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a b s t r a c t

Surprisingly little headway has been made towards understanding how brain growth maps
onto mental growth during child development. This review aims at bridging and integrat-
ing recent human neuroscientific brain maturation findings with the conceptual thinking
of theorists in the behavioural tradition of studying cognitive development. Developmen-
tal research in the field of internal control and self-regulation serves as a reference point
for understanding the relation between brain maturation and mental growth. Using several
recent neuroimaging findings as points in case, we show how a deeper appreciation of struc-
euroimaging
ognitive development
euroconstructivism
orking memory

tural and functional neural development can be obtained from considering the traditional
conceptual frameworks, and vice versa. We conclude that paradigmatic progress in devel-
opmental neuroscience can rely more on knowledge from developmental experimental
psychology, and that developmental models of cognitive development can be constrained
and articulated with more precision on the basis of knowledge of differential structural and

functional brain maturation.

© 2010 Elsevier Ltd. All rights reserved.
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. Introduction

Developmental neuroimaging studies have had a great
mpact on thinking about developmental changes in
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behaviour. Textbooks on cognitive development are now
incorporating brain development as further explanations
for developmental improvements in a wide area of skills

(e.g., Blakemore and Frith, 2005; Goswami, 2008), and neu-
roscientists are speculating about how brain development
results in changes in cognitive function (e.g., Shaw et al.,
2006). Despite this mutual interest, the two research areas
(developmental psychology and neuroscience) are still seg-
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regated and a gap remains between our knowledge of brain
development and cognitive development. Developmental
neuroimaging studies tend to be data-driven rather than
theory-driven; that is, these studies tend to be inspired
more by the prospect of finding differential maturational
trajectories of specific structures and functions than by pre-
dictions derived from theoretical perspectives on mental
growth (see also Johnson, 2001, 2010). It is not uncom-
mon that developmental changes in cognitive function are
interpreted as the simple maturation of a single brain area
or circuit, ignoring the long history of cognitive theorizing
about the development of thought and behaviour. Like-
wise, it is not uncommon that developmental changes in
domains such as working memory are explained in terms of
classic stage-wise development while ignoring the signifi-
cant improvements that have been made in relating these
functions to brain maturation, which could constrain the
currently available developmental theories.

The goal of this review is to identify initial steps towards
understanding recent neuroscientific brain development
findings in the context of classic developmental theories
of cognitive development. We identify several problems
which occur when neuroimaging studies are designed
without taking into account the prior findings from classic
developmental theories.

Before the advent of developmental neuroimaging, sev-
eral endeavors have been undertaken towards integrating
mental development and brain maturation (e.g., Crnic
and Pennington, 1987; Dawson and Fischer, 1994; Schore,
1994; Segalowitz and Rose-Krasnor, 1992; for an extensive
review see van der Molen and Ridderinkhof, 1998). Initial
attempts focused on measures of brain size. In a series of
studies, Epstein (1974a,b) derived his phrenoblysis hypoth-
esis (the Greek word “phreno” stands for skull or mind
while “blysis” refers to welling-up of matter), suggesting
that the brain grows in spurts with peaks in growth rate
occurring between 6 and 8, 10 and 12, and 14 and 17 years
of age. The correlated patterns of peaks and troughs in brain
growth and mental growth (as indexed by intelligence
tests) suggested to Epstein (1978) a link with Piagetian the-
ory. The spurts in brain growth would precede and prepare
stage transitions in cognitive development. The phrenobl-
ysis hypothesis has met with considerable methodological
criticism, however.

Other attempts focused on the spectral analysis of
brain electrical activity, as measured using the electro-
encephalogram (EEG). Matousek and Petersén (1973)
reported developmental changes in spectral power that
showed periods of rapid growth alternating with peri-
ods of slow growth, taken to support stage theories of
brain maturation (Hudspeth and Pribram, 1992), echoing
Epstein’s hypothesis formulated almost 20 years earlier.
Thatcher (1994) suggested that EEG coherence, a spectral
measure that provides an index of the functional coupling
of neural generators, revealed growth spurts in cortical
organization are repeated during three major develop-

mental cycles, with transitions at approximately 6 and
10 years. These findings were interpreted to provide sup-
port for neo-Piagetian views of cognitive development. The
hypothesis of stage-wise cognitive development driven by
iterative and sequential brain-growth cycles remains to be
Cognitive Neuroscience 1 (2011) 101–109

confirmed, however, for instance by longitudinal studies
showing consistent relations between individual differ-
ences in brain growth and cognitive development.

Here, we set out to revive and rejuvenate this general
approach by relating recent neuroimaging findings using
cognitive paradigms to the theoretical bases which have
shaped the thinking of developmental scientists. Given that
functional developmental neuroimaging studies to date
have focused mainly childhood and adolescence (ages 6–7
and older), we will restrict the review to this age period.
This focus allows us to make more solid inferences on the
relation between brain developmental and cognitive devel-
opment. We further restrict our review to the functional
domain of internal control and working memory develop-
ment, because this domain is well described in both the
information-processing theories of cognitive development
and in recent neuroimaging studies. Many of the recom-
mendations we present following this review, however,
are also applicable to other domains of cognitive develop-
ment where links are made with brain development, such
as inhibition, reasoning, self-regulation, and mentalizing
functions (e.g., theory of mind).

2. Brain maturation

Biological models of brain development have made
great progress in understanding the development of brain
structure, especially since the use of magnetic resonance
imaging (MRI). In the early days of developmental neuro-
science, our knowledge of brain structure and development
were mostly based on post-mortem studies, which demon-
strated that the size of the brain increases until age
9–10 and by that time the size and weight of the brain
does not change that much anymore until senescence
(Huttenlocher, 1979; Huttenlocher et al., 1983). These
studies reported on two main changes which occur in the
developing brain. First, expansion of the layer of myelin
around the axon of developing neurons continues into ado-
lescence, especially for the frontal regions of the brain.
Second, synaptic density, or the number of synapses in a
certain volume of brain tissue, increases dramatically in
early in post-natal development, followed by pruning dur-
ing maturation.

The rise of in vivo brain scanning methods in the last
20–30 years, including MRI, allowed researchers to exam-
ine changes in brain structure on a much broader scale
and in much more detail. Brain structure changes could
now be studied across time within the same individuals,
and several reports have confirmed that there are impor-
tant changes in grey and white matter structure until
late adolescence. The development of white-matter tracks
has recently been studied by the use of diffusion tensor
imaging (DTI), which provides sensitive measures of the
changes in microstructure of white matter in the brain that
occurs across childhood and adolescence. These studies
have reported a steady increase in white-matter den-

sity and myelination across childhood, and despite some
reports showing region-specific changes, the majority of
studies propose that these changes are wide-spread across
brain regions (Pfeffenbaum et al., 1994; Paus et al., 1999;
Giorgio et al., 2008). In contrast to white-matter devel-
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pment, grey-matter development seems to follow an
nverted U-shaped pattern of region-specific developmen-
al changes. Thus, whereas white matter develops steadily
nd linearly across brain areas, grey-matter density follows
rogressive and regressive changes, which follow a differ-
nt time course depending on the specific brain region. The
atest changes are observed in the prefrontal cortex, pari-
tal cortex and superior temporal cortex, with grey-matter
eaks around puberty. In prefrontal and parietal cortex
rey matter peaks around age 12 for males and around
ge 11 for females, whereas in temporal cortex grey mat-
er peaks around age 17 (Gogtay et al., 2004; Sowell et al.,
004).

Despite the large body of evidence about structural
rain development, much less is known about how these
hanges map onto the development of cognitive functions
hich are observed across childhood and adolescence. A
andful of studies have examined how structural brain
evelopment is predictive of cognitive functioning, as
xpressed in for instance IQ, and these studies show that
egion-specific changes in synaptogenesis in prefrontal
ortex can predict whether children are low, middle or
igh in IQ (Shaw et al., 2006). It is also believed that
ritical or sensitive periods in learning, which are time
oints in development during which children learn new
kills that cannot be learned with the same precision and
uccess during other periods of life, are the result of synap-
ic changes which allow a great speed of assimilation to
urrently changing environmental demands (Blakemore
nd Choudhury, 2006; Blakemore, 2008; Johnson, 2001,
010). The exact relation between structural brain develop-
ent and cognitive development, however, is still largely

nknown.
A method which maps cognitive functioning to brain

unction more directly is functional MRI (fMRI). Using this
pproach, it is possible to examine brain functioning in vivo
n developing populations while they perform a certain
ognitive task (Casey et al., 2005). Despite the limitations
hat co-occur with this technique, such as the correla-
ive nature of the data or the commonly applied use of
eversed inferences (Poldrack, 2005), the cumulating num-
er of developmental MRI studies is most likely the most
romising approach for integrating knowledge of brain
evelopment with classic developmental theories of cog-
itive development. The promising steps in this direction
re indicative of interpretable changes in brain function
nd behaviour, although it should be noted at the outset
hat the developmental imaging studies to date do not yet
llow for a direct test of cognitive developmental theo-
ies. These shortcomings are mostly related to the use of
ide age ranges and broad experimental manipulations,

nd these limitations will also be highlighted during this
eview.

. Cognitive development theories vis-à-vis brain
evelopment
.1. Developmental theories

The work of Jean Piaget has probably been most influ-
ntial in our thinking about cognitive development, as it
Cognitive Neuroscience 1 (2011) 101–109 103

describes the periods of major change in cognitive pro-
cesses that support abstract thinking (Piaget, 1952a,b,
1965; Piaget and Inhelder, 1974). Before he started to
describe his observations of developing children, cognitive
developmental psychology was hardly if at all established
as a discipline in its own right. His thinking about devel-
opment was based on questions which have inspired
philosophers for centuries, such as ‘Where does knowledge
come from?’ and ‘How does intelligence develop?’ In addi-
tion, Piaget’s early interest in cognitive development grew
out of his interest in biology. Inspired by the likes of Dar-
win, Piaget was interested in questions such as ‘How do
people and knowledge evolve?’ In this sense, the theory
of Piaget had already a strong link with brain develop-
ment, because it was based on assumptions of interaction
between preprogrammed biological systems and chang-
ing environmental demands, which together produce rapid
changes in development. Piaget’s theory does nowadays no
longer accommodate for the full range of findings derived
from developmental experimental psychology, particularly
with respect to its description of mental changes in infancy.
Much research in recent years with young infants and
toddlers has shown that Piaget’s approach to studying cog-
nitive development may have underestimated cognitive
abilities in younger children by using complicated designs
and methods. For example, there is evidence that shows
that preoperational toddlers will pass a false-belief task, if
it is designed appropriately (e.g., Southgate et al., 2010),
or that 9-month-old infants exhibit predictive motor acti-
vation when perceiving grasping movements (Southgate
et al., 2009). Despite the controversial nature of his detailed
theoretical claims, Piaget’s theory can provides an example
to illustrate the kinds of ideas and concepts that originated
from psychology and that developmental neuroscience
needs to tackle.

Perhaps the most influential of Piaget’s ideas are his
developmental stages, propelled by dynamic processes of
assimilation and accommodation. These ideas could be said
to be reminiscent of sensitive periods in brain develop-
ment, as indicated by synaptogenesis and synaptic pruning.
For example, Piaget suggested that a child cannot reach a
new stage before mastering the old one (Brainerd, 1978;
Flavell, 1963, 1971), which has similarities with the idea
of a hierarchical development of conscious control levels
(Zelazo, 2004). Interestingly, synaptic density studies sug-
gest that changes in grey matter develop at different rates
for different brain regions (Huttenlocher et al., 1983; see
also Gogtay et al., 2004), and the change in grey matter in
a higher-order brain region would not contribute to cog-
nitive function if the grey-matter changes in a supporting
brain region were not yet completed (Casey et al., 2005).
Whether the changes occur suddenly or through slow accu-
mulation of knowledge (which is suddenly observable)
has remained unclear (Fisher and Bidell, 1991; Siegler,
1981), but theories of brain maturation and of stage-wise
mental development agree that changes in cognitive skills

occur through an interplay between biological programs
and accumulating environmental input (see also Karmiloff-
Smith, 2006).

Information-processing theories, which often build
upon the classic Piagetian framework, have empha-
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sized how biologically based growth of internal control,
self-regulation, working memory and automatization
allows children to progressively increase processing lim-
its (Demetriou et al., 1993; Fisher, 1980; Halford, 1993,
1995). For example, the development of working memory
capacity has been explained as an age-related increase in
processing space, in which the absolute capacity of work-
ing memory does not change, but the capacity functions
more efficiently with advancing age. Early in development,
children are thought to rely more on working memory stor-
age space, but the processes are less efficient. In contrast,
across development, children increase in processing abil-
ity, and consequently, there is a decrease in the necessary
storage space (Case, 1992). These changes in capacity may
be influenced by a general increase in processing speed
which could underlie performance enhancements in a wide
variety of domains, including working memory (Kail, 1991,
2007).

More recently, and influenced by findings from patients
with prefrontal damage, it is assumed that internal
control and working memory capacity are associated
with the emergence of executive functions (Dempster,
1993; Diamond, 2002). Executive functions refer to the
ability to control our thoughts and actions with the
purpose of achieving future goals. Changes in executive
functions could account for developmental improve-
ments in a variety of higher-order processing domains,
although it is still debated whether these are co-occurring
but separate developments (Huizinga et al., 2006) or
whether a general reflective level of processing under-
lies these improvements (Zelazo, 2004). For example, an
information-processing theory referred to as the levels-
of-consciousness theory, postulates that the development
of the levels of consciousness goes via hierarchical func-
tional system changes, where young children may master
one level of processing (e.g., keeping rules active in mind)
but not another level of processing (e.g., flexibly switch-
ing between competing rules). Once the highest level of
consciousness is reached, children can solve the most com-
plex problems, which can explain the observed age-related
improvements in executive functions (Zelazo, 2004).

Based on these behavioural models, it is generally
predicted that two or more brain systems work closely
together when performing complex tasks, but the way in
which they work together is predicted to be different. For
example, according to Case’s conceptualization of working
memory development, there should be one system which is
important for storage of information, and a second system
which is important for processing information (or execu-
tive control of stored information, Baddeley, 1992, 2003),
and the relative contribution of these systems changes
during development. In contrast, the levels of conscious
processing account suggests that executive function and
reflective consciousness is dependent on the maturation of
additional brain regions in prefrontal cortex (see also Bunge
and Zelazo, 2006). The challenge is now to use neuroimag-

ing methods to directly test the developmental theories of
working memory and executive function. For this purpose,
we will summarize neuroimaging research which focused
on different types of working memory and control func-
tions.
Cognitive Neuroscience 1 (2011) 101–109

3.2. Brain development supporting changes in working
memory and control

Functional neuroimaging studies have built upon the
idea that working memory development increases across
this specific age period, by comparing brain activation in
8–17-year-old children relative to adults. Neuroimaging
studies in adults have shown that regions within prefrontal
cortex (PFC, in particular lateral PFC) and parietal cor-
tex are important for the maintenance and manipulations
of information in working memory (Smith and Jonides,
1999; Passingham et al., 2000; Bunge et al., 2003; Olesen
et al., 2004, see also Fig. 1). The first developmental neu-
roimaging studies have focused on the pure maintenance
of information in memory, by instructing participants to
maintain verbal or spatial information online over the
course of several seconds, followed by a probe demanding a
button press. These studies have shown that the increased
ability to maintain information online between ages 8 and
12 and young adulthood coincides with increased activa-
tion in lateral PFC and parietal cortex (Klingberg et al.,
2002; Luna et al., 2001; Kwon et al., 2002; O’Hare et al.,
2008; Thomason et al., 2009). A comparison of fMRI data
and DTI data revealed that increased fractional anisotropy
in fronto-parietal white matter – suggestive of increased
strength of anatomical connectivity between these regions
– is positively correlated with BOLD activation in the lat-
eral PFC and parietal cortex and with visuospatial working
memory capacity (Olesen et al., 2003). Thus, these find-
ings seem to be in favour of the hypothesis that processing
capacity increases over the course of child development.

Prior behavioural research, however, postulated that
working memory depends on the interplay between stor-
age capacity and processing efficiency (Case, 1992). In this
sense, the developmental studies which have focused on
pure maintenance may only have tapped improvements in
storage capacity with stable processing demands. Subse-
quent studies have examined these processing demands
in more detail by asking children to manipulate informa-
tion in working memory (Crone et al., 2006a,b; Jolles et al.,
in press; Fig. 1). These studies differentiated between pure
maintenance and manipulation and found evidence for dif-
ferent neural systems which support these functions. That
is, ventrolateral PFC was active only for maintenance tri-
als, whereas dorsolateral PFC was additionally recruited
for manipulation trials. The finding of slower development
of dorsolateral PFC could be taken as evidence for delayed
processing development. According to Case’s terminology,
especially working memory manipulation should result in
increased demands on processing capacity, whereas work-
ing memory maintenance should rely more on storage
capacity. Therefore, the brain imaging results could be
taken to suggest that storage capacity can remain stable (as
indicated by stable levels of ventrolateral PFC activation),
and processing capacity may independently increase with
advancing age (as indicated by increased levels of dorso-

lateral PFC activation when processing demands increase).

Whereas the neuroimaging studies described above
have mainly reported change in terms of increases and
decreases of task-relevant areas, qualitative developmen-
tal differences have been reported as well. For example,
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Fig. 1. Working memory related activation in children and adults. In the working memory task, participants were required to remember a sequence of
objects in forward order (maintenance condition) or backward order (manipulation condition) during a delay of 6 s. After the delay period, one object was
presented and participants had to indicate the position of the object in the forward or backward sequence. This figure shows delay-period activation when
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ncorrected (red). Maint. = maintenance; Manip = manipulation (based on
o color in this figure legend, the reader is referred to the web version of

cherf et al. (2006) demonstrated that 8–12-year-old chil-
ren and 13–17 years old show a qualitatively different
ctivation pattern when performing a working memory
aintenance task. This study showed that 8–12-year-old

hildren failed to recruit the working memory network
hat is core to working memory performance in adults
lateral PFC and parietal cortex), but instead rely on a dif-
erent region within PFC to perform the task (ventromedial
FC). In contrast, adolescents aged 13–17 years recruited
ateral PFC, just like adults did, but failed to activate this
egion to a similar extent. The results by Scherf et al. (2006)
ould be interpreted as a shift in storage or processing
apacity between ages 8–12 and 13–17 (see also Ciesielski
t al., 2006 for a similar shift between children and adults,
lthough in a different network). The results also indicate
hat adult levels of working memory are not yet reached
n adolescence, and that there is a refinement of control
bilities that cannot always be observed on the basis of
ehaviour only (see also Kwon et al., 2002; Klingberg et al.,
002). In this sense, the neuroimaging findings extend
he results from information-processing theories by show-
ng that the underlying network which is important for
bstract thought is still improving across adolescent devel-
pment.

Taken together, prior studies which have used working
emory paradigms have reported that the brain regions

hat are important for these functions in adults are differ-
ntially engaged in childhood and adolescence. However,
he paradigms are often relatively simple and do not
llow for a direct test of changes in storage capacity, the
rocessing of information in working memory, and the

elation with competing information in working memory.
herefore, a challenge for future research is to develop
xperimental paradigms based on developmental theory
hich allows for the test of different neural development

ccounts.
l slices (z = 60 and x = −42) of a standard anatomical image. The left side
r corrected, using clusters determined by z > 2.3 (orange) and at p < .001,
t al., 2010; Developmental Science). (For interpretation of the references
le.)

What theoretical framework can we use to interpret
the neuroimaging findings? There is probably not one the-
ory available which serves this goal, but there are theories
available which allow for a direct mapping between cog-
nitive theories and brain development trajectories. The
functional development of the human brain could, for
example, be related to developmental theories in a testable
way using the neural maturation accounts put forward by
Johnson (2001, 2010) and Johnson et al. (2009). This the-
ory was developed to provide a biological framework for
the development of early attention systems. According to
Johnson (2001, 2010), cognitive abilities emerge through
three possible routes of neuroanatomical development:
(1) maturational progress (the maturation of additional
brain areas), (2) interactive specialization (changes in inter-
actions between brain areas that were already partially
active) and (3) skill learning (the patterns of activation
of cortical regions change during the acquisition of new
skills). Even though this model was developed to account
for postnatal and experience-dependent changes in the
first two years of life, these trajectories of neuroanatom-
ical development could also be used as a starting point
for studying more advanced levels of cognitive develop-
ment, such as working memory. Fig. 2 provides an example
of how these maturation accounts can be translated in
activation patterns observed in ventrolateral PFC, dor-
solateral PFC and superior parietal cortex. For example,
the additional recruitment of dorsolateral PFC in work-
ing memory manipulation studies could be interpreted in
terms of the maturational account (as predicted by theo-
ries of executive function development), but also in terms

of the interactive specialization account (as predicted by
classic working memory information-processing theories).
In contrast, the qualitative differences in brain activation
between children and adults support the skill learning
account. Judicious task manipulations should allow for
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Fig. 2. Neural basis of development accounts, based on Johnson (2001), applied to development of working memory. Brain regions implicated in working
memory function are ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC) and superior parietal cortex (SUPPAR). The maturational

ls becau
creases
ren may
ch as D
account poses that children become better at performing manipulation tria
The interactive specialization account suggests that the performance in
(VLPFC, DLPFC and SUPPAR). The skill learning account suggests that child
system (such as VLPFC) but, when older, they rely on different system (su

the test of these different accounts. Even though all three
theoretical possibilities can account for observed changes
in brain activation, Johnson (2010) argues in favour of
the interactive specialization. Future studies should test
whether this developmental trajectory accounts for devel-
opmental data better than the maturational and skill
learning account.

4. Merging developmental theory with
developmental imaging

In the prior sections we showed that the interpretation

of brain imaging results is limited by the relative absence
of developmental theories. Despite the advances which
have been accomplished in the field of developmental neu-
roimaging, it is now time to also consider the limitations of
the approaches that have been used so far, and to think
se of the maturation of additional brain areas, such as DLPFC and SUPPAR.
are associated with a refinement of connectivity between brain regions

first perform a working memory task based on reliance on a lower-level
LPFC and SUPPAR).

about ways of improving our experimental designs based
on theoretical knowledge of cognitive development. Here,
we summarize several problems and possible solutions for
achieving the integration of these fields (see also Table 1).

One of the main problems with current neuroimag-
ing evidence which could support or falsify developmental
theories lies in the selection of age groups. Whereas
information-processing theories argue that the most
prominent changes in problem solving and working
memory are seen between ages 7 and 12, almost all devel-
opmental neuroimaging studies have collapsed across
7–12 years old. Even though the studies report differences

in behaviour between children and adults, it remains to
be determined whether these changes are predominantly
driven by the youngest children within the selected age
group or occur across the whole child group. In future
studies, it will be important to carefully select age groups
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Table 1
Guidelines for neuroimaging research based on developmental theory.

Suggested guidelines for neuroimaging research

1 Selection of age groups should be theory-driven
2 Compute brain-behaviour correlations and be aware of differences in effect sizes
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3 Maturation and change can only be examined u
4 Training and intervention studies can demonstr
5 Compensatory brain activation should be interp
6 Differential brain activation can be caused by st

ased on theoretical predictions about when the changes
re expected to occur.

A second problem concerns the differences in brain and
ehaviour effect sizes. The correlations between perfor-
ance and brain activation are usually modest across all

articipants, but poor when the analysis only includes one
ge group. This difficulty with interpreting brain-behaviour
orrelations across age groups is associated with the dif-
culty in distinguishing between effects of maturation
ersus individual differences in performance. It is possible
hat these processes cannot be dissociated at all, that is, per-
ormance is usually correlated with maturational changes.
n addition, the poor correlations with performance within
ge groups are usually associated with smaller effect sizes
or either the brain or the behavioural measures. Again, a
traightforward way to address these problems involves
sing a theoretically based selection of participants for
ge-related comparisons, and by using tasks which vary
he construct under study at different levels. A combi-
ation between functional development and structural
evelopment indices (such as developmental DTI studies)

s necessary to further expose the extent to which men-
al growth corresponds to growth in (white-matter) brain
onnectivity.

A third problem is that little is known about test–retest
ffects or longitudinal changes. There is much varia-
ion within individuals and the time at which spurts in
evelopment occur may change between individuals and
epend on external factors. In order to track developmen-
al changes over time, it is important to use multi-level

odels of change in longitudinal designs (see also Ferrer
t al., 2009). A recently completed 3-year longitudinal
tudy tested 26 participants between ages 8 and 28 on a
erformance monitoring task using fMRI (Koolschijn et al.,
ubmitted for publication). This study showed that, even
hough the network of brain regions which was activated
as highly similar at both measurements, age was a poor
redictor of test–retest effects. Instead, performance was
very good predictor for change; those individuals who

mproved most from measurement 1 to measurement 2,
lso showed the largest change in brain activation. These
ndings indicate that using only age as a predictor for
hange and ignoring performance changes can result in
alse or incomplete conclusions.

Based on this stable brain-behaviour relation, we rea-
oned that performance can increase with training, and

hat brain activation should change accordingly. To test this
ypothesis, we performed a developmental training study
nd demonstrated that reduced activation in lateral PFC
n children aged 11–12 years can be improved by exten-
ive working memory training (Jolles et al., submitted for
gitudinal designs
malleability of cognitive functions and underlying neural mechanisms
ith caution
ifferences

publication). These results indicate that the developmental
differences in brain activation are not fixed and can be mod-
ified by instruction or training. These preliminary findings
do not fit with a purely maturational account and concomi-
tant structural brain development. Instead they fit in with a
skill learning model. More work is necessary to understand
how brain function is sensitive to training or interventions.

One pervasive problem in studies of brain develop-
ment is that the different control functions have often
been studied in isolation. Even though consistent findings
are reported across studies, these are often limited to the
observation that a certain brain area which is important for
behaviour in adults is not yet activated to the same level
in children. Most of these studies, however, report that
children activate several other brain areas in the critical
contrast that are not seen in adults. What do these acti-
vation patterns indicate? Currently, we can only interpret
these post hoc, based on reverse inference about the func-
tion of these unexpectedly activated brain areas in adults.
For example, prior studies have suggested that when chil-
dren activate the left rather then right hemisphere more
in a certain cognitive task, this can possibly be interpreted
to reflect that they used a more verbally guided approach,
such as rehearsal, because in adults language functions
tend to be left-lateralized (Bunge et al., 2002). Along a simi-
lar line of reasoning, it has been suggested that 15-year-old
adolescents may have larger compensatory skills because
besides PFC, they additionally recruit the hippocampus
when they perform a memory task (Finn et al., 2010).

Finally, the differential activation patterns hint towards
another important explanation, that is, children may use
different strategies when performing a task. Here, we may
again learn from classic developmental theories, which
have differentiated between different types of memory
function, including storage of verbal information, storage of
spatial information, and an executive system which works
with information in working memory. Consider, for exam-
ple, the differentiation of verbal versus spatial working
memory and the inhibition of irrelevant information. In
adults, presenting distracting spatial information impairs
their spatial working memory capacity, but not their verbal
working memory capacity. In contrast, presenting dis-
tracting verbal information impairs their verbal working
memory capacity, but not their spatial working memory
capacity. These results suggest a strong interplay between
working memory and inhibition, which is modality spe-

cific. In 8-year-old children, distracting spatial information
also impairs their verbal working memory performance
and distracting verbal information also impairs their spa-
tial working memory performance (Hale et al., 1997). How
to interpret these changes? Apparently, in early childhood
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the differentiation between functions and modalities is
much less segregated than in adults, and this theoretical
knowledge should be taken into account when designing
neuroimaging experiments, such that the developmental
comparisons are meaningful for restricting current models
of cognitive development (see also Johnson et al., 2009).

5. Conclusions

In this review, we presented a critical view on the
parallels between brain maturation and developmental
theories. We proposed that the selection of paradigms and
age groups can be more readily based on knowledge from
decades of research in developmental psychology, and we
argued that to date conclusions of brain-imaging findings
often rely on post hoc interpretation. We presented the
example of a major developmental theory, Piaget’s con-
cepts of stage-like development, and saw that it can be
related to current data-based approaches in structural and
functional brain imaging

We are enthusiastic about the use of psychophysio-
logical measures, including brain-imaging analysis, which
can provide a more solid basis for relating developmental
changes in performance on tasks to actual brain matura-
tion, and the results from prior fMRI studies provide the
building blocks for starting this new direction. One exam-
ple of a how these building blocks can be implemented is by
using the neural basis of development accounts proposed
by Johnson (2001, 2010). This theory provides a principled
division of possible processes in brain development. Even
though this theory was originally developed to account for
changes observed in young children (ages 0–2 years), the
concepts of maturation, interactive specialization and skill
learning can readily be applied to functional neuroimaging
studies in children and adolescents. The accounts pro-
vide direct starting points for understanding differences
in brain recruitment and to relate these to developmental
theory.

Taken together, we suggest that paradigmatic progress
in developmental neuroscience can rely more on knowl-
edge from developmental experimental psychology, and
that developmental models of cognitive development can
be articulated further on the basis of anatomical and
functional differentiation of target brain regions. Much
progress is currently made in the technological possibilities
of brain imaging techniques, which allows, for example,
for the estimation of age based on brain connectivity
indices (Dosenbach et al., 2010). This is a very impor-
tant development for a better understanding of changes
in brain function. The task for the future, however, is to
gain converging evidence from developmental theory, task
performance and brain activity to account for developmen-
tal changes and individual differences in various aspects of
internal control and self-regulation.
Acknowledgements

The research by both authors was supported by NWO
VIDI (E.A.C.) and VICI (K.R.R.) grants.
Cognitive Neuroscience 1 (2011) 101–109

References

Baddeley, A., 1992. Working memory. Science 255, 556–559.
Baddeley, A., 2003. Working memory: looking back and looking forward.

Nature Review Neuroscience 4, 829–839.
Blakemore, S.J., Frith, U., 2005. The Learning Brain: Lessons for Education.

Blackwell Publishing, Oxford.
Blakemore, S.J., 2008. Development of the social brain during adolescence.

The Quarterly Journal of Experimental Psychology 61, 40–49.
Blakemore, S.J., Choudhury, S., 2006. Development of the adolescent brain:

implications for executive function and social cognition. Journal of
Child Psychology and Psychiatry and Allied Disciplines 47, 296–312.

Brainerd, C.J., 1978. The stage question in cognitive developmental theory.
Behavioral and Brain Sciences 1, 173–213.

Bunge, S.A., Dudukovic, N.M., et al., 2002. Immature frontal lobe contribu-
tions to cognitive control in children: evidence from fMRI. Neuron 33
(2), 301–311.

Bunge, S.A., Kahn, I., et al., 2003. Neural circuits subserving the retrieval
and maintenance of abstract rules. Journal of Neurophysiology 90 (5),
3419–3428.

Bunge, S.A., Zelazo, P.D., 2006. A brain-based account of the development
of rule use in childhood. Current Directions in Psychological Science
15, 118–121.

Case, R., 1992. The Mind’s Staircase: Exploring the Conceptual Under-
pinnings of Children’s? Thought and Knowledge. Erlbaum, Hillsdale,
NY.

Casey, B.J., Tottenham, N., et al., 2005. Imaging the developing brain: what
have we learned about cognitive development? Trends in Cognitive
Sciences 9 (3), 104–110.

Ciesielski, K.T., Lesnik, P.G., Savoy, R.A., Grant, E.P., Ahlfors, S.P., 2006.
Developmental neural networks in children performing a categorical
n-back task. Neuroimage 33, 980–990.

Crnic, L.S., Pennington, B.F., 1987. Developmental psychology and the neu-
rosciences: an introduction. Child Development 58, 533–553.

Crone, E.A., Donohue, S.E., et al., 2006a. Brain regions mediating flexi-
ble rule use during development. Journal of Neuroscience 26 (43),
11239–11247.

Crone, E.A., Wendelken, C., et al., 2006b. Neurocognitive development
of the ability to manipulate information in working memory. Pro-
ceedings of the National Academy of Sciences of the United States
of America 103 (24), 9315–9320.

Dawson, G., Fischer, K.W. (Eds.), 1994. Human Behavior and the Develop-
ing Brain. Guilford Press, New York.

Demetriou, A., Efklides, A., Platsidou, M., 1993. The architecture and
dynamics of the developing mind. Monographs of the Society for
Research in Child Development 58 (5/6), Serial No. 234.

Dempster, F.N., 1993. Resistance to interference: developmental changes
in a basic processing mechanism. In: Howe, M.L., Pasnak, R. (Eds.),
Emerging Themes in Cognitive Development: Foundations, vol. 1.
Springer, New York, pp. 3–27.

Diamond, A., 2002. Normal development of prefrontal cortex from birth
to young adulthood: cognitive functions, anatomy and biochemistry.
In: Principles of Frontal Lobe Function. Oxford University Press, S.A.
Knight, London, pp. 466–503.

Dosenbach, N.U.F., et al., 2010. Predicting individual brain maturity using
fMRI. Science 329, 1358–1361.

Epstein, H.T., 1974a. Phrenoblysis: special brain and mind growth periods.
I. Human brain and skull development. Developmental Psychobiology
7, 207–216.

Epstein, H.T., 1974b. Phrenoblysis: special brain and mind growth periods.
II. Human brain and skull development. Developmental Psychobiol-
ogy 7, 217–224.

Epstein, H.T., 1978. Growth spurts during brain development: implica-
tions for educational policy and practice. In: Chall, J.S., Mikky, A.F.
(Eds.), Education and the Brain: The Seventy-seventh Yearbook of the
National Society for the Study of Education, Part II. Chicago University
Press, Chicago, pp. 343–370.

Ferrer, E., O’Hare, E.D., Bunge, S.A., 2009. Fluid reasoning and the develop-
ing brain. Frontiers in Neuroscience 3 (1), 46–51.

Finn, A.S., Sheridan, M.A., Hudson Kam, C.L., Hinshaw, S., D’Esposito, M.,
2010. Longitudinal evidence for functional specialization of the neural
circuit supporting working memory in the human brain. Journal of
Neuroscience 30, 11062–11067.
Fisher, K.W., Bidell, T.R., 1991. Constraining nativist inferences about cog-
nitive capacities. In: Carey, S., Gelman, R. (Eds.), The Epigenesis of
Mind: Essays on Biology and Cognition. Erlbaum, Hillsdale, NJ.

Fisher, K.W., 1980. A theory of cognitive development: the control
and construction of hierarchies of skills. Psychological Review 87,
477–531.



pmental

F

F

G

G

G

H

H

H

H

H

H

H

J

J

J

J

J

J

K

K

K

K

K

K

E.A. Crone, K. Richard Ridderinkhof / Develo

lavell, J.H., 1971. Stage-related properties of cognitive development. Cog-
nitive Psychology 2, 421–453.

lavell, J.H., 1963. The Developmental Psychology of Jean Piaget. Van Nos-
trand, New York.

iorgio, A., Watkins, K.E., et al., 2008. Changes in white matter microstruc-
ture during adolescence. Neuroimage 39, 52–61.

ogtay, N., Giedd, J.N., et al., 2004. Dynamic mapping of human cortical
development during childhood through early adulthood. Proceedings
of the National Academy of Sciences of the United States of America
101 (21), 8174–8179.

oswami, U., 2008. Cognitive Development: The Learning Brain. Psychol-
ogy Press: Taylor & Francis, Hove and New York.

ale, S., Bronik, M.D., Fry, A.F., 1997. Verbal and spatial working memory
in school-age children: developmental differences in susceptibility to
interference. Developmental Psychology 33, 364–371.

alford, G.S., 1993. Children’s Understanding: The Development of Mental
Models. Erlbaum, Hillsdale.

alford, G.S., 1995. Learning processes in cognitive development: a
reassessment with some unexpected implications. Child Develop-
ment 38, 295–301.

udspeth, W.J., Pribram, K.H., 1992. Psychophysiological indices of cogni-
tive functioning. International Journal of Psychophysiology 12, 19–29.

uizinga, M., Dolan, C.V., Van der Molen, M.W., 2006. Age-related change
in executive function: developmental trends and a latent variable
analysis. Neuropsychologia 44, 2017–2036.

uttenlocher, P.R., 1979. Synaptic density in human frontal cortex-
developmental changes and effects of aging. Brain Research 163,
195–205.

uttenlocher, P.R., De Courten, C., et al., 1983. Synaptic development
in human cerebral cortex. International Journal of Neurology 16–17,
144–154.

ohnson, M.H., 2001. Functional brain development in humans. Nature
Reviews Neuroscience 2, 472–483.

ohnson, M.H., Grossmann, T., Cohen Kadosh, K., 2009. Mapping func-
tional brain development: building a social brain through interactive
specialization. Developmental Psychology 45, 151–159.

ohnson, M.H., 2010. Interactive specialization: a domain-general frame-
work for human functional brain development? Developmental
Cognitive Neuroscience 1, 7–21.

olles, D.D., Kleibeuker S.W., Rombouts, S.A.R.B. & Crone, E.A. (in press).
Developmental Differences in Prefrontal Activation During Working
Memory Maintenance and Manipulation for Different Memory Loads.
Developmental Science.

olles D.D., Van Buchem, M. A., Rombouts, S. A. & Crone, E. A. (submitted for
publication). The potential of the developing brain: Practice reduces
developmental differences in brain activation.

olles, D.D., Grol, M.J., Van Buchem, M.A., Rombouts, S.A.R.B., Crone, E.A.,
2010. Practice effects in the brain: Changes in cerebral activation after
working memory practice depend on task demands. Neuroimage 15
(2), 658–668.

ail, R., 1991. Developmental change in speed of processing during child-
hood and adolescence. Psychological Bulletin 109, 490–501.

ail, R.V., 2007. Longitudinal evidence that increases in processing speed
and working memory enhances children’s reasoning. Psychological
Science 18, 312–313.

armiloff-Smith, A., 2006. The torturous route from genes to behavior:
a neuroconstructivism approach. Cognitive, Affective and Behavioral
Neuroscience 6 (1), 9–17.

lingberg, T., Forssberg, H., et al., 2002. Increased brain activity in frontal
and parietal cortex underlies the development of visuospatial working
memory capacity during childhood. Journal of Cognitive Neuroscience
14 (1), 1–10.

oolschijn, P. C. M. P., Schel, M. A., de Rooij, M., Rombouts, S. A. R. B. & Crone,
E. A. (submitted for publication). A 3-year longitudinal fMRI study of

performance monitoring and test-retest reliability from childhood to
early adulthood.

won, H., Reiss, A.L., et al., 2002. Neural basis of protracted develop-
mental changes in visuo-spatial working memory. Proceedings of the
National Academy of Sciences of the United States of America 99 (20),
13336–13341.
Cognitive Neuroscience 1 (2011) 101–109 109

Luna, B., Thulborn, K.R., et al., 2001. Maturation of widely distributed
brain function subserves cognitive development. Neuroimage 13 (5),
786–793.

Matousek, M., Petersén, I., 1973. Frequency analysis of the EEG in normal
children and adolescents. In: Kelleway, P., Petersén, I. (Eds.), Automa-
tion of Clinical Electroencephalography. Raven Press, New York, pp.
75–102.

O’Hare, E.D., Lu, L.H., Houston, S.M., Bookheimer, S.Y., Sowell, E.R.,
2008. Neurodevelopmental changes in verbal working memory load-
dependency: an fMRI investigation. Neuroimage 42, 1678–1685.

Olesen, P.J., Nagy, Z., et al., 2003. Combined analysis of DTI and fMRI data
reveals a joint maturation of white and grey matter in a fronto-parietal
network. Brain Research. Cognitive Brain Research 18 (1), 48–57.

Olesen, P.J., Westerberg, H., et al., 2004. Increased prefrontal and parietal
activity after training of working memory. Nature Neuroscience 7 (1),
75–79.

Passingham, R.E., Toni, I., et al., 2000. Specialisation within the prefrontal
cortex: the ventral prefrontal cortex and associative learning. Exper-
imental Brain Research 133 (1), 103–113.

Paus, T., Zijdenbos, A., et al., 1999. Structural maturation of neural
pathways in children and adolescents: in vivo study. Science 283,
1908–1911.

Pfeffenbaum, A., Mathalon, D.H., et al., 1994. A quantitative magnetic
response imaging study of changes in brain morphology from infancy
to late adulthood. Archives of Neurology 51, 874–887.

Piaget, J., 1952a. The Child’s Concept of Number. W.W. Norton, New York.
Piaget, J., 1952b. The Origin of Intelligence in Children. International Uni-

versities Press, New York.
Piaget, J., Inhelder, B., 1974. The Child’s Construction of Quantities. Rout-

ledge, London.
Piaget, J., 1965. The Moral Judgment of the Child. New York, The Free Press.
Poldrack, R.A., 2005. Can cognitive processes be inferred from neuroimag-

ing data? Trends in Cognitive Sciences 10, 59–63.
Scherf, K.S., Sweeney, J.A., et al., 2006. Brain basis of developmental change

in visusospatial working memory. Journal of Cognitive Neuroscience
18, 1045–1058.

Schore, A.N., 1994. Affect Regulation and the Origin of Self: The Neurobi-
ology of Emotional Development. Erlbaum, New York.

Segalowitz, S.J., Rose-Krasnor, L., 1992. The construct of brain maturation
in theories of child development. Brain & Cognition 20 (1), 1–7.

Siegler, R.S., 1981. Developmental sequences within and between con-
cepts. Monographs of the Society for Research in Child Development
46 (2) (Whole No. 189).

Shaw, P., Greenstein, D., et al., 2006. Intellectual ability and cortical devel-
opment in children and adolescents. Nature 440 (7084), 676–679.

Smith, E.E., Jonides, J., 1999. Storage and executive processes in the frontal
lobes. Science 283 (5408), 1657–1661.

Southgate, V., Johnson, M.H., Osborne, T., Csibra, G., 2009. Predictive motor
activation during action observation in human infants. Biology Letters
5, 769–777.

Southgate, V., Chevallier, C., Csibra, G., 2010. Seventeen-month-olds
appeal to false beliefs to interpret others’ referential communication.
Developmental Science 13 (6), 907–912.

Sowell, E.R., Thompson, P.M., et al., 2004. Longitudinal mapping of cortical
thickness and brain growth in normal children. Journal of Neuro-
science 24 (38), 8223–8231.

Thatcher, R.W., 1994. Cyclic cortical reorganization: origens of cognitive
development. In: Dawson, G., Fischer, K.W. (Eds.), Human Behavior
and the Developing Brain. Guilford, New York, pp. 232–266.

Thomason, M.E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G.H.,
Gabrieli, J.D., 2009. Development of spatial and verbal working mem-
ory capacity in the human brain. Journal of Cognitive Neuroscience
21, 316–332.

van der Molen, M.W., Ridderinkhof, K.R., 1998. The growing and aging

brain: life-span changes in brain and cognitive functioning. In:
Demetriou, A., Doise, W., van Lieshout, C.F.M. (Eds.), Life-Span Devel-
opmental Psychology: A European Perspective. Wiley, New York, pp.
35–100.

Zelazo, P.D., 2004. The development of conscious control in childhood.
Trends in Cognitive Sciences 8 (1), 12–17.


	The developing brain: From theory to neuroimaging and back
	Introduction
	Brain maturation
	Cognitive development theories vis-à-vis brain development
	Developmental theories
	Brain development supporting changes in working memory and control

	Merging developmental theory with developmental imaging
	Conclusions
	Acknowledgements
	References


