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The  effects  of the  selective  5HT1A agonist  8-OH-DPAT  were  assessed  on  the  play  behavior
of  juvenile  rats.  When  both  rats  of  the  test  pair  were  comparably  motivated  to  play,  the
only  significant  effect  of 8-OH-DPAT  was  for play  to be reduced  at higher  doses.  When
there  was  a baseline  asymmetry  in playful  solicitation  due  to  a  differential  motivation
to  play  and  only  one  rat  of the  pair  was  treated,  low  doses  of  8-OH-DPAT  resulted  in  a
collapse  of  asymmetry  in playful  solicitations.  It did  not  matter  whether  the rat  that  was
treated  initially  accounted  for  more  nape  contacts  or fewer  nape  contacts,  the net  effect  of
erotonin

HT1A

utoreceptors
-OH-DPAT
otivation

at

8-OH-DPAT  in  this  model  was  for low  doses  of  8-OH-DPAT  to  decrease  a pre-established
asymmetry  in  play  solicitation.  It  is  concluded  that  selective  stimulation  of  5HT1A receptors
changes  the  dynamic  of a playful  interaction  between  two  participants  that are  differentially
motivated  to  play.  These  results  are  discussed  within  a broader  framework  of  serotonergic
involvement  in  mammalian  playfulness.
. Introduction

Play is a fundamental neurobehavioral process that is
hared widely among the juveniles of most mammalian
pecies, several avian and reptilian species, and even
mong some invertebrates (Burghardt, 2005; Fagen, 1981;
ellis and Pellis, 2009). Play has been particularly well char-
cterized in the rat (Panksepp, 1998; Panksepp et al., 1984;
ellis and Pellis, 2009; Trezza et al., 2010; Vanderschuren
t al., 1997) and shows a distinctive ontogenetic trajectory,
ppearing in the behavioral repertoire shortly after inde-
endent locomotion begins, peaking at around 35 days of
ge and then steadily decreasing as puberty approaches
Meaney and Stewart, 1981; Panksepp, 1981; Small, 1899).
t its peak, play in the rat accounts for about 3–6% of

he daily energy budget and about 3% of the time budget
Siviy and Atrens, 1992; Thiels et al., 1990). There is good

vidence that a playful phenotype is heritable as robust
ifferences have been reported between different strains
f rats (Ferguson and Cada, 2004; Siviy et al., 1997, 2003,
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2011) and between rats that have been selectively bred
on other related components such as affective vocaliza-
tions (Brunelli et al., 2006) and susceptibility to amygdala
kindling (Reinhart et al., 2004, 2006).

Play is a highly regulated behavior and, in rats, levels
of play are exquisitely sensitive to how long it has been
since a previous opportunity to play (Panksepp and Beatty,
1980). Rats that have been isolated for 4 h will play more
than rats that have not been isolated, while rats that have
been isolated for 24 h will play more than rats that have
been isolated for 4 h. Play is also affectively positive (i.e.,
it is fun for the participants). For example, rats will read-
ily learn to navigate a maze where an opportunity to play
is the reward (Humphreys and Einon, 1981; Normansell
and Panksepp, 1990) and will show a clear preference for
a context previously associated with play (Calcagnetti and
Schechter, 1992; Douglas et al., 2004; Trezza et al., 2009b).
Rats will also emit short (<0.5 s) bursts of high frequency
(∼50 kHz) vocalizations when playing and when placed in a
context where they have previously played (Knutson et al.,

1998a,b) and these types of vocalizations have also been
observed in other affectively positive states (Burgdorf et al.,
2000, 2001, 2008; Burgdorf and Panksepp, 2001; Knutson
et al., 1999; McIntosh and Barfield, 1980). Taken together,
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these data suggest that play is a stable behavioral pheno-
type among most mammals and likely arises from activity
in specific neural circuits that are sensitive to motivational
and affective processes.

At the neurochemical level, several neurotransmitters
have emerged as strong candidates for modulating play.
Among these, a specific role for endogenous opioid and
cannabinoid systems are particularly prominent. Endoge-
nous opioids are released in many areas of the brain during
play (Panksepp and Bishop, 1981; Vanderschuren et al.,
1995c) while low doses of morphine increase play and
opioid antagonists decrease play (Niesink and Van Ree,
1989; Panksepp et al., 1985; Trezza and Vanderschuren,
2008b; Vanderschuren et al., 1995a,b, 1996). Compounds
that prevent the breakdown or reuptake of endogenous
cannabinoids once released into the synapse also increase
play (Trezza and Vanderschuren, 2008a,b, 2009), sug-
gesting that a subset of cannabinoid synapses are active
during play and that prolonging activity in these synapses
makes rats more playful. There is also considerable over-
lap between opioid and cannabinoid involvement in play
as increases in play following enhanced endocannabinoid
signaling or with morphine can be blocked by either opioid
and cannabinoid CB1 antagonists.

Brain monoamines have long been thought to be
involved in the modulation of play. Indeed, one of the
first pharmacological studies using play as a measure
showed that low doses of psychomotor stimulants such
as amphetamine and methylphenidate are very potent in
reducing play (Beatty et al., 1982). Given the extent to
which dopamine is well known to be involved in other
motivational and affective processes it is not surprising
to find the imprint of dopamine on play behavior as
well. Dopamine utilization increases during play bouts
(Panksepp, 1993), dopamine antagonists uniformly reduce
play (Beatty et al., 1984; Niesink and Van Ree, 1989; Siviy
et al., 1996), and neonatal 6-OHDA lesions impair the
sequencing of behavioral elements during play bouts (Pellis
et al., 1993). While it has been difficult to obtain con-
sistent increases in play with dopamine agonists (Beatty
et al., 1984; Field and Pellis, 1994; Siviy et al., 1996)
increases in play following alcohol, nicotine, and indirect
cannabinoid agonists can all be blocked by silent doses
of dopamine antagonists (Trezza et al., 2009a; Trezza and
Vanderschuren, 2008a).  These data suggest that play is
associated with increased release of dopamine (Robinson
et al., 2011), and it has been suggested that an optimal
level of dopamine functioning is necessary for play to occur
(Trezza et al., 2010).

Both norepinephrine and serotonin have fairly exten-
sive and diffuse projections throughout the forebrain and
a specific role for norepinephrine was initially indicated
from findings that selective alpha-2 noradrenergic antag-
onists can increase play while alpha-2 agonists reduce
play (Normansell and Panksepp, 1985a; Siviy et al., 1990,
1994; Siviy and Baliko, 2000). A specific role for alpha-2
receptors is also indicated by the finding that reductions

in play following methylphenidate can be reversed by a
silent dose of the alpha-2 antagonist RX821002 but not by
either an alpha-1 or beta antagonist (Vanderschuren et al.,
2008). Vanderschuren et al. (2008) also reported that the
 Neuroscience 1 (2011) 606– 616 607

play-disrupting effects of methylphenidate could be mim-
icked by the selective noradrenergic reuptake inhibitor
atomoxetine but not by the selective dopamine reuptake
inhibitor GBR12909. These data suggest that increased
synaptic availability of NE is incompatible with play and
this is apparently due to action at post-synaptic alpha-2
receptors.

Serotonin is thought to have considerable impact on a
wide range of neurobehavioral processes including affec-
tive regulation (Dayan and Huys, 2009; Hariri and Holmes,
2006), establishing and maintaining dominance (Huber
et al., 2001; Raleigh et al., 1991), and defensive behavior
(Blanchard et al., 1998; Graeff, 2002), to name just a few,
so it is very likely that serotonin may  also be involved in
at least some aspect of play. Indeed, augmenting serotonin
functioning through acute treatment with either fluoxe-
tine or MDMA  (“Ecstasy”) reduces play (Homberg et al.,
2007; Knutson et al., 1996). Homberg et al. (2007) reported
less play among serotonin transporter knockout rats as
well. Although these data would suggest that enhanced
serotonergic functioning is incompatible with play, a more
complex pattern emerges when only one rat of a pair is
treated and attention is paid to the reciprocal interac-
tions between the two rats of the testing pair. When rats
were allowed to establish a dominance relationship such
that one rat accounted for more pinning than the other
(this being the dominant rat) the effects of either fluox-
etine or serotonin depletion depended on the status of the
rat that was  treated. Augmenting serotonin levels through
fluoxetine reduced the pinning asymmetry when the dom-
inant rat was  treated (Knutson et al., 1996) while depleting
serotonin enhanced the pinning asymmetry (Knutson and
Panksepp, 1997). Interestingly, these effects were largely
due to changes in the behavior of the untreated partner
towards the treated partner. Also, treating the subordinate
rat had no effect on the pinning asymmetry and playful
solicitations were not affected in this set of experiments.
These data suggest a more subtle role for serotonin in
modulating play behavior that may  be more sensitive to
interactive cues between the play partners.

In addition to having extensive projection throughout
the forebrain, there is also considerable diversity in the
receptor mechanisms associated with serotonergic func-
tioning. There are believed to be at least 14 different
receptor subtypes for serotonin (Martin and Humphrey,
1994; Millan et al., 2008) although the 5HT1A receptor is the
best characterized of these. The 5HT1A receptor is located at
both pre-synaptic and post-synaptic sites and many of the
behavioral effects associated with stimulation of this recep-
tor are generally ascribed to a reduction in 5HT release due
to stimulation of somato-dendritic autoreceptors (Carboni
and Di Chiara, 1989; Hjorth et al., 1982) although stimu-
lation of post-synaptic 5HT1A receptors may  also reduce
5HT cell firing and release as well through an indirect feed-
back pathway (Sharp et al., 2007). In either case, the net
effect of stimulating 5HT1A receptors is a reduction in sero-
tonin neurotransmission. As the prototypical agonist for

the 5HT1A receptor (Hjorth et al., 1982), the behavioral
effects of 8-OH-DPAT have been studied most extensively,
yet the effects of this compound on play have not been
well characterized. While the complexity of 5HT1A receptor
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ystems may  make it difficult to predict exactly how
ny given dose of systemically administered 8-OH-DPAT
eflects a specific change in 5HT functioning (De Vry, 1995),
nderstanding the effects of stimulating 5HT1A receptors
eems a necessary step in further defining any role for
erotonin in play behavior. Accordingly, the current study
ought to determine the effects of 8-OH-DPAT on play in
uvenile rats.

. Experiment 1

Earlier studies from our lab suggested that low
utoreceptor-selective doses of 8-OH-DPAT may  increase
layfulness in young rats (Siviy, 1998) although these
ffects were neither robust nor easily reproducible. In this
rst experiment we sought to initially characterize the
ose-related effects of 8-OH-DPAT on play. Playful inter-
ctions between two rats are very energetic and dynamic,
et play in the rat can be readily characterized primarily
y contacts directed towards the nape of the neck and by
ow rats respond to those contacts. When rats are young
he most common response to a nape contact is a complete
otation along the longitudinal axis such that the rat is on
ts back with all four paws in the air and the other rat on top
n what looks like a pinning posture (Panksepp et al., 1984;
ellis and Pellis, 1987; Siviy, 1998; Vanderschuren et al.,
997). Due largely to the contagious nature of play (Pellis
nd McKenna, 1992) it is often difficult to determine if any
harmacological effect is modifying solicitation, respon-
iveness, or both if the rats are similarly treated. In order
o address this potential concern, the effects of 8-OH-DPAT
ere assessed when either both rats were similarly treated

r when only one rat was treated.

.1. Materials and methods

.1.1. Subjects and housing
Male Sprague-Dawley rats (Harlan, Indianapolis, IN)

ere obtained at approximately 19 days of age. Upon
rrival and unless stated otherwise in the specific pro-
edures, animals were housed in groups of four in solid
ottom cages (48 × 27 × 20 cm)  and periodically handled
or a few days after arrival in order to acclimate to the
aboratory. Food and water were always freely available.
he colony room was maintained at 22 ◦C with a 12/12 h
eversed light/dark cycle (lights off at 08:00), with all test-
ng done during the dark phase of the light/dark cycle. All
ousing and testing was done in compliance with the NIH
uide for Care and Use of Laboratory Animals using pro-

ocols approved by the Institutional Animal Care and Use
ommittees at Gettysburg College.

.1.2. Quantifying play
Play behavior was assessed in a clear Plexiglas chamber

40 × 40 × 50 cm)  that was enclosed within a sound-
ttenuated wooden chamber illuminated by a single 25 W
ed light bulb. The floor of the testing chamber was cov-
red with approximately 3 cm of Aspen pine shavings. Play

outs were recorded as digital video files and scored later
sing behavioral observation software (Noldus XT: Noldus

nformation Technology) by an observer unaware of the
reatment condition.
 Neuroscience 1 (2011) 606– 616

Rats were initially acclimated to the testing chamber
by being placed individually in the testing chamber for
5 min/day for 2 days prior to testing. For testing rats were
placed in the testing chamber and play was quantified by
counting the frequency of contacts directed towards the
nape (nape contacts) and the likelihood that a nape con-
tact resulted in that rat rotating completely to a supine
position (complete rotation). Nape contacts were quanti-
fied by frequency of occurrence, while complete rotations
were quantified in probabilistic terms by calculating the
probability of a complete rotation occurring in response to
a nape contact. These two  measures of playfulness have
been commonly used in this lab and are also thought to
be controlled by independent motivational and neural sub-
strates (Pellis and Pellis, 1991, 1987; Siviy et al., 1997; Siviy
and Panksepp, 1987).

2.1.3. Procedures
Eight pairs of rats were used to initially assess the effects

of 8-OH-DPAT on play behavior when both rats of the pair
were similarly treated. Rats were isolated in solid-bottom
cages (27 cm × 21 cm × 14 cm)  4 h prior to testing. Food and
water were always available during isolation. For this and
all subsequent experiments, four doses of (±)-8-OH-DPAT
(0.01, 0.03, 0.1, and 0.3 mg/kg) and vehicle (0.9% physiolog-
ical saline) were tested and administered subcutaneously
(SC) in the hip 45 min  before testing. Every pair received
each of the five treatments in a counterbalanced order with
at least 48 h separating each test. Rats were tested in the
same pairs (cage-mates) for all treatments. Nape contacts
and probability of complete rotations reflect values for the
pair. Social investigation was also quantified by the rel-
ative amount of time spent by either animal sniffing the
ano-genital area of their play partner.

In order to assess the extent to which 8-OH-DPAT
affected overall activity during play bouts, an additional
eight pairs of rats were used to simultaneously monitor
both play and locomotor activity. Testing parameters and
doses were the same as above. Locomotor activity was
monitored by a video-tracking system (Ethovision; Noldus
Information Technology) that was capable of tracking the
movement of both animals at the same time. In order to
facilitate the ability of the software to track the rats, there
was  no bedding in the test chamber. Play was quantified as
it occurred (i.e., these sessions were not taped) by count-
ing the frequency of nape contacts. Locomotor activity was
quantified by distance (cm) traveled by both of the rats
and by average velocity (cm/s) over the course of the 5 min
session.

An additional 14 pairs of rats were used to assess the
effects of 8-OH-DPAT on play when only rat of the testing
pair was treated. The rat designated to receive 8-OH-DPAT
received each of the five treatments in a counterbalanced
order, and at least 48 h separated each test. For this exper-
iment, rats were tested with a novel untreated partner on
each test day in such a way that the untreated partner was

also paired with a rat receiving a different dose each day.
Both rats of the test pair were isolated 4 h before testing
as described above. Nape contacts and probability of com-
plete rotations were recorded for each rat of the testing
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Fig. 1. The effects of 8-OH-DPAT on nape contacts and the probability of

responding to nape contacts with a complete rotation in rats that were
isolated for 4 h prior to testing. Both rats of the test pair were treated
similarly. #p < .05 when compared to 0.0 mg/kg.

pair (treated and untreated). Social investigation was also
quantified for each rat of the test pair.

2.2. Results

The effects of 8-OH-DPAT when both rats of the test
pair were treated and when tested after 4 h of isolation
can be seen in Fig. 1. When these data were submit-
ted to a repeated measures Analysis of Variance (ANOVA)

there was found to be a significant effect for nape con-
tacts, F(4,28) = 35.69, p < .001, and for the probability of
a complete rotation, F(4,28) = 10.66, p < .001. Nape con-
tacts differed significantly (p < .05, paired comparisons test)

Table 1
Effects of 8-OH-DPAT on nape contacts and locomotor activity.

8-OH-DPAT (mg/kg)

0.0 0.01 

Nape contacts 16.6
(2.2)

22.1
(4.1)

Distance traveled (cm) 4698.4
(274.5)

4762.1
(354.2)

Average velocity (cm/s) 15.7
(0.9)

15.9
(1.2)

Notes: numbers in parentheses indicate standard error of the mean.
* p < .05 when compared to 0.0 mg/kg.
Fig. 2. The effects of 8-OH-DPAT on social investigation when both rats
were treated similarly and both were isolated for 4 h prior to testing.
*p  < .05 when compared to 0.0 mg/kg.

from vehicle after the two  highest doses (0.1, 0.3 mg/kg)
while complete rotations differed significantly from vehi-
cle only after highest dose (0.3 mg/kg). 8-OH-DPAT also
had a significant effect on time spent in social investi-
gation, F(4,28) = 9.03, p < .001 (Fig. 2). When compared to
vehicle, social investigation significantly decreased after
0.03 mg/kg but increased after 0.3 mg/kg.

The effects of 8-OH-DPAT on play and locomotor activity
can be seen in Table 1. 8-OH-DPAT had a significant effect
on all 3 measures, Fs(4,28) > 9.10, p < .001. The highest dose
significantly reduced nape contacts, distance traveled, and
average velocity of movement.

The effects of 8-OH-DPAT when only one rat of a test pair
was treated and when both rats were isolated for 4 h prior
to testing is shown in Fig. 3. These data were submitted to a
2 × 5 ANOVA with one between-subjects factor for partner
(treated or untreated) and one within-subjects factor for
the five doses. For nape contacts there was found to be a sig-
nificant effect of dose, F(4,104) = 15.89, p < .001, a marginal
effect of partner, F(1,26) = 4.22, p = .05, and a significant
dose × partner interaction, F(4,104) = 6.47, p < .001. Sepa-
rate ANOVAs were conducted on the data from the treated
and untreated partners and it was  found that 8-OH-DPAT
reduced nape contacts in the treated rats at the two highest

doses. Nape contacts for the untreated rat were unaffected
by the treatment of the partner. The only significant effect
from the analysis of complete rotations was a significant
effect of dose, F(4,104) = 6.14, p < .001, with the highest dose

0.03 0.1 0.3

17.5
(2.9)

12.4
(3.9)

2.0*

(0.7)
4595.8
(297.9)

3912.8
(412.4)

2473.5*

(230.8)
15.3
(1.0)

13.1
(1.4)

8.3*

(0.8)
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Fig. 3. The effects of 8-OH-DPAT on nape contacts and the probability
of  responding to nape contacts with a complete rotation when only one
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Fig. 4. The effects of 8-OH-DPAT on social investigation when only one rat
at  of the test pair was  treated. Both rats were isolated for 4 h prior to
esting. #p < .05 when compared to 0.0 mg/kg; *p < .05 when compared to
ntreated partner at the same dose level.

educing the likelihood of responding to a nape contact
ith a complete rotation. For social investigation there
as found to be a significant partner × dose interaction,

(4,104) = 3.02, p = .021 (Fig. 4) with social investigation
ncreasing in the untreated partner when the partner was
reated with 0.1 mg/kg of 8-OH-DPAT.

. Experiment 2

The results from the previous experiment showed that
he only consistent effect of 8-OH-DPAT was for play to
e reduced at higher doses. There was no indication of
n increase in play at the lower autoreceptor-selective
oses and this is pretty consistent with a number of pre-

iminary studies done in our lab. However, given that the
ffects of fluoxetine and 5HT depletion on play have been
hown to be dependent on an initial asymmetry in pinning
etween established pairs of rats (Knutson and Panksepp,
997; Knutson et al., 1996) it seemed reasonable to pre-

ict that 8-OH-DPAT may  also be sensitive to a pre-existing
symmetry in play. Rather than allowing rats to establish

 dominance/subordinate relationship, rats in this experi-
ent played with a new partner on each test day and we
of  the test pair was treated. Both rats were isolated for 4 h prior to testing.
*p  < .05 when compared to 0.0 mg/kg and when compared to same dose
given to treated rat.

sought to establish an asymmetry in play by varying the
amount of isolation prior to the play bout. In particular,
one rat of a pair was  chronically isolated for 24 h while its
partner was  isolated for only 4 h prior to testing and, as pre-
dicted, rats that were isolated for 24 h accounted for more
nape contacts than those isolated for 4 h. The effects of 8-
OH-DPAT were then assessed when either given to the rat
isolated for 24 h or to the rat isolated for 4 h.

3.1. Procedure

Subjects, housing, and testing protocols for play were
the same as in Experiment 1. In one experiment (n = 8 pairs),
the treated rat was  isolated for 4 h prior testing while its
untreated partner was isolated for 24 h. In a separate exper-
iment (n = 8 pairs) the treated rat was isolated for 24 h prior
to testing while its untreated partner was  isolated for 4 h.
As in Experiment 1, all injections were given SC 45 min
before a 5 min  opportunity to play. The rat designated to
receive 8-OH-DPAT received each of the five treatments in
a counterbalanced order, and at least 48 h separated each
test. Rats were tested with a different untreated partner
on each test day in such a way that the untreated partner
was  also paired with a rat receiving a different dose each
day.

3.2. Results

As can be seen in Figs. 5 and 6, pairing a rat that has
been isolated for 24 h with another rat that has been iso-
lated for 4 h resulted in an asymmetry of nape contacts,
with the rat isolated for 24 h accounting for more play
solicitation than the rat isolated for only 4 h. When 8-
OH-DPAT was given to the rat that was isolated for only
4 h (Fig. 5), there was found to be a significant effect of

dose, F(4,56) = 7.97, p < .001, a significant effect of partner,
F(1,14) = 126.03, p < .001, and a significant dose × partner
interaction, F(1,14) = 5.75, p = .001. When nape contacts
between untreated and treated partners were compared
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Fig. 5. The effects of 8-OH-DPAT on nape contacts and the probability of
responding to nape contacts with a complete rotation when only one rat of
the  test pair was treated. The rat treated with 8-OH-DPAT was  isolated for

Fig. 6. The effects of 8-OH-DPAT on nape contacts and the probability of
responding to nape contacts with a complete rotation when only one rat of
the  test pair was  treated. The rat treated with 8-OH-DPAT was isolated for
4  h prior to testing while the untreated partner was  isolated for 24 h prior
to  testing. #p < .05 when compared to 0.0 mg/kg; *p < .05 when compared
to untreated partner at the same dose level.

at each of the five doses, it was found that the treated
rat had fewer nape contacts after vehicle and after the
two higher doses of 8-OH-DPAT. There was no difference
between the partners at the two lower doses, suggesting
that the motivation-induced asymmetry in play solicita-
tion collapsed when one of the rats (4 h isolated) was
administered low autoreceptor-selective doses of 8-OH-
DPAT. Several treated rats exhibited no nape contacts at
the higher two doses of 8-OH-DPAT, making it impracti-
cal to compute the probability of a complete rotation for
the untreated rats in these dyads. As a result, a full ANOVA
was not done for responsiveness. Instead, the data from
the vehicle and lower two doses were analyzed with a 2 × 3
ANOVA. There were no significant effects with this analysis.
When just the data from the treated rat was analyzed using
a one-way repeated measures ANOVA, there was found to
be a significant effect of dose, F(4,28) = 7.56, p < .001, with
the highest dose significantly reducing the probability of a
complete rotation.

In order to see if the effect with 8-OH-DPAT was limited

to a situation where the treated rat had a lower motiva-
tion to play, we also treated rats that were isolated for
24 h and allowed them to play with untreated rats that
were isolated for only 4 h (Fig. 6). For nape contacts there
24  h prior to testing while the untreated partner was isolated for 4 h prior
to  testing. #p < .05 when compared to 0.0 mg/kg; *p < .05 when compared
to  untreated partner at the same dose level.

was a significant effect of dose, F(4,56) = 14.51, p < .001
and a significant dose × partner interaction, F(4,56) = 9.71,
p < .001. Further analysis of this interaction indicated that,
as expected, the treated rat solicited more play after vehi-
cle. However, as with the previous study, this difference
collapsed after the two lower doses of 8-OH-DPAT. There
was also no difference in nape contacts between the treated
and untreated rat at 0.1 mg/kg but this dose also reduced
nape contacts when compared to vehicle. The treated rat
solicited less play than the untreated partner at the highest
dose and this dose also reduced nape contacts compared
to vehicle. Responsiveness to nape contacts were largely
unaffected by either partner or dose. As with the pre-
ceding experiment, several treated rats exhibited no nape
contacts at the highest dose of 8-OH-DPAT, making it
impractical to compute the probability of a complete rota-
tion for the untreated rats in these dyads. When a 2 × 4
ANOVA was done with the remaining 3 doses and vehi-

cle, there was  found to be a significant main effect of
dose, F(3,42) = 4.19, p = .01, with the likelihood of respond-
ing with a complete rotation reduced at 0.1 mg/kg. When
the data from the treated rats only were submitted to a
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Fig. 7. The effects of 8-OH-DPAT on social investigation when only one rat
of  the test pair was  treated. In the top panel the treated rat was  isolated
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or 4 h prior to testing while the untreated partner was  isolated for 24 h.
n the bottom panel the treated rat was  isolated for 24 h prior to testing

hile the untreated partner was isolated for 4 h prior to testing.

ne-way ANOVA, there was a significant effect of dose,
(4,28) = 21.58, p < .001, with the likelihood of responding
o a nape contact with a complete rotation significantly
educed at 0.1 and 0.3 mg/kg.

Social investigation in both the experiments is shown
n Fig. 7. When given to a rat that was isolated for 4 h
rior to testing (top panel), there was found to be a signifi-
ant main effect of dose, F(4,56) = 3.98, p < .01, a significant
ain effect of partner, F(1,14) = 93.6, p < .001, and a sig-

ificant dose × partner interaction, F(4,56) = 2.66, p < .05.
hile 8-OH-DPAT had no effect in the treated rats, anal-

sis of the untreated partner showed that the highest dose
iffered from the other 3 doses, but not from the vehicle.
hen given to a rat that was isolated for 24 h prior to test-

ng (bottom panel), there was a significant effect of dose,
(4,56) = 4.09, p < .01, with social investigation increasing
fter the highest dose.

. Discussion
Serotonin is pervasive throughout the brain and is
nown to be involved at some level in a wide variety of
ehaviors. Just on this basis alone, one would predict at
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least some role for serotonin in the modulation of play as
well, although the specificity and direction of that modula-
tion could still be open to speculation. While several studies
have looked at serotonergic involvement in play, most of
these have used manipulations that either up-regulate or
down-regulate global serotonergic tone (Homberg et al.,
2007; Knutson and Panksepp, 1997; Knutson et al., 1996;
Taravosh-Lahn et al., 2006). From most of these early stud-
ies, it was concluded that increased activity in 5HT circuits
decreases play and, by extension, that decreasing 5HT tone
might be expected to facilitate playfulness. However, no
studies have yielded significant increases in play follow-
ing serotonergic down-regulation, although few of these
studies assessed the effects of selective 5HT agonists and/or
antagonists on play in rats.

There is an incredible diversity of serotonin receptor
subtypes, although the 5HT1A receptor is the best char-
acterized of these. 8-OH-DPAT is the prototypical 5HT1A
agonist and has actions at both pre- and post-synaptic sites.
It has been used extensively to study a variety of behavioral
processes including feeding (Dourish et al., 1985; Hutson et
al., 1986), aggression (Ferris et al., 1999; Haug et al., 1990;
Muehlenkamp et al., 1995), sexual behavior (Rehman et al.,
1999; Schnur et al., 1989) and social dominance (Bonson
et al., 1994; Woodall et al., 1996), to name a few. At low
doses 8-OH-DPAT is thought to bind preferentially to pre-
synaptic auto-receptors, reducing firing of 5HT neurons in
the raphe nuclei, thus decreasing levels of 5HT in forebrain
target areas (Carboni and Di Chiara, 1989; Hjorth et al.,
1982). So the behavioral effects of 8-OH-DPAT at low doses
are often thought to be due to decreases in 5HT activity in
forebrain areas, although effects due to activation of post-
synaptic heteroreceptors cannot be discounted (De Vry,
1995).

Our initial interest in looking at the effects of 8-OH-
DPAT began with the relatively straightforward hypothesis
that an acute decrease in 5HT tone would increase play. As
mentioned above, it is well established that play can be reli-
ably reduced by acute increases of synaptic 5HT (Homberg
et al., 2007; Knutson et al., 1996) and play among 5HT-
transporter knockout rats is much lower than wild-type
rats (Homberg et al., 2007). Play can also be reduced by the
relatively non-selective 5HT receptor agonist quipazine,
which is reversed by co-administration of the equally non-
selective 5HT antagonist methysergide (Normansell and
Panksepp, 1985b). By itself, methysergide only decreased
play at higher doses. Doses of 8-OH-DPAT greater than or
equal to 0.1 mg/kg reduced play in the present study as well
and this would be consistent with the prevailing idea that
enhanced activity at 5HT post-synaptic receptors reduces
playfulness. These high-dose effects were also associated
with decreases in locomotor activity (both distance trav-
eled and velocity) and increases in social investigation.
Given that social investigation also increased in untreated
partners towards a treated partner (Fig. 7, top panel) it is
likely that the increased sniffing at these higher doses may
be the beneficiary of lower levels of playful activity being

exhibited by the treated rat, perhaps increasing the likeli-
hood of other social behaviors occurring, such as sniffing.
This may  be facilitated even further by a treated rat that is
moving slower as well.
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By using lower doses of 8-OH-DPAT that are known
to decrease 5HT release, we believed that this would be
a useful pharmacological tool for assessing effects of 5HT
down-regulation on play. When tested in adult rats, low
doses of 8-OH-DPAT have also been shown to increase
social interactions when animals are made anxious, which
is consistent with this class of compounds being used clini-
cally as anxiolytics (Higgins et al., 1992; Olivier et al., 1991;
Schreiber and DeVry, 1993; Shields and King, 2008). It was
then reasoned that low autoreceptor-selective doses of 8-
OH-DPAT may  be expected to increase play in the rat. Initial
results from our lab were promising, with doses in the
0.01–0.03 mg/kg range having a tendency to increase play
(Siviy, 1998; Siviy et al., 1998). However, these increases
in play were small and difficult to replicate. In our early
studies and in the data shown in Fig. 1, both rats of the pair
were treated similarly and in light of the work by Knutson
and colleagues showing a more complex pattern of phar-
macological effects when only one rat of the pair is treated
(Knutson and Panksepp, 1997; Knutson et al., 1996) we
chose to assess the effects of 8-OH-DPAT when only one
rat of the testing pair was treated. When this was  done
in Experiment 1 the results were identical; no effect of
8-OH-DPAT on play was observed at low doses although
decreases in both measures of play were still observed at
higher doses.

In Experiment 1 both rats of the testing pair were iso-
lated for 4 h prior to testing so the motivation to play was
comparable between partners. This can be readily seen in
Fig. 2, where nape contacts between the untreated and
treated partner do not differ after vehicle. In Experiment 2
we then sought to determine whether 8-OH-DPAT would
have a differential effect when an artificial asymmetry in
play solicitation was established by varying the motivation
to play between the partners. As expected, the partner that
was isolated for 24 h accounted for more play solicitation
(nape contacts) than the partner that was only isolated for
4 h prior to testing. Low doses of 8-OH-DPAT resulted in a
collapse of this asymmetry such that there was no signifi-
cant difference between the treated and untreated partner
at 0.01 and 0.03 mg/kg. Most importantly, it did not matter
whether the rat treated with 8-OH-DPAT was isolated for
24 h prior to testing, thus accounting for more nape con-
tacts after vehicle, or was isolated for 4 h prior to testing
and accounting for fewer nape contacts after vehicle. The
net effect was for low doses of 8-OH-DPAT to decrease a
pre-established asymmetry in play solicitation. Particularly
interesting about this pattern of response is that the effect
does not appear to be due solely to a change in behavior by
the treated rat. Rather, there appear to be subtle changes in
the behavior of both treated and untreated rats that com-
bine to result in a lack of asymmetry.

While nape contacts were responsive to varying levels
of motivation, the likelihood of responding to those con-
tacts was not. Rats isolated for 24 h were no more likely
to respond to nape contacts with a complete rotation than
those isolated for 4 h. This is consistent with earlier reports

showing that play solicitation and playful responsiveness
are motivationally distinct aspects of play (Pellis and Pellis,
1991; Siviy et al., 1997). At low doses, 8-OH-DPAT had no
effect on responsiveness. Although higher doses reduced
 Neuroscience 1 (2011) 606– 616 613

the likelihood of responding with a complete rotation,
these doses also reduced nape contacts and decreased over-
all activity so the behavioral specificity of effects at these
doses is questionable. Knutson et al. (1996) also established
an asymmetry in the play of two  rats prior to treating one
rat of the pair with fluoxetine but used pinning as an index
for identifying a rat as either the dominant or subordinate
member of the play dyad. In particular, the dominant rat
was defined as the one which accounted for most of the
pinning. In their study, treating the dominant rat with flu-
oxetine resulted in a collapse of the asymmetry in pinning
activity such that after a few days of treatment the previ-
ously subordinate rat was  pinning the dominant as often
as the dominant pinned the subordinate. Interestingly,
treating the subordinate had no effect on the pinning asym-
metry. Furthermore, the collapse of asymmetry was largely
due to increased pinning by the untreated and previously
subordinate rat. These data show that prior social status
can modulate the effects of fluoxetine on play and it was
concluded by these investigators that treating the domi-
nant partner of a play dyad with fluoxetine may  enhance
reciprocation by the subordinate partner. If we evaluate
our own findings in this light, it suggests that serotonin
may  be broadly involved in how conspecifics interact with
each other during playful encounters. Animals may  then be
particularly sensitive to serotonergic manipulations when
there is some type of stable asymmetry between the partic-
ipants. If that asymmetry is in the form of play solicitation,
such as when one animal is more motivated to play than
the other, then nape contacts are preferentially affected. On
the other hand, if that asymmetry is in the form of respon-
siveness to these contacts, such as might be seen when
social status factors into the play bouts, then responsive-
ness may  be preferentially affected and the relative social
status of the treated rat could determine whether any effect
is observed.

There is already considerable evidence in the litera-
ture suggesting a modulatory influence of serotonin on
how conspecifics interact with one another. However,
much of this literature has focused on dominance and
aggression. For example, aggression and dominance can
be readily enhanced in crustaceans by increasing synaptic
levels of serotonin (Huber et al., 1997, 2001) and changes
in the dominance status of crustaceans can, in turn, alter
the effects of serotonergic manipulations on subsequent
behaviors (Yeh et al., 1996, 1997). While increased aggres-
sion is consistent with increased dominance in a crayfish
or lobster, the same cannot always be said for mammals
where establishment of dominance can be a more nuanced
affair. For example, Raleigh et al. (1991) looked at the
effects of increasing or decreasing serotonergic tone on
dominance among vervet monkeys. When the dominant
male was removed from the group, thus producing insta-
bility among the remaining group members, and one of
the remaining males was treated with either fluoxetine
or tryptophan, the treated male showed less aggression
towards the other males, showed more affiliative behavior

towards the females, and acquired dominant status. Con-
versely, when serotonergic tone was  reduced in one of the
remaining males this resulted in a male that displayed more
aggression towards the remaining males and less affiliative
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ehavior. Increased affiliative behaviors in humans have
lso been reported after chronic treatment with serotonin
euptake inhibitors, along with decreased hostility and
ncreased cooperation (Knutson et al., 1998a,b; Tse and
ond, 2002). Conversely, serotonin depletion in healthy
umans can decrease cooperation in a prisoner’s dilemma
ame (Wood et al., 2006). These data suggest that
mbient levels of serotonin can have a subtle, but sig-
ificant and consistent modulatory influence over how
onspecifics interact with each other in dynamic social sit-
ations.

Returning to our own data, selective stimulation of
HT1A receptors with low doses of 8-OH-DPAT seems to
hange the dynamic of a playful interaction between two
articipants that are differentially motivated to play. Play

s a contagious behavior in the sense that high levels
f playfulness by one rat can have a positive impact on
he playfulness of another rat (Pellis and McKenna, 1992;
arlinskaya et al., 1999). A contagion effect would then
eed to reflect both an increased desire to play by the

ess playful partner along with willingness by the more
layful partner to cede to that increased desire. In the
resent study, the net effect on playfulness of 8-OH-DPAT
as essentially the same whether the more playful or less
layful partner was treated. This suggests that activation
f 5HT1A receptors may  modulate how juvenile rats inter-
ret and/or act on interactive cues that occur during playful
ncounters, perhaps making them more susceptible to a
ontagion effect.

Since 5HT1A receptors are present as both pre-synaptic
utoreceptors and post-synaptic heteroreceptors, it can-
ot be easily determined from these experiments if the
ffects on play reflect either decreased or increased sero-
onin activity. It has even been argued that because of
he complexity of the serotonin system in general and the
HT1A system in particular, it may  be difficult to predict
xact effects associated with specific doses of systemically
dministered 8-OH-DPAT or any other 5HT1A agonist for
hat matter (De Vry, 1995). With this caveat in mind, how-
ver, we can still begin with the assumption that the lower
oses of 8-OH-DPAT used in this study (0.01–0.03 mg/kg)
re most likely acting at autoreceptors to reduce firing of
erotonin neurons in the raphé nuclei, resulting in an acute
ecrease in forebrain levels of serotonin. When these data
re then viewed in a broader context of serotonergic func-
ioning we can begin piecing together a working hypothesis
n how serotonin may  be involved in juvenile playfulness.
or example, it has recently been posited that increased
erotonin neurotransmission may  favor the expression of
hose types of social behaviors that are associated with low
evels of arousal (Tops et al., 2009). Since play is a highly
rousing activity, this conceptualization would be consis-
ent with the hypothesis described earlier that low levels
f serotonin would tend to facilitate playfulness. Low levels
f serotonin are also known to result in behavioral disin-
ibition and, in this context, it has been suggested that

ncreased serotonin neurotransmission leads to motiva-

ional processes opposite to those mediated by dopamine
Cools et al., 2007). Given that play seems to be associated
ith increased release of dopamine (Robinson et al., 2011;

rezza et al., 2010) an acute reduction in serotonin levels
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may  then modulate play through subtle interactions with
brain dopamine systems.

It is hoped that hypotheses such as these can be more
vigorously addressed using methods to target specific
subpopulations of 5HT receptors. For example, a recent
study reported a novel means to independently manip-
ulate 5HT1A autoreceptors and heteroreceptors in mice
(Richardson-Jones et al., 2011), allowing these authors
to demonstrate that 5HT1A involvement in anxiety is a
developmental process involving autoreceptors, but not
heteroreceptors. As comparable models become more
readily available for the rat (Hamra, 2010; Tong et al., 2010),
studies such as these that can target subpopulations of
5HT1A receptors in the more social rat may  become pos-
sible. In the meantime, further studies using behavioral
models such as those described in this paper and those used
by Knutson et al. (1996),  when combined with a pharmaco-
logical toolbox that includes drugs with varying degrees of
specificity for autoreceptors and heteroreceptors (de Boer
and Koolhaas, 2005), may  yield significant insights into the
role that serotonin may  have in the modulation of juvenile
playfulness.
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