuropsychiatric disorders
that implicate dopamine, such as schizophrenia, have their
onset in adolescence.

Some limitations need to be noted. First, the present
study infers developmental trends based on between-
subjects differences and it cannot be excluded that
differences between groups might relate to unknown dif-
ferences between the individuals within the groups. One
such difference might result from the fact that subjects
were recruited from educational institutions which could
have biased the selection for different age groups. Fur-
ther, IQ-scores were relatively high and differed between
the youngest and oldest group. Although the present
study specifically showed that IQ was  not related to
measurements of interest, it might have induced con-
founds for comparison between age-groups. Also, the
relatively high IQ-scores across all subjects might have
limited the generalizability of the results to lower IQ
groups. Longitudinal studies are needed to avoid these con-
founds and confirm that our findings reflect developmental
changes.

In summary, the present results demonstrate distinct
developmental trajectories of different forms of reward-
based learning. Accordingly they indicate that current
models of the development of reward systems need
to be refined. We  propose that this may  be achieved
by considering the hypothesis that increased risk-taking
in adolescence might reflect an imbalance between the
critic-like Pavlovian control system and the actor-like
instrumental control system such that the instrumental
system, associated with the dorsal striatum is overac-
tive relative to the Pavlovian system, associated with the
ventral striatum. This hypothesis accounts for the pat-
tern of performance observed in the present study, but
is also consistent with evidence about distinct neurode-
velopmental trajectories of different dopamine-dependent

learning mechanisms. Clearly our proposal is speculative
and requires further study, in which functional neu-
roimaging and dopamine psychopharmacology should be
combined with the use of behavioural assays that enable
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the separate assessment of Pavlovian and instrumental
learning.
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