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a b s t r a c t

This opinion paper suggests that developmental neuroimaging studies investigating emerg-
ing cortical networks for specific cognitive functions can contribute substantially to our
understanding of mature brain organisation. Based on a review of the literature on the
neural correlates of face processing abilities, this paper shows how developmental neu-
roimaging can help resolve outstanding issues, such as whether specific brain regions
actually start out by responding to specific stimulus classes, and how this response changes
with development. It has been suggested for example, that improving specialisation in a
particular brain regions may be the result of increasing connectivity with other network
regions supporting the same cognitive function. Developmental neuroimaging studies are
particularly well suited to disentangle the interplay between changes at different network
levels, such as improving behavioural proficiencies and functional and structural brain

development, as well as overall network configuration changes. However, much of the
future progress will depend on whether developmental changes are assessed by combin-
ing multiple network observations. This paper makes specific suggestions as to how such
a multifaceted approach may look like by exploring the suitability of different theoreti-
cal frameworks, such as the neural re-use theory or the neuroconstructivist approach for

providing guiding principles for future research.

© 2011 Elsevier Ltd. All rights reserved.
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. Introduction vation in adults or rely on animal models which would
Until recently, scientists interested in describing the
eural bases subserving cognitive functions in the brain
ad but few choices: they could study mature brain acti-
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allow for a more invasive investigation of the underly-
ing neural substrates (Haug and Whalen, 1999; Johnson
et al., 2005). A third approach was to gather insights

from atypical brain responses to temporary or permanent
brain lesions, such as for example non-invasive transcra-
nial magnetic stimulation (TMS) (Wassermann et al., 2008),
or neuropsychological studies with patients (Avidan et al.,
2005; Price and Friston, 2002). The three methodological
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approaches represent valid and important venues, which
have done much to advance our understanding of the neu-
ral bases for specific cognitive functions. However, with
the recent advent of paediatric neuroimaging methods
(functional) magnetic resonance imaging (f/MRI), new vis-
tas have been opened to study the implementation of
cognitive functions in the developing brain (Blakemore
et al., 2004). Indeed, despite the additional difficulties
that paediatric neuroimaging poses, such as lower partic-
ipant compliance, high dropout rates due to movement
or lower performance accuracies, the number of publi-
cations of developmental neuroimaging studies is ever
increasing (Blakemore, 2011). While this recent expo-
nential increase in neuroimaging studies with children is
very encouraging, much of the progress that can be made
will depend on the theoretical framework that guides our
research.

The neural basis of face processing abilities is just one
example of a cognitive function that has benefited from
this multi-method approach. We are now able to systemat-
ically pinpoint the trajectories of emerging face processing
abilities at the behavioural and neural level (Cohen Kadosh
and Johnson, 2007). As faces are central to social inter-
actions and there is evidence that humans process them
extensively and preferentially from birth (Farroni et al.,
2005; Johnson et al., 1991), they represent an ideal stim-
ulus category to investigate the interplay of improving
cognitive processing abilities and underlying functional
and structural development (Cohen Kadosh and Johnson,
2007). With regard to face processing in the brain, a multi-
tude of brain imaging studies has uncovered a cortical core
network that responds reliable to different face properties
such as facial identity, expression or eye gaze (Allison et al.,
1994; Haxby et al., 2000). Moreover, the neural responses
in these network regions have been shown to be modulated
flexibly by different cognitive processing strategies (Cohen
Kadosh et al., 2010; Ganel et al., 2005). Neuropsychologi-
cal and virtual lesion approaches have yielded somewhat
contradictory findings by showing that disruptions to the
core network regions can in some cases lead to signif-
icantly impaired face processing abilities (Barton et al.,
2002; Schiltz et al., 2006; Steeves et al., 2006, 2009), while
other studies found evidence for more selective and face-
property-specific impairments (Avidan et al., 2005; Cohen
Kadosh et al., 2011; Pourtois et al., 2004). In particu-
lar, the report of impaired processing abilities along with
inconspicuous brain activation in individuals with devel-
opmental prosopagnosia (DP, adults with DP exhibit severe
difficulties recognising faces in the absence of specific brain
injuries) has been puzzling (Avidan et al., 2005; Hasson
et al., 2003, see also the next section). It remains to be
determined therefore, how different brain regions come to
be specialised for cognitive functions. More important how-
ever, and this may help resolve any outstanding issues from
the (virtual) lesion studies: further work is needed to help
uncover how the different brain regions interact to allow

the proficient processing of different face properties. Note
that the current paper uses the term network to refer to
multiple brain regions that are simultaneously active, sub-
serve the same cognitive function and/or exhibit patterns
of functional/effective connectivity.
e Neuroscience 1 (2011) 246–255 247

Research on the developmental trajectories for cogni-
tive functions holds an immense potential for addressing
these questions. With regard to face processing abilities for
example, it has been shown that both typically developing
children until the age of 14, as well as adult participants
with DP will use less efficient featural processing strate-
gies for extracting facial information (Cohen Kadosh et al.,
submitted for publication; DeGutis et al., 2007; Mondloch
et al., 2002). In the following, I will consider several aspects
that are essential for designing developmental neuroimag-
ing studies. My approach will be based on examples of
recent progress made in pinpointing emerging cortical
networks supporting face-processing abilities, but it also
hopes to guide future research in other social cognitive
domains, such as reasoning, perspective taking, theory of
mind, as well as more general cognitive abilities, such as
attention, cognitive control, numerical cognition, and lan-
guage.

2. Developmental changes affect networks of
regions

Much research on developmental differences has
focused on comparing activation profiles in specific brain
regions across different age groups. This assumption is
reminiscent of the longstanding neuropsychological lesion
approach, which proposes that cognitive functions can be
mapped onto different brain areas in a mosaic-like fashion.
There are several problems with this approach. In recent
years, considerable evidence has accumulated that this
static one-to-one mapping of brain structure to function
is somewhat simplistic, as it does not take into account
the dynamics of interacting brain areas and influences of
cognitive top-down control strategies (Bressler and Menon,
2010; Friston and Price, 2001; Ishai, 2008; Norman et al.,
2006, but see Kanwisher, 2010). While fMRI can be very
useful for pinpointing the different brain areas that support
a particular cognitive function, its relatively poor tem-
poral resolution poses a significant challenge, as it can
mask repeated activations of the same brain region (e.g.
as a result of feedback from other brain regions) at dif-
ferent time points. Using complementary neuroimaging
techniques with a high-temporal resolution (such as TMS
or event-related potentials) can therefore be useful to fur-
ther differentiate the response characteristics in a specific
brain area. A second challenge for the neuropsychological
lesion approach arises from the currently available neu-
roimaging findings of developmental disorders. So far, and
for a range of disorders, such as autism, Williams syndrome,
attention deficit disorder, there is only weak and incon-
sistent evidence for functionally localised deficits (Filipek,
1999; Karmiloff-Smith, 1998; Knudsen, 2004). Other, more
selective disorders may be the result of a more localised
deficit that affects several network regions, as it appears
to be case for example in individuals with DP. Behrmann
et al. (2007) used structural imaging to show that partici-

pants with developmental prosopagnosia had significantly
larger anterior and posterior middle temporal gyri and a
smaller anterior fusiform gyrus. Moreover, a recent diffu-
sion tensor imaging-based tractography study by Thomas
et al. (2009) uncovered a marked reduction in structural
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ntegrity in the inferior longitudinal fasciculus and the infe-
ior fronto-occipito fasciculus, the two major tracts that
onnect the core fusiform region to the anterior tempo-
al and frontal cortices. Last, a training study by DeGutis
t al. (2007), reported increased functional connectivity in
he core face network in a participant with DP as a function
f improving face processing abilities. While the studies
eviewed above have yielded important findings that point
s towards specific brain regions and white matter tracts
hat exhibit atypical structural morphologies in individuals
ith DP, we are still far from understanding how exactly

hese structural variations lead to DP. Clearly, a more inte-
rative approach, which takes into account the interaction
etween multiple brain regions, is needed to resolve this

ssue.
In recent years, groundbreaking research-guiding the-

ries for understanding the implementation of cognition
n the human brain have been put forward that take
hese considerations into account. Specifically, based on
he theoretical frameworks of neural re-use or neurocon-
tructivism, several, not necessarily incompatible, models
ave been derived (Anderson, 2010; Sirois et al., 2008).

Neural re-use models, such as the massive redeploy-
ent hypothesis (Anderson, 2007a,b) or the neural recycling

ypothesis (Dehaene and Cohen, 2007) suggest that the
cquisition of new cognitive abilities will result in the
e-use or the recycling of previously established neural
ircuits. The neural re-use will combine existing compo-
ents for new tasks, thus resulting in one brain region
upporting a range of cognitive functions. The neural recy-
ling hypothesis also proposes that cultural acquisitions,
uch as calculations or reading and writing must find their
neuronal niche” and will therefore re-use brain areas are
unctionally close and still sufficiently plastic to allow for
uch an invasion (Dehaene and Cohen, 2007). Numeri-
al abilities are one example for such a relatively late
cquired, culture-dependent skill. There is strong evidence
hat numerical abilities are supported by brain regions in
he parietal lobes (for recent meta-analyses see Arsalidou
nd Taylor, 2011; Cohen Kadosh et al., 2008b; Houde
t al., 2010). One particular region in the number network,
he intraparietal sulcus, has been commonly reported for
eneral magnitude processing tasks, such as size, lumi-
ance, space, and time judgements (Bueti and Walsh,
009; Cantlon et al., 2009; Cappeletti et al., 2009; Cohen
adosh et al., 2007, 2008b). The neural re-use theory pre-
icts that the later a specific cognitive function develops,
he more distributed the underlying supporting neural
etwork will be (Anderson, 2010). A more distributed net-
ork for a novel, and consequently more complex function
ould be due to prior neural constraints of the recom-

ined brain areas. In the case of numerical cognition, the
nderlying brain network encompasses brain regions in
he parietal lobe, but also a region in the left and right
usiform gyri for digit symbol recognition (Cohen and
ehaene, 2000; Pesenti et al., 2000), and the prefrontal cor-
ex (Ansari, 2008). The wide-spread recruitment prediction
as received particularly strong support from numerical
ognition studies in both non-human species and in young
hildren, both of which exhibit basic and less proficient
umerical abilities (Houde et al., 2010; Nieder et al., 2002).
e Neuroscience 1 (2011) 246–255

In fact, one might speculate that these early activation pat-
terns may very well reflect previous phylogenetic stages,
i.e. pre-recycling stages.

In its present form, it is less clear whether neural re-use
theories will need to remain restricted to describing mech-
anisms of phylogenesis, or whether they can also serve
as a framework for the investigation of ontogenetic brain
development. For example, the suggestion of more dis-
tributed neural bases subserving later acquired cognitive
functions could be extended to accommodate the diffuse
to local hypothesis that has been put forward to describe
the results of developmental neuroimaging studies (Brown
et al., 2006; Church et al., 2010; Durston et al., 2006, see
also Ramsey et al., 2010) The diffuse to local hypothe-
sis refers to the finding that younger children will exhibit
more widespread and less focal brain activation for a spe-
cific cognitive function, an activation pattern that becomes
increasingly localised with development (Cohen Kadosh
and Johnson, 2007; Durston et al., 2006).

Neuroconstructivist models (Mareschal et al., 2007a,b)
have been developed to derive testable hypotheses for
emerging cognitive functions in the brain. They combine
important aspects of two earlier theoretical approaches
to the investigation of functionally direct growth in
the brain: constructivism and selection. Constructivism
(Quartz, 1999) on the one hand proposes that brain regions
that are activated simultaneously will come to build up
connections between them, a suggestion based on the Heb-
bian principle. Selectivism (Changeux and Danchin, 1976)
on the other hand stresses the opposite, but not necessarily
incompatible principle; namely, it suggests that function-
ally directed brain development is based on the gradual
elimination of redundant neural connections between dif-
ferent brain regions.

Neuroconstructivist models accommodate both princi-
ples. The Interactive Specialisation approach (IS) (Johnson,
2001, 2011; Johnson et al., 2009), for example proposes that
postnatal functional brain development involves a reorgan-
isation process, which establishes systematic connections
between cortical areas (Johnson, 2001, 2005, 2011; Johnson
et al., 2009). Most importantly, as a result of the improv-
ing connectivity pattern, neural responses will become
increasingly localised within the final core regions as well
as specialised for specific stimulus categories. The func-
tional specialisation of a particular brain area therefore
does not depend only on its position on a pre-determined
map, but rather on its connectivity patterns with other
brain regions, which shape the specialisation process. Note
that this approach does not suggest that virtually any brain
area can take on any cognitive function. Rather, it proposes
that cortical specialisation is guided by so-called “archi-
tectural constraints” (Elman et al., 1996) and it has been
suggested that these constraints are expressed in slight
differences in the patterns of intrinsic connectivity, the bal-
ance of neurotransmitters or the synaptic density (Johnson
et al., 2002), as well as differences in gene expression

(Lenroot and Giedd, 2008; Shaw et al., 2009).

Based on the theoretical frameworks reviewed above, it
seems therefore that substantial progress will only be made
if future work can move away from looking at specific brain
regions in isolation and instead begin to adopt a larger brain
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network perspective within a leading theoretical frame-
work, such as those offered by the neuroconstructivist or
the neural re-use hypotheses. Within a network approach,
activation in a specific region is not only determined by
cognitive processing proficiency levels and the underly-
ing structural morphology, but also the excitatory and/or
inhibitory input of other brain regions. As will be described
in greater detail below, recent studies on the effective con-
nectivity patterns in the face network have shown that
cognitive task demands influence neural responses in the
core network regions but also exert modulatory influence
on the network connections (Cohen Kadosh et al., in press;
Fairhall and Ishai, 2007; Rotshtein et al., 2007). A new
approach that focuses on connectivity patterns between
brain regions, rather than single brain regions may also
prove fruitful for work on atypically developing brain. For
example, it may very well be that atypical functioning is the
result of a lack of or abnormal cortical connectivity network
pattern for a specific function.

3. Developmental trajectories affect functional and
structural network aspects

Several recent studies have investigated the develop-
mental trajectories of specific network aspects, such as
structural and functional network changes (Lu et al., 2009;
Olesen et al., 2003; Shaw et al., 2006; Sowell et al., 2004).
However, very little is known about the integrative nature
or otherwise of these trajectories.

At the structural network level, several MRI studies have
uncovered ongoing structural brain development through-
out childhood and adolescence (Giedd et al., 1999; Gogtay
et al., 2004; Sowell et al., 2004). A study by Shaw et al.
(2008) has shown that overall brain volume growth fol-
lows different linear and non-linear trajectories (with most
of the cortex exhibiting cubic growth changes), depending
on the specific cortical lobe and the phylogenetic age of
the particular brain structure. In the occipital and tempo-
ral lobes for example, which contain the core face network
regions, brain volume change follows a cubic trajectory
(Shaw et al., 2008). It has been shown that cortical grey
matter decreases with age, and that this decrease varies
significantly, depending on the specific brain region (Giedd
et al., 1999; Gogtay et al., 2004). For example, a longitudi-
nal study that tested grey matter density development in
4–21-year-old participants found that the temporal lobe
exhibits protracted development until approximately 16
years of age, while grey matter in the occipital lobe con-
tinues to develop beyond 21 years (Giedd et al., 1999).
These findings are of central relevance for this review of
emerging cortical face networks, as the areas of the core
face-processing network are localised in these lobes.

Cortical white matter on the other hand has been shown
to increase continually and linearly with age throughout
the brain (Giedd et al., 1999; Paus et al., 1999). Insights in
underlying structural development can contribute impor-

tant clues as to whether developmental differences in brain
activation in a specific brain region are due to general
differences in brain maturity, or rather the result of differ-
ential connectivity differences with other network regions
supporting the specific cognitive function.
e Neuroscience 1 (2011) 246–255 249

At the functional network level, most research has
focused on changes in functional connectivity between
brain regions across age in the default resting state net-
work (i.e., in the absence of a cognitive task) (Uddin et al.,
2010), or on comparing neural response profiles in spe-
cific brain regions of interest across different age groups
in a given cognitive task (Cohen Kadosh and Johnson,
2007). The main difference between these two approaches
is that only the latter one allows us to draw conclusions
about the possible influence of concurrently changing cog-
nitive abilities. In a functional connectivity study, Fair
et al. (2008) used resting-state functional connectivity MRI
analysis to probe the default resting state network in 7–9-
year-old children in comparison to adults. This analysis
method can determine whether specific brain regions are
functionally connected via cross-correlations of the BOLD
signal time series between the regions, while the subject
is passively lying in the scanner, doing no specific task.
They found a slow increase in correlation strength over
age between the regions of the default network. That is,
while children activated similar regions in comparison to
the adults, these regions were only sparsely connected.
A further difference was that the increasing connectivity
patterns concerned mostly intrahemispheric connections
as opposed to interhemispheric connections, which were
present at a comparable level in both age groups. Another
study by Superkar et al. supported this finding by show-
ing that the emerging large-scale networks are the result
of a systematic weakening of short-range functional con-
nectivity, along with an increase in long-range functional
connectivity (Supekar et al., 2009). In a different study, Fair
et al. (2007) assessed the network for task control, using
39 putative regions frequently reported in previous stud-
ies. When comparing the results for children aged 7–15
years and young adults, they found that while long-range
connections increased significantly, short-range connec-
tions decreased. These observed changes were attributed
at the neurobiological level to changes in myelination (for
the long-range connections, Giedd et al., 1999) and synap-
tic pruning (for the short-range connections, Chugani et al.,
1996; Huttenlocher et al., 1982). It is important to note that
all developmental differences were assessed with regard
to the brain regions commonly reported for adult partic-
ipants. Therefore, while these studies are important and
they can provide some support for the changes in localisa-
tion as predicted by the IS approach, future studies should
ascertain that all these areas are actually task-relevant for
the different developmental groups as well. That is, without
making sure that all age groups use the same/or a similarly
structured network, any changes in functional connectiv-
ity become difficult to assess and only a dual approach can
provide the complete picture of changes in task-specific
activation patterns over development.

With regard to developmental changes for specific cog-
nitive functions, a recent review of the developmental
neuroimaging literature on the emerging neural bases

of face processing abilities from age 5 through 17 years
showed that cortical regions within the core network show
reliable activation to faces from at least mid-childhood
(Cohen Kadosh and Johnson, 2007). For example, Scherf
et al. (2007) used naturalistic movies of faces, objects,
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uildings and navigation scenes in a passive viewing task
ith children (5–8 years), adolescents (11–14 years) and

dults. They found that the children exhibited similar acti-
ation distribution patterns in the face-processing areas
ommonly reported in adults (such as the Fusiform face
rea (FFA) (Kanwisher et al., 1997). However, in children
his activation was not selective for the category of face
timuli; the regions were equally strongly activated by
bjects and landscapes. Moreover, this lack of fine-tuning
f core face-processing areas stood in contrast to distinct
referential activation patterns for other object categories
lateral object area (LOC) and the parahippocampal place
rea (PPA)). In a similar study, Golarai et al. (2007) tested
hildren (7–11 years), adolescents (12–16 years) and adults
ith static object categories (faces, objects, places and

crambled abstract patterns). They found that right FFA
ctivation volume increased substantially with age and that
his increase also correlated significantly with an improved
ecognition memory for faces. They speculate that during
he development, this area expands into the surrounding
ortex, a finding that differed for other brain areas, such as
he LOC and the STS whose volumes and response levels
emained constant through ages and also did not corre-
ate with object-recognition memory. Other studies have
eported the task-dependent activation of additional areas
hat are not typically found in the mature face network,
uch as the left and right inferior frontal gyrus (Gathers
t al., 2004; Passarotti et al., 2003). Recent evidence from
wo developmental fMRI contrast sharply with the stud-
es reviewed above (Cantlon et al., 2011; Pelphrey et al.,
009). For example, Cantlon et al. (2011) observed a robust
FA response in 4-year-old children for faces in compari-
on to other categories, such as shoes, letters, numbers or
crambled images. Moreover, they observed a significant
ecrease for the non-preferred stimulus categories with
ge. A different study by Pelphrey et al. (2009) compared
eural responses to faces, flowers, objects and bodies in the
entral-temporal stream. When contrasting face-specific
esponses with those to flower stimuli, no developmen-
al changes in face-selectivity were found in the FFA from

id-childhood. It is less clear however, whether simi-
ar results would have been obtained in this study upon
ontrasting face responses with neural responses to the
ther stimulus categories (i.e., objects, bodies), a ques-
ion that is particularly relevant as both categories are
referentially processed in adjacent cortical areas in the
ature brain. From the review of studies presented above,

t becomes clear that the empirical issue of continuous
ace-specialisation in the core face network regions is far
rom being settled and will need to be addressed in future
tudies. One way to solve this would be to conduct a lon-
itudinal developmental fMRI study, which compares an
ctive task (that encourages in-depth stimulus processing)
ith a passive version of the same task. Such a study could

lso shed light on the differing developmental trajectories
or different social stimuli, such as faces and bodies.
Finally, a recent study implemented dynamic causal
odelling analysis (Friston et al., 2003) to examine the

nfluence of task-dependent causal interactions between
ore face network regions during a target detection task.
ynamic causal modelling (DCM) approaches can be used
e Neuroscience 1 (2011) 246–255

to assess not only the functional connectivity patterns
between different brain regions, but also to determine how
experimental input influences these connectivity patterns
(Friston et al., 2003). This allows one to test the influence
of top-down modulation via different cognitive processes.
The main strength of this analysis approach is, that is
enables the investigation of age group differences and
task demands on effective connectivity between regions,
in younger children (7–8 years), older children (10–11
years) and adults (Cohen Kadosh et al., in press, 2011)
(Fig. 1). The same basic cortical network, comprising the
FFA, STS and inferior occipital gyrus (‘occipital face area’,
OFA) was present in all age groups. However, there was
an age-related increase in extent of differential top-down
modulation of specific network connections depending on
the task. These findings were explained by the cumulative
effect of exposure and training, such that the cortical net-
work for face-processing becomes increasingly fine-tuned
with age. Hence, these functional neuroimaging studies
support the notion that developmental changes in the neu-
ral network supporting face processing abilities are not
restricted to single brain regions but rather affect a network
of multiple regions simultaneously that together come to
form an efficient, functioning network with time.

While the studies reported above have contributed sig-
nificantly to our understanding of specific developmental
trajectories, much of our future progress will depend on
work that combines data at multiple levels of network
observation. For example, future studies could investigate
the respective influence of improving processing profi-
ciencies on functional and structural brain development
and vice versa. Recently, a number of developmental
neuroimaging studies have been published that com-
bine multiple levels of network observation. For example,
Sowell et al. (2004) conducted a longitudinal mapping
study looking at the relationship of changing cortical thick-
ness and changing cognitive abilities in children aged 5–11
years. They found that grey matter thinning in the left
hemisphere correlated significantly with improving vocab-
ulary, with the exception of the specialised language areas
(such as Broca’s and Wenicke’s area), where the relation-
ship was reversed.

Shaw et al. (2006) conducted a study that probed the
relationship between changes in intellectual abilities and
cortical thickness in children and adolescents (aged 5–11
years). They established a complex and dynamic relation-
ship between intelligence scores and cortical thickness.
That is, children with superior intelligence scores exhibited
a relatively thinner cortex in the frontal and temporal brain
regions, a relationship, which was significantly reversed
during adolescence (Fig. 2). This finding led the authors
to suggest that higher intelligence may be related to more
dynamic changes in brain morphology.

In a different study, Lu and colleagues used cortical
pattern matching techniques to investigate changes in
functional brain activation with co-occurring changes in

grey matter in 6–15-year-old children (Lu et al., 2009). Cor-
tical pattern matching techniques proceed based on the
premise that mature cortical thickness patterns correspond
to specialised functional activation in this regions, which
in turn, will be an indicator of processing proficiency for a
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Fig. 1. Developmental changes in cortical response patterns in the core face network in children aged 7–11 years and adults. While the overall network
configuration was confirmed for all three age groups, a continuous increase in functional response was observed in the two child groups, along with
changing patterns of effective connectivity in the network. Most notably, the two child groups did not exhibit any task-dependent changes in network
connectivity, a findings which has been attributed to lower levels of processing proficiency. (A) Percent signal change in brain activation in three core
face network regions as a function of age and task (Identity task = red; Expression task = blue, Gaze task = green). (B) Dynamic causal modelling analysis
of the developmental changes in the core face network in three age groups. Solid arrows indicate significant changes in effective connectivity between

arrows
een the
lor in th
two network regions, dotted arrows indicate nonsignificant effects. Black
arrows indicate modulatory effects of each task on the connection betw
STS = superior temporal sulcus. (For interpretation of the references to co
Adapted with permission from Cohen Kadosh et al. (2010).

specific cognitive function. Using an orthographic match-
ing task, they found that strong neural responses in the
fronto-parietal brain network were predictive of advanced
structural morphology in fast-responding children. Simi-
larly, Olesen et al. found that in 7–18-year-old children
and adolescents, grey and white matter volume correla-
tions with functional brain responses were modulated by
age in a working memory task (Olesen et al., 2003). The
latter approach of investigating developmental changes
across different network levels is particularly promising, as
it allows us to disentangle the respective influence of func-
tional, structural and cognitive development on changing
cortical response patterns.

4. What can multiple observations of network
changes contribute to our understanding of mature
brain organisation?

The developmental neuroimaging studies reviewed

above reveal some of the potential of multilevel f/MRI
analysis for investigating mechanisms of cortical speciali-
sation for cognitive functions. However, much of the future
progress will depend on choosing a suitable theoretical
framework to integrate the findings from different net-
indicate the intrinsic connection between the areas of interest. Colored
areas. Abbreviations: IOG = inferior occipital gyrus; FG = fusiform gyrus;
is figure legend, the reader is referred to the web version of the article.)

work levels. The different theoretical perspectives offered
by the neuroconstructivist or, to a lesser extent also the
neural re-use approach to human brain development may
be particularly suitable as it can accommodate dynamic
changes in recruitment of brain regions across the devel-
opmental trajectory. The network approach does also
allows for specific hypotheses of dynamic patterns of
network recruitment to be tested. For example, specific
network paths could be selectively strengthened or inhib-
ited, depending on the different task conditions (Fairhall
and Ishai, 2007). This has also been shown in a recent
DCM study (Cohen Kadosh et al., in press, 2011), which
found that specific network pathways were selectively
strengthened, depending on the task-relevant facial fea-
ture. Variable face network responses as a function of
top-down task-influences were also shown in a previous
fMRI-adaptation study that showed that the same net-
work of regions responds flexibly to different facial features
(Cohen Kadosh et al., 2010). The task-dependent network

changes offer some insights into the flexibility of mature
brain organisation. Namely, they highlight the important
influence that cognitive processing strategies exert on neu-
ral activation patterns. That is, they seem suggest that
human brain organisation may depend less on the specific
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Fig. 2. Developing differences in cortical thickness between superior, high and average intelligence level groups in children and adolescents aged 6–16
years. The brain maps illustrate the finding that the superior intelligence group exhibited the most dynamic pattern of changes in cortical thickness: an
initially thinner cortex showed a rapid increase in thickness, followed by continuous thinning during adolescence. (A) Centre panel: brain maps showing
prominent clusters where children and adolescents with superior and average intelligence differed significantly in the trajectories of cortical development
(t-statistic maps show significant interactions between IQ score and the cubic age term). (I) Trajectories of cortical development in the right superior frontal
gyrus (see brain map). (II–IV) Developmental changes in cortical thickness in the right and left superior/medial prefrontal gyrus (II, III), and the left middle
temporal gyrus (IV). (B) Trajectories of changing cortical thickness between the superior and average intelligence groups (t-statistics, t = 2.6). Abbreviations:
MNI, Montreal Neurological Institute.
Adapted with permission from Shaw et al. (2006).

Fig. 3. Questions and suggestions for future research.
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information that it processes and on establishing stimulus-
specific brain regions (e.g., the FFA, Kanwisher et al., 1997)
and support the notion instead that the brain may be
organised according to the processing mechanisms that
deal with the specific input. Developmental neuroimag-
ing studies can therefore provide a context within which
to approach ongoing debates in the adult face process-
ing literature, such as the debate on the face-specificity or
otherwise of the FFA (Gauthier et al., 1999). For example,
they can reveal that the FFA is initially responsive to dif-
ferent object categories, but also faces (Cohen Kadosh and
Johnson, 2007; Tzourio-Mazoyer et al., 2002) and that with
improving processing proficiencies and brain maturation
these regions become more specialised. In fact, the recent
study by Cantlon et al. (2011) supports this notion, by
showing a significant decrease in neural response to non-
preferred stimulus categories in the face network with age.
In addition, it may be that while these categories activate
the same brain region, they interact differently with other
brain areas, which would support the idea of differing lev-
els of specialisation in this region, again, something which
could not be detected by focusing on a single brain area
(Cohen Kadosh et al., 2008a). Last, it could very well be that
these differential interactions with other brain areas are the
reason for the observed temporal discrepancies in special-
isation for different social stimuli in the ventral-temporal
stream (e.g., Peelen et al., 2010).

In addition to task-induced changes, overall network
configurations also change with age. For example, while
a recent study has shown that young children recruit the
same core face regions as older children and adults (Cohen
Kadosh et al., in press, 2011), there is evidence that face pro-
cessing in young children relies on additional brain regions
that are not included in the final core face network (Johnson
et al., 2009). This may be the result of changing connectiv-
ity patterns in the emerging face networks, with some of
the initial brain regions that support less proficient pro-
cessing strategies being excluded from the final network
configuration.

These changes in network configurations are particu-
larly relevant for work on neuropsychological patients that
experience impairments following brain insults to specific
regions. That is, they can help to separate necessary from
merely supportive brain regions that subserve specific cog-
nitive functions. More importantly however, they could
be used to pinpoint trajectories of atypically developing
brain functions and to establish early markers of failures in
network specialisation. This would be especially interest-
ing in the case of DP. There is some evidence for changes
in structural morphology in these participants (Behrmann
et al., 2007; Garrido et al., 2009; Thomas et al., 2009). How-
ever, it remains to be determined how these differences in
grey and white matter affect brain anatomy and function.
Recent work has shown that face processing in adult par-
ticipants with DP does not so much differ within the core
face network regions in the brain (Avidan et al., 2005), but

that their brain network comprises some of the network
regions recruited in young children (Johnson et al., 2009).
Further research is needed that systematically investigates
changing network constellations in typically and atypi-
cally developing children and adults. One possible way to
e Neuroscience 1 (2011) 246–255 253

mimic these changes would be to use transcranial mag-
netic stimulation methods, which can selectively impair
the functioning of a network area in an otherwise healthy
brain (Cohen Kadosh et al., in press, 2011; Pourtois et al.,
2004; Walsh and Pascual-Leone, 2003; Wassermann et al.,
2008).

In sum, the research evidence reviewed above sug-
gests that developmental neuroimaging studies can tell
us much about mature brain organisation. They can tell
us, whether specific brain regions actually start out by
responding to specific stimulus classes. For example, it
has been shown that the FFA responds to faces from early
on (Cohen Kadosh and Johnson, 2007; Tzourio-Mazoyer
et al., 2002), but at the same time, this activation is not
sufficient to support proficient processing levels. Develop-
mental neuroimaging studies can also show us how, along
with improving behavioural proficiencies, this response
becomes increasingly localised and fine-tuned to faces, a
finding that differs significantly for other stimulus cate-
gories (Peelen et al., 2010). Improving specialisation may
be the result of increasing connectivity with other network
regions that support this cognitive function (Cohen Kadosh
et al., in press, 2011) and developmental neuroimaging
studies are particularly well suited to disentangle the inter-
play between changes at different network levels, such
as structural changes (white and grey matter), functional
changes (fine-tuning of specialised cortical responses), as
well as overall network configuration changes as cognitive
strategies improve and become more proficient. This will
ultimately allow us to determine what shapes functional
brain response patterns across the developmental trajec-
tory, bringing us a step closer towards highlighting markers
of atypical brain development and specialisation (Fig. 3).
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