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a  b  s  t  r  a  c  t

Knowing  how  to adapt  your  behavior  based  on  feedback  lies  at  the  core  of successful  learn-
ing. We  investigated  the  relation  between  brain  function,  grey  matter  volume,  educational
level and  IQ  in  a Dutch  adolescent  sample.  In  total  45  healthy  volunteers  between  ages  13
and 16  were  recruited  from  schools  for pre-vocational  and  pre-university  education.  For
each individual,  IQ was  estimated  using  two  subtests  from  the  WISC-III-R  (similarities  and
block design).  While  in  the  magnetic  resonance  imaging  (MRI)  scanner,  participants  per-
formed a probabilistic  learning  task.  Behavioral  comparisons  showed  that  participants  with
higher IQ  used  a more  adaptive  learning  strategy  after  receiving  positive  feedback.  Analy-
sis of  neural  activation  revealed  that  higher  IQ was  associated  with  increased  activation  in
DLPFC and  dACC  when  receiving  positive  feedback,  specifically  for  rules  with  low  reward
probability  (i.e.,  unexpected  positive  feedback).  Furthermore,  VBM  analyses  revealed  that

IQ correlated  positively  with  grey  matter  volume  within  these  regions.  These  results  pro-
vide support  for  IQ-related  individual  differences  in  the  developmental  time  courses  of
neural circuitry  supporting  feedback-based  learning.  Current  findings  are interpreted  in
terms of  a prolonged  window  of  flexibility  and  opportunity  for adolescents  with  higher
IQ scores.

© 2011 Elsevier Ltd. All rights reserved.
. Introduction

.1. The development of performance monitoring

Performance monitoring, which involves our ability to
djust  our behavior following changing task demands,

s one of the core components for successful learning.
erformance monitoring involves the detection of errors
r  performance feedback in tasks where rules need to
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be inferred over trials, or when rules change unexpect-
edly. Across childhood and adolescence, there is a steady
increase in the ability to monitor the outcomes of actions
with  the purpose of behavioral adjustment, which has
been  demonstrated using rule-switch tasks (Huizinga et al.,
2006;  Koolschijn et al., 2011) and probabilistic learning
tasks (van den Bos et al., 2009; Eppinger et al., 2009).
These findings have been interpreted in the context of
slowly  developing executive control functions, with steady
advances in adolescence (Crone, 2009).

Neuroimaging studies have demonstrated that a net-

work  of regions in the lateral prefrontal (lat-PFC), superior
parietal, and the dorsal anterior cingulate cortex (dACC)
is  engaged when individuals process performance feed-
back.  These studies typically make use of simple learning
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paradigms, in which a stimulus requires a response, which
is  then followed by positive or negative feedback (Holroyd
and  Coles, 2002). The activation of these regions is typically
related to negative feedback processing in adults (Holroyd
et  al., 2004; Zanolie et al., 2008). This has been associated
with a monitoring system which signals that outcomes are
worse  than expected and that adjustment is necessary.

Given the developmental changes in performance mon-
itoring  until late adolescence, it would be expected that this
error-  or feedback monitoring system matures slowly. In
support  of this hypothesis, neuroimaging studies reported
an  age-related increase in activation following negative
feedback in the lat-PFC, parietal cortex and dACC (Crone
et  al., 2008), showing that these regions are differen-
tially engaged across development. These findings are also
consistent with prior neuroimaging studies which have
reported that the development of other executive control
functions, such as working memory, task switching and
response inhibition, is also associated with a protracted
development of regions within the prefrontal cortex (for
a  review, see Bunge and Wright, 2007).

However, two prior studies reported not only less acti-
vation in lat-PFC and dACC following negative feedback, but
also  more activation in children in these areas following
positive feedback (Van Duijvenvoorde et al., 2008; van den
Bos  et al., 2009). These neuroimaging findings were inter-
preted  as pointing to a developmental shift from attention
that  is given to positive feedback (in childhood) towards
attention that is given to negative feedback (in adult-
hood), with adolescence being a transition phase. Notably,
these  findings argue against a strict maturational view-
point  which predicts that the lateral PFC and dACC cannot
be  engaged due to structural immaturity (see the matur-
tional viewpoint by Johnson, 2011), instead, these regions
are  engaged under different task demands, consistent
with skill learning or interactive specialization viewpoints
(Johnson, 2011; see also Dumontheil et al., 2010).

1.2. Individual differences in education and IQ

Recently, much attention is given to the individual
differences in learning performance, as children from dif-
ferent  levels of education, and thus different levels of
IQ,  may  benefit differently from learning cues. These dif-
ferences  may  be particularly important for the field of
educational neuroscience, in which one of the goals is to
map  changes in brain function to individual differences
in learning trajectories (Goswami, 2006). Executive con-
trol  functions, and associated brain activity, have been
tightly linked to IQ differences in adults. For example, pre-
vious  neuroimaging studies have reported that adults with
higher  fluid intelligence show stronger recruitment of the
lat-PFC  and dACC during executive control performance
(Duncan, 2003; Gray et al., 2003).

Most developmental neuroimaging studies have not
taken  into account individual differences in IQ. Two sets
of  studies, focusing on functional and structural brain

development, provide some insight into the developmental
differences in relation to IQ. First, one functional neu-
roimaging studies compared math-gifted adolescents with
a  control group. The math-gifted group was tested for
ive Neuroscience 2S (2012) S78– S89 79

quantitative reasoning ability using the School and College
Ability  Test. These scores were converted to IQ scores, and
their  scores were in or above the 98th percentile. The con-
trol  group had quantitative reasoning ability converted to
IQ  scores in the range 45–55th percentile. The math-gifted
adolescents showed higher activation and higher effective
connectivity in dorsolateral PFC, dACC and superior pari-
etal  cortex when performing mental rotation of complex
3D  figures compared to a control group (O’Boyle et al.,
2005;  Prescott et al., 2010). Preusse et al. (2011), however,
observed a different pattern. They showed that adoles-
cents with high fluid intelligence, as measured with the
Raven  Advanced Progressive Matrices task, had stronger
activation in parietal cortex when performing a geomet-
ric  analogical reasoning task compared to adolescents with
average  fluid intelligence, whereas adolescents with aver-
age  fluid intelligence had stronger activation in the dACC
during  this task compared to adolescents with high fluid
intelligence. In sum, the findings of studies focusing on
individual differences in IQ are still inconclusive, which
could partly be due to the differences in measures of IQ
(crystallized vs. fluid) that have been used in prior studies.

Second, structural neuroimaging studies have mapped
cortical brain structures with respect to IQ in developing
children and adolescents. These studies have found using
longitudinal measures that there was  a shift from predomi-
nantly negative relations between IQ and cortical thickness
in  children to positive correlations in adults, indicating
that adolescence is an important transition phase. Specif-
ically,  IQ was  positively associated with higher plasticity
with a prolonged phase of cortical increase in adolescence.
Together, these findings were interpreted in terms of a
dynamic  neuroanatomical expression of intelligence (Shaw
et  al., 2006, see also Karama et al., 2011; Pangelinan et
al.,  2011). Here, we test the hypothesis that the prolonged
window of brain development for adolescents with higher
IQ  in comparison with adolescents with lower IQ is also
observed in functional brain development.

1.3. The present study

The  goal of this study was therefore to examine indi-
vidual differences in brain function during performance
monitoring in relation to IQ and level of education. In
the  Netherlands, adolescents participate in different school
systems  after the age of 12–13, based on scores on cog-
nitive tasks that are completed at the end of elementary
school (age 11 or 12). These school systems can be broadly
divided in pre-vocational and pre-university education.
Adolescents were recruited from these two school sys-
tems  in order to sample a wide range of IQs and to further
explore differences between levels of education. Given that
the  sampling from different school systems was  a tool to
recruit  varying IQ levels, we  did not have specific hypothe-
ses  concerning differences in education systems. Yet, we
found  it important to specifically test for this by compar-
ing  both differences related to IQ and differences related to

school  systems.

Participants from pre-university education and pre-
vocational education completed a probabilistic learning
task  adopted from Frank et al. (2004; see also van den Bos
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Fig. 1. At the beginning of each trial a centrally located cue was  presented
with a jittered interval between 500 and 6000 ms,  followed by a com-
bined presentation of a stimulus pair and a response window of max.
2500 ms,  after which feedback was presented for 1000 ms.  After the feed-
back, a short filler was  presented, in the form of a blank screen, in order
to compensate for different reaction times between trials and between
participants (filler duration = 2500 ms  − reaction time). Participants chose
one stimulus by pressing the left or right button and received positive or
negative feedback according to probabilistic rules. Two pairs of stimuli
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(r  = .87), therefore the estimated IQ score in subsequent
analyses is the averaged IQ score of the two subscales.2 The
minimum IQ score was  70 and the maximum IQ score was
130.  As predicted, the pre-university group had higher IQ
ere presented to the participants: (1) the AB pair with 80% positive feed-
ack for A and 20% for B and (2) the CD pair with 70% positive feedback
or C and 30% for D.

t al., 2009). This task was chosen because it allows for
 direct comparison with the literature where the devel-
pmental pattern has already been investigated (van den
os  et al., 2009). The task required the participants to

earn  a stimulus–response rules for two sets of stimuli,
or which one stimulus–response set (containing stimuli

 and B) was associated with an 80–20% and the second
timulus–response set (containing stimuli C and D) with a
0–30%  reward mapping (see Fig. 1). During the task, func-
ional  neuroimaging data were acquired and the analyses
ocused on the processing of positive and negative feedback
or  high probability (80% and 70%, stimuli A and C) and low
robability (20% or 30%, stimuli B and D) feedback.

Based on prior studies, we expected adolescents from
re-vocational education to have lower estimated IQ scores
nd  to have a slower learning curve in the probabilistic
earning task, relative to adolescents from pre-university
ducation. The prior imaging results of the developmental
tudy using this task showed developmental differences in
eedback  processing in the lat PFC and the ACC, which will
herefore be specific regions of interest in the current study.
sing  a probabilistic learning task, van den Bos et al. (2009)

ound  that when participants explore a rule with low prob-
bility  for reward, these rewards lead to more activation
n lat-PFC and dACC in children and adolescents relative
o  adults. In contrast, this difference was not observed for
eward  trials when applying the rule with high probability
or  reward.

Under the assumption that adolescents with higher
Q (from pre-university education) relative to adolescents

ith lower IQ (from pre-vocational education) have a
rolonged developmental trajectory of prefrontal cortex
aturation (Preusse et al., 2011; Shaw et al., 2006; Karama

t  al., 2011), we predicted that high IQ adolescents would
how  an elevated response to positive feedback to the low
robability reward rule.

In addition, we performed a voxel based morphometry
VBM) analyses in order to investigate the relation between

Q  and cortical grey matter volumes. Based on previous
tudies we expected that IQ would be positively corre-
ated with cortical grey matter volume (Shaw et al., 2006;
ve Neuroscience 2S (2012) S78– S89

Karama  et al., 2011; Pangelinan et al., 2011), and we tested
whether these differences could account for the differences
in  functional activation.

2.  Methods

2.1. Participants

Forty-five healthy right-handed adolescents between
ages 13 and 16 years (M age = 14.39; 22 female, 23 male)
participated in the study. Participants were recruited from
the  community and with help of various local schools. Par-
ticipants  came from two categories based on the Dutch
education system, where children are separated in dif-
ferent  school systems based on test scores at the end
of  elementary school (approximately age 11–12). Pre-
vocational education educates children for 4 years and
prepares them for a working environment. Pre-university
education educates children for 5–6 years and prepares
them for further university education. In the current sam-
ple,  18 participants attended pre-vocational schools (M
age  = 14.5; 9 female, 9 male), and 27 participants attended
pre-university schools (M age = 14.3; 13 female, 14 male).
Part  of the data was previously reported in a study on age
comparisons (van den Bos et al., 2009).

Chi square analysis confirmed that the gender distri-
bution was similar across the two groups (�2(1) = .056,
p  = .82), and groups did not differ in mean age (t(44) = .541,
p  = .59). All participants reported normal or corrected-to-
normal vision and participants or their caregivers reported
the  absence of specific learning disorder and neurologi-
cal or psychiatric impairments. Parents filled out the Child
Behavior Check List (CBCL, Achenbach, 1991) in order to
screen  for psychiatric conditions. All participants scored
below clinical levels on all subscales of the CBCL, and had
scores  within 1 SD of the mean of a normative standardized
sample. Participants and their caregivers gave informed
consent for the study and all procedures were approved
by  the medical ethical committee of the Leiden University
Medical Center. In accordance with Leiden University Med-
ical  Center policy, all anatomical scans were reviewed and
cleared  by the radiology department following each scan.
No  anomalous findings were reported.

2.2. Behavioral assessment of estimated IQ

Participants completed a verbal and non-verbal mea-
sure  (similarities and block design subscales) of the
Wechsler Intelligence Scale for Children (WISC) in order to
obtain  an estimate of their intelligence quotient (Wechsler,
1991, 1997). In the current sample, there was  a high cor-
relation between the estimated IQ on the two  subscales
2 The behavioral and fMRI analyses using each IQ measure separately
yielded similar patterns of results to those using the combined score
reported in this paper.
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Table  1
Group statistics on IQ, reaction times (RTs), age and head motion. Groups are based on educational level, and subgroups are defined by educational level
and  IQ. Standard errors are presented in parentheses.

IQ Reaction times in ms Head motion
average in mm

Head  motion max
in  mm

Age

Pre-vocational education 91.3 (2.4) 805 (47) .09 (.02) 2.01 14.5 (.2)
Pre-university education 107 (2.0) 773 (39) .08 (.01) 2.21 14.3 (.2)
Subgroups

I  (IQ 70–90) 80 (2.3) 818 (74) .11 (.02) 2.01 15 (.4)
IIa  (IQ 90–110) 98.6 (1.3) 799 (36) .07 (.01) 2.0 14.1 (.3)

IIb  (IQ 90–110) 99.3 (1.8) 779 (41) 

III  (IQ 110–130) 115.6 (2.6) 764 (38) 

scores than the pre-vocational group, t(44) = 4.89, p < .001
(see  Table 1).

The  scores were analyzed in more detail to examine
how the estimated IQ scores related to school types. As
can  be seen in Fig. 2A, the estimated IQ scores are nor-
mally distributed. Fig. 2B shows that all adolescents who

attend  pre-vocational schools have IQ scores that fall in bins
70–110,  and all adolescents from the pre-university schools
have  IQ scores that fall in bins 90–130. Thus, as expected,

Fig. 2. (A and B) IQ distribution for the pre-vocational and pre-university
participants. These groups were further broken down to: a low IQ group
(I; IQ 70–90), two  average IQ groups (IIa and IIb; IQ 90–110) and a high IQ
group (III; IQ 110–130).
.08 (.01) 2.21 14.6 (.4)

.07 (.02) .81 14.6 (.4)

our IQ estimation is strongly related to educational level.
Interestingly, the distribution of the IQ scores allows for a
second  type of categorization. That is, within the 90–110
bins  there are participants who  differ in school-level but
have  overlapping IQ estimations. This pattern allows us
to  disentangle the effects of school differences vs. IQ dif-
ferences, by subdividing the participants in four groups;
Low  IQ/pre-vocational (n = 7; Group I; IQ[70–90]), Medium
IQ/pre-vocational (n = 12; Group IIa; IQ[90–110]), Medium
IQ/pre-university (n = 12; Group IIb; IQ[90–110]) and High
IQ/pre-university (n = 14; Group III; IQ[110–130]) (see Fig. 2
and  Table 1).

2.3.  Task procedure: probabilistic learning task

The procedure for the probabilistic learning task (Fig. 1;
based  on Frank et al., 2004; van den Bos et al., 2009) was as
follows:  The task consisted of two  stimulus pairs (called AB
and  CD). The stimulus pairs consisted of pictures of every-
day  objects (e.g., a chair and a clock). Each trial started with
the  display of one of the two  stimulus pairs and subse-
quently the participant had to choose one of the two stimuli
(e.g.,  A or B), which were presented on the left or the right
side  of the screen. The stimulus pairs were presented in ran-
dom  order. Participants were instructed to choose either
the  left or the right stimulus by pressing a button with the
index  or middle finger of the right hand within a 2500 ms
window,  which was followed by a 1000ms feedback dis-
play.  The feedback display consisted of a green

√
-signal

for positive feedback and a red cross (×) for negative feed-
back.  If no response was  given within 2500 ms,  the text
“too  slow” was presented on the screen. This occurred on
less  than 4% of the trials. Importantly, the school types did
not  differ in number of ‘too slow’ responses (t(43) = −.25,
p  = .79).

The feedback displayed was probabilistic. Choosing
stimulus A led to positive feedback on 80% of AB trials,
whereas choosing stimulus B led to positive feedback on
20%  of these trials. The CD pair procedure was  similar, but
probability for reward was  lower; choosing stimulus C led
to  positive feedback on 70% of CD trials, whereas choosing
stimulus D led to positive feedback on 30% in these trials.
Thus,  the most optimal choice in order to obtain rewards
was A or C (correct rule), whereas the least optimal choice

was  B or D (alternative rule).

Participants  were instructed to earn as many points as
possible (as indicated by receiving a positive feedback sig-
nal),  but were also informed that it would not be possible
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o receive positive feedback on every trial. Further, par-
icipants were informed that although stimuli sometimes
ppeared on the right side and sometimes on the left side,
his  was an irrelevant dimension. After the instructions and
ight  before the scanning session, the participants played
0  practice rounds on a computer in a quiet room to ensure
hat  they understood the task.

In total, the task in the scanner consisted of two  blocks
f  100 trials each: 50 AB trials and 50 CD trials per block.
he  first and the second block consisted of different sets
f  pictures and therefore, participants had to learn a new
apping in both task blocks. The duration of each block
as  approximately 8.5 min. The stimuli were presented

n  pseudo-random order with a jittered interstimu-
us interval (min = 1000 ms,  max  = 6000 ms)  optimized

ith OptSeq2 (surfer.nmr.mgh.harvard.edu/optseq/; Dale,
999).  In order to ensure that all blocks were completely

ndependent, the stimuli were different in the practice
lock and the two experimental blocks. During inter-trial

ntervals, a central fixation cross was shown. Because
revious studies revealed that behavioral strategies were
ependent on rule type (correct or alternative rule), we dif-
erentiated between over-learned high probabilities (A and

 trials collapsed, correct rule) and alternative low proba-
ilities (B and D trials collapsed, alternative rule, cf. van den
os  et al., 2009) in the behavioral and imaging analyses.

.4. Data acquisition

Participants were familiarized with the scanner envi-
onment on the day of the fMRI session through the use
f  a mock scanner, which simulated the sounds and envi-
onment of a real MRI  scanner. Data were acquired using a
.0T  Philips Achieva scanner at the Leiden University Med-

cal  Center. Stimuli were projected onto a screen located at
he  head of the scanner bore and viewed by participants by

eans  of a mirror mounted to the head coil assembly. First,
 localizer scan was obtained for each participant. Subse-
uently, T2*-weighted Echo-Planar Images (EPI) (TR = 2.2 s,
E  = 30 ms,  80 × 80 matrix, FOV = 220, 35 2.75 mm trans-
erse slices with 0.28 mm gap) were obtained during 2
unctional runs of 232 volumes each. The first two  scans
ere  discarded to allow for equilibration of T1 saturation

ffects. A high-resolution T1-weighted anatomical scan
nd  a high resolution T2-weighted matched-bandwidth
igh-resolution anatomical scan, with the same slice pre-
cription  as the EPIs, were obtained from each participant
fter the functional runs. Stimulus presentation and the
iming  of all stimuli and response events were acquired
sing E-Prime software. Head motion was restricted by
sing  a pillow and foam inserts that surrounded the head.

.5.  fMRI data analysis

Data  were preprocessed using SPM5 (Wellcome Depart-
ent of Cognitive Neurology, London). The functional

ime series were realigned to compensate for small head

ovements. Translational movement parameters never

xceeded 1 voxel (<3 mm)  in any direction for any subject
r  scan. There were no significant differences in move-
ent parameters between the groups F(2, 45) = .89, p = .32
ve Neuroscience 2S (2012) S78– S89

(see  Table 1). Functional volumes were spatially smoothed
using an 8 mm full-width half-maximum Gaussian kernel.
Functional volumes were spatially normalized to EPI tem-
plates.  The normalization algorithm used a 12-parameter
affine transformation together with a nonlinear transfor-
mation involving cosine basis functions and resampled the
volumes  to 3 mm cubic voxels. The MNI305 template was
used  for visualization and all results are reported in the
MNI305 stereotaxic space (Cosoco et al., 1997).

Statistical analyses were performed on individual par-
ticipants’ data using the general linear model in SPM5. The
fMRI  time series data were modeled by a series of events
convolved with a canonical haemodynamic response func-
tion  (HRF). The presentation of the feedback screen was
modeled as 0-duration events. The stimuli and responses
were not modeled separately as these occurred in one prior
or  overlapping EPI images as feedback presentation.

In the model, feedback was further subdivided into cor-
rect  (A and C) vs. alternative (B and D) rule and positive
vs. negative feedback. These trial functions were used as
covariates in a general linear model, along with a basic set
of  cosine functions that high-pass filtered the data, and a
covariate  for run effects. The least-squares parameter esti-
mates  of height of the best-fitting canonical HRF for each
condition were used in pair-wise contrasts. The resulting
contrast images, computed on a participant-by-participant
basis, were submitted to group analyses. At the group level,
contrasts between conditions were computed by perform-
ing  one-tailed t-tests on these images, treating participants
as  a random effect.

We  performed regression analyses with IQ as a covari-
ate of interest to identify regions that showed IQ related
differences in feedback processing. Subsequently we per-
formed  ROI analyses to further investigate the effects of
school  differences vs. IQ differences, using the four sub-
groups described above.

2.6.  Region-of-interest analyses

We used the Marsbar toolbox with SPM5 (http:
//marsbar.sourceforge.net;  Brett et al., 2002) to perform
Region of Interest (ROI) analyses to further characterize IQ
and  school type differences in patterns of activation and
grey  matter volume. We  created ROIs of the regions that
were  identified in the whole brain analyses for illustra-
tion purposes or post hoc tests. The masks used to generate
functional ROIs was  based on the regression analyses with
IQ  as covariate across all participants (p < .001, >10 voxels).

For  ROI analyses we focused on two a priori defined
regions (right DLPFC and dACC), as a result, effects were
considered significant at an  ̨ of .025, based on Bonfer-
roni correction for multiple comparisons, p = .05/2, unless
reported otherwise. These regions were chosen a priori
based on our findings in our prior developmental studies
(van  den Bos et al., 2009).

2.7.  Voxel based morphometry
To  estimate the grey and white matter tissue vol-
umes for each participant we  used the SPM5 VBM5
toolbox (v1.15; http://dbm.neuro.uni-jena.de/vbm/).  Two

http://marsbar.sourceforge.net/
http://marsbar.sourceforge.net/
http://dbm.neuro.uni-jena.de/vbm/
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Fig. 3. (A) Learning curve showing average accuracy per 10 trial block for 

on  the last 60 trials of the task. (C) Correlation between IQ and percentag
lose-shift  choices per rule type.

participants were excluded because of the poor qual-
ity  of their structural T1 images. After each participant’s
structural T1 image was normalized to the MNI  template,
images were segmented into separate maps for cerebral
spinal fluid, grey and white matter. Although the partici-
pants  were not of adult age, segmentation was performed
with use of prior probability maps because this increased
the quality of the segmentation process. Additionally,
the hand-selected anterior commissure of all brains was
used  as the origin for the registration and segmentation
analyses. Furthermore, modulation for non-linear warp-
ing  only was performed using the Jacobian determinants
in order to adjust volume estimations for overall head size
(O’Brien  et al., 2006). Finally, images were resampled into
3  × 3 × 3 voxels and smoothed using an 8 mm  full-width
half-maximum Gaussian kernel, making the volume masks
comparable to the functional activation maps.

3. Results

3.1. Behavior

3.1.1. Task performance and educational level

To investigate the differences in task performance

for the different levels of education we calculated the
percentage of correct choices (the high probability stim-
ulus)  per block of 20 trials for each participant, resulting in
the four groups (I, IIa, IIb and III). (B) Correlation between IQ and accuracy
-stay choices per rule type. (D) Correlation between IQ and percentage of

five  blocks in total (Fig. 3A). Because the two runs in the
scanner consisted of new stimulus pairs, the blocks of the
two  runs were collapsed.

To  investigate whether the participants learned
over time, we performed a repeated-measure ANOVA
with task block as within-subjects variable and school
level as between-subjects variable. The task block (5
blocks) × school type (2 types: pre-vocational vs. pre-
university) ANOVA showed that participants learned to
make  more correct choices over time, as indicated by
a  main effect of task block (F(4,176) = 27.12, p < .001).
However, there were no performance differences between
school types (F(1, 44) = 3.34, p = .08), and there was no
school type × task block interaction (F(4, 176) = .78, p = .98).

The  analyses of performance further focused on the
last  60 trails. In these last 60 trials the participants have
acquired substantial knowledge of the probabilities asso-
ciated  with the different stimuli. Indeed, participants no
longer  showed differences in learning (main effect of
task  block, F(2, 88) = 2.75, p = .10). The task block (last
3  blocks) × school type (2 types: pre-vocational vs. pre-
university) ANOVA showed that pre-university adolescents
had  higher accuracies than pre-vocational adolescents

(main effect school type: F(1, 44) = 3.76, p < .05), but no
interaction between task block and school type (p > .30).

To further investigate the differences between educa-
tional level and to dissociate effects of IQ and school type,
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e compared the two groups (IIa and IIb) from different
ducational levels but with the same level of IQ. The task
lock  (3) × school type (IIa and IIb) revealed no significant
ffects (all p’s > .2), suggesting that the performance differ-
nces  between educational levels are mainly driven by IQ
ifferences. As expected, correlation analyses with general
erformance revealed a positive relation between IQ and
he  number of correct choices in the last 60 trials (r = .48,

 < .001, see Fig. 3B).

.1.2. Behavioral strategy and IQ
To further examine IQ-related differences in task perfor-

ance we explored the relation between IQ and behavioral
trategies in the last 60 trials. For this analysis, we  exam-
ned  how often participants chose either the same stimulus
fter  positive feedback (win-stay) or the shifted to the other
timulus  after negative feedback (lose-shift).

There were IQ related differences in behavioral strate-
ies following positive feedback; these analyses revealed

 positive correlation between win-stay choices and IQ for
he  correct rule (r = .54, p < . 001), and a negative correlation
etween win-stay choices and IQ for the alternative rule
r  = −.43, p < .001, see Fig. 3C). Thus, higher IQ was related
o  a more optimal shifting behavior after receiving posi-
ive  feedback (it is optimal to stay with the correct rule
nd  shift with the alternative rule). In contrast, there was
o  significant relation between IQ and lose-shift behavior
see  Fig. 3D).

.2.  fMRI results

In  the fMRI analyses we focused on patterns of activa-
ion in the last 60 trials of the task in order to be able to
nvestigate the neural correlates of feedback processing for
he  different rule types and to make a direct comparison
ith the developmental literature (see also van den Bos

t  al., 2009).

.2.1. Effects of feedback and rule type
First, we examined the brain regions involved in

eedback processing across all participants. The com-
arison [positive feedback > negative feedback] resulted

n  activation in several regions, including the ven-
ral striatum, VMPFC, bilateral DLPFC and the parietal
ortex (see Table 2). The opposite contrast [neg-
tive feedback > positive feedback] resulted in acti-
ation in the bilateral insula and the dorsal ACC
see Table 2).

Next,  we investigated how feedback was modulated
y rule type. Two rule types were distinguished: the
orrect rule (cor) and the alternative rule (alt). The com-
arison [positive feedback (alt) > positive feedback (cor)]
esulted in activation in the ventral striatum (see Table 2),
hereas  the opposite contrast did not yield any sig-
ificant effects. Analyses of the effect of rule type on
egative feedback processing did not yield any significant

esults.

Thus, in the current study, the DLPFC was involved in
rocessing positive feedback and the dACC in processing
egative feedback. The striatum was particularly sensitive
ve Neuroscience 2S (2012) S78– S89

to  positive feedback when it was least expected (i.e., a pos-
itive  prediction error).

3.2.2.  Effects of IQ on feedback processing
To examine how feedback processing was modulated

by IQ differences, we  first identified individual differences
in  neural activation of feedback processing by perform-
ing a regression analysis on the [positive feedback vs.
negative feedback] contrast with estimated IQ as a pre-
dictor  variable. This analysis did not yield any significant
results.

Second, we  performed a regression analysis for each
feedback type in the context of the correct and alternative
rules. Examining feedback in the context of correct vs. alter-
native  rules was previously found to be most powerful in
dissociating effects for positive and negative feedback trials
separately  (van den Bos et al., 2009). The regression analy-
sis  on the [positive feedback (alt) > positive feedback (cor)]
contrast  revealed a positive correlation between estimated
IQ  and BOLD activity in regions previously implicated in
performance monitoring, including the right DLPFC and
the  dACC (see Fig. 4A, Table 2). As can be seen in Fig. 4B,
higher IQ was  associated with more activity in right DLPFC
and  dACC following positive feedback after selecting the
alternative rule compared to the correct rule. A regression
analysis with negative feedback trials (alternative vs. cor-
rect  rule) did not reveal regions that correlated with IQ and
brain  activation.

To  further explore the relation between IQ, level of
education and activity in right DLPFC and dACC, we  per-
formed separate correlations between IQ and brain activity
for  each school group (see Fig. 4B; colored dots), based
on  ROIs which were derived from the whole-brain con-
trast  [positive feedback (alt) > positive feedback (cor)] with
IQ  as regressor. These analyses showed that DPLFC activ-
ity  was related to IQ in both the pre-vocational and the
pre-university group (r = .54, p < .02 and r = .59, p < .01,
respectively). However, for dACC, the correlation with IQ
was  only significant for the pre-university group (r = .44,
p  < .02), and not for the pre-vocational group (r = −.02,
p  = .93). These findings suggest that activity in dACC is pos-
sibly  related to both IQ and educational level.

3.2.3. Educational level related differences in neural
activity

Next, we explored whether neural activation patterns
were specifically related to school type rather than indi-
vidual differences in IQ. For these analyses we investigated
the patterns of neural activity in the same ROIs (rDLPFC and
dACC)  but now for specific subgroups and for all feedback
conditions. First, we ran 2 × 2 × 2 [school × valence × rule]
ANOVAs for the two  subgroups of selected adolescents
with similar IQ but from different school types (groups
IIa and IIb). The ANOVA resulted in a significant interac-
tion between school type, valence and rule in the dACC
(F(1,23) = 5.14, p < .01), but not in the rDLPFC (F(1,23) < 1.0,
p  = .32). Further analyses revealed that, when comparing

the two school types of similar IQ, different feedback
responses emerged. Specifically, in the pre-vocational
group the dACC was valence sensitive such that activity
was  higher for negative feedback than for positive feedback
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Table  2
Brain  regions revealed by whole brain contrasts. MNI  coordinators for main effects, peak voxels reported at p < .001, uncorrected, at least 10 contiguous
voxels.

Anatomical region L/R Z MNI  coordinates

x y z

Positive > negative
Striatum L/R 7.49 12 15 −3
Dorsolateral prefrontal cortex R 4.61 46 23 31
Superior parietal cortex R 4.54 41 −58 53
Ventral medial PFC L/R 5.07 0 51 −12
Visual cortex L/R 4.60 31 −93 −7

Negative > positive
Dorsal anterior cingulate cortex L/R 4.43 6 21 31
Anterior insula L 4.78 40 23 2

R  4.60 −41 17 −1
Positive alternative > positive correct

Ventral  striatum L/R 4.43 −14 8 −4
Regression IQ [positive alternative > positive correct]

Dorsal anterior cingulate cortex L/R 5.03 −3 24 35
Dorsolateral prefrontal cortex R  5.71 45 21 26
Superior parietal cortex R 4.23 37 −59 50
Superior frontal gyrus R 4.11 19 58 21
Middle occiptial gyrus R 4.16 24 −78 15

Fig. 4. (A) Showing the parietal cortex, rDLPFC and dACC regions that were identified by the functional regression analyses with IQ, threshold at p < .001,
k  > 10 voxels. (B) Scatterplots showing the relation between IQ and parameter estimates for the [positive feedback (alternative) − positive feedback (correct)]
contrast  in the rDLPFC and dACC. Red colored dots and line represent the pre-vocational sub-group and the green dots and line represent the pre-university
subgroup.  (C) Graphs showing the differences in patterns of feedback related BOLD response in the dACC for the two different educational level (pre-
vocational  and pre-university) subgroups with similar IQ (IIa and IIb). (For interpretation of the references to color in this figure legend, the reader is
referred  to the web  version of the article.)
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Fig. 5. (A) Cortical map  showing: (1) a blue colored mask that identifies all
cortical areas that showed a significant correlation between grey matter
volume and IQ, (2) a red colored mask showing rDPLFC, dACC and pari-
etal cortex from the functional regression analyses, and (3) a purple mask
showing the overlap between masks 1 and 2. (B) Representation of the
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orrelation between IQ and average grey matter volumes for the three
egions of interest. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of the article.)

F(1,11) = 4.84, p < .02) but did not differentiate between
ule types (F(1,11) < 1.0, p = .58). In contrast, in the pre-
niversity group, the dACC was sensitive to rule type such
hat  activity was higher following feedback from the alter-
ative  rule compared to the correct rule (F(1,11) = 7.23,

 < .01) but not to valence (F(1,11) < 1.0, p = .41, see Fig. 4C).3

aken together, activity following positive feedback in
DLPFC  correlated with IQ, independent of the school
rom which the participants were recruited. Activity in the
ACC  also correlated with IQ, but seemed to have a slightly
ifferent activation pattern for the two school types.

.3.  Voxel based morphometry

VBM  analyses yielded significant correlations between
Q  and the estimated grey matter volume in several regions
cross  the whole brain (see Supplementary Fig. S1). Most
ortical  regions showed a positive correlation between
Q  and grey matter volume. This relation indicates that
he  children with a higher IQ have larger cortical grey

atter volume than those with a lower IQ. A negative
orrelation between IQ and grey matter was found in bilat-
ral  hippocampus/amygdala, left ventral striatum, bilateral
erebellum, and left temporal pole. Thus, these structures
ave a higher grey matter volume for participants with a

ower  IQ compared to those with a higher IQ.
As can be seen in Fig. 5, the cortical brain areas for

hich the grey matter volume positively correlated with

Q  overlap with the two functionally defined ROIs (dACC
nd  rDLPFC). To further investigate the relation between
Q  and grey matter volume in these ROIs, we extracted the

3 We  have additionally performed the same set of analyses on the DLPFC
nd dACC ROIs that were extracted from the [POS-NEG] and [NEG-POS]
ontrasts (reported in Table 2). These analyses revealed the same results
all p’s < .02) for both the effects of education and IQ.
ve Neuroscience 2S (2012) S78– S89

regional estimated grey matter volume for each participant
and  correlated this with IQ level (see Fig. 5).

Given the IQ-related grey matter differences, we
tested whether functional activation differences could be
explained  by local changes in grey matter volume using
BPM.  These analyses show that although there are IQ
related differences in cortical gray matter, these do not
explain the IQ related changes in functional activity (see
Fig.  S2).

4.  Discussion

The goal of this study was  to examine individual differ-
ences in performance monitoring in adolescents in relation
to  varying IQ scores and different educational backgrounds.
The correlations between neural activity and IQ, and the
comparisons of adolescents from pre-vocational and pre-
university education resulted in a set of behavioral and
neural  differences. Behavioral analyses resulted in two
important patterns: (1) IQ was positively correlated with
overall  accuracy on the last 60 trials of the task, and (2)
these  IQ related changes in learning were due to differ-
ences in shifting strategy in relation to positive, but not
negative feedback. Specifically, the differences in shifting
strategies showed that participants with a higher IQ were
more  likely to stay with the same rule after positive feed-
back  when selecting the correct rule, but were more likely
to  switch away after positive feedback when selecting the
alternative rule. Both are optimal shifting strategies and
thus  they contribute to the increased accuracy levels. The
IQ  difference in win-stay decisions in context of the correct
rule  are comparable to the age related increase in win-stay
decisions that was reported in a prior developmental study
with  the same task (van den Bos et al., 2009).

4.1. Brain function in relation to IQ and education

Based on the results from previous functional and struc-
tural  imaging studies we  examined whether adolescents
with higher IQ have a pattern of neural activation that
allows for greater flexibility for learning (Shaw et al., 2006).
Based  on previous studies (van den Bos et al., 2009; Van
Duijvenvoorde et al., 2008) differences were expected to
occur  in the key areas of the performance monitoring net-
work:  the right DLPFC and the dACC.

4.1.1. Right DLPFC
The  results showed that for those participants with

higher IQ there was more activity in the rDLPFC when
receiving positive feedback after selecting the alterna-
tive vs. the correct rule. The pattern of activity for the
higher IQ participants is most similar to that of 10–12-
year-old children in a previous developmental study (see
van  den Bos et al., 2009). In addition, higher activa-
tion in DLPFC for positive feedback was  also reported
for younger (8–9 years) children relative to older chil-
dren (11–13 years) and adults (18–25 years) in a different

study on feedback-based rule learning (Van Duijvenvoorde
et al., 2008). In that sense, the high IQ adolescents
showed a pattern of activation that was tuned towards
positive feedback, similar to younger children in prior
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studies. This comparison with prior studies suggests
that the current results support a prolonged, rather
than advanced maturation hypothesis of IQ related brain
changes (see also Shaw et al., 2006). In adolescence, indi-
viduals  with higher IQ may  be more focused on exploring
alternative actions.

Prior  research suggests that developmental differences
in positive and negative feedback adjustment are the result
of  differences in attention regulation (Somsen, 2007). Fol-
lowing  this hypothesis, the current results suggest that the
individual  differences in IQ are related to a focus on differ-
ent  information value of positive feedback signals. Whereas
adolescents with a higher IQ focus on positive feedback
when exploring the alternative rule (thus the feedback
containing informative value for exploration), the adoles-
cents  with a lower IQ seem to focus on positive feedback
that confirms the already learned correct rule. Possibly, the
adolescents with higher IQ were better at differentiating
between positive feedback that is expected and positive
feedback that is unexpected. An increased attention sys-
tem  for unexpected positive feedback can be advantageous
when exploring alternative actions. The adolescents with
higher  IQ were also better able to switch following positive
feedback when choosing the alternative rule. As a result,
the  adolescents with a lower IQ may  be less able to update
the  relevant feedback information from alternative rules,
and  therefore they are possibly less flexible in selecting
alternative actions.

4.1.2.  dACC
Similar to the rDLPFC, the dACC also showed an IQ

related increase in activity related to positive feedback after
selecting  the alternative rule. Again, this pattern of acti-
vation  is similar to the developmental pattern reported
previously (van den Bos et al., 2009; Van Duijvenvoorde
et al., 2008), supporting the delayed, or explorative matu-
ration  hypothesis of IQ related brain changes. Interestingly,
adolescents with higher IQ also showed an increase in
activation following negative feedback when sampling the
alternative  rule. In previous studies, dACC activity has been
related  to a more general role in detecting conflict (Brown
and  Braver, 2005), and signaling the need for behavioral
adjustment (Holroyd and Coles, 2008; Kerns et al., 2004;
Rushworth, 2008). This suggests that the adolescents with
a  lower IQ are possibly less able to identify the relevant
feedback information and they show an activation pattern
in  the dACC which is sensitive to negative feedback in gen-
eral  (also when it should be ignored), whereas the higher
IQ  adolescents only show dACC activity when there is need
for  behavioral adjustment (after selecting the alternative
rule).

Exploratory analyses revealed that when comparing
groups of similar IQ, but from different school systems,
feedback related activity in the dACC was also differentially
sensitive to the type/level of education. The exact reason for
this  difference is not yet understood but point in the direc-
tion  of an influence of environmental factors, although it

should  be noted that the participants were all recruited
from different schools. This suggests that the role of the
school  system on brain function and its development is an
interesting avenue for future studies.
ive Neuroscience 2S (2012) S78– S89 87

Finally, learning theories have suggested that two sep-
arate  learning strategies contribute to feedback based
learning (Daw et al., 2005; Maia, 2009): a model-based
strategy that operates on explicit task representations, such
as  rules describing the reward contingencies given the
current  state (associated with DLPFC and dACC), and a
model-free strategy that uses feedback directly to compute
action  values without any explicit model of the envi-
ronment (associated with striatum and VMPFC). For the
current  study we  decided to focus on the rule-based net-
work  given that the majority of the current literature
on development of IQ is related to executive function-
ing (cf. van den Bos et al., 2009). However, a model-free
reinforcement learning analysis of the same task sug-
gests there are also important developmental changes in
striatum-VMPFC connectivity that underlie differences in
learning  the reward contingencies (van den Bos et al.,
2011). Although such analyses are beyond the scope of
the  current paper, the challenge for future studies will be
to  understand how differences in reinforcement learning
mechanisms may  contribute to IQ related changes in feed-
back  learning.

4.2.  Brain structure in relation to IQ and education

In the current study VBM analyses were performed,
which revealed that grey matter volume was positively
correlated with IQ in many parts of the cortex, including
the functionally defined dACC and rDLPFC ROIs. Although
several studies with adolescents have confirmed the pos-
itive  relation between grey matter and intelligence (Shaw
et  al., 2006; Pangelinan et al., 2011), the exact relation
between the quantity of grey matter and the quality of
cognitive functions is still not well understood (Deary
et  al., 2010). Possibly, individuals with a higher IQ show a
prolonged  period of synaptic overproduction and pruning
during  adolescence, which is reflected by increased grey
matter  volumes (Shaw et al., 2006). In turn, this prolonged
period of plasticity is thought to contribute to increased
capacity for flexibility and learning (Johnston et al., 2009).
The  combined results of the functional and structural anal-
yses  in this study are in line with these hypotheses. First,
both  the rDLPFC and the dACC showed activation patterns
that  suggest that a high IQ is related to faster learning,
increased flexibility and adaptive behavior. Second, the
grey  matter volume of these same areas correlated sig-
nificantly with IQ. However, note that our analyses also
revealed that grey matter volume by itself could not fully
explain  the changes in brain function. In future studies it
will  therefore be important to further investigate the rela-
tion  between brain structure, function and IQ, for instance
by  incorporating structural connectivity analyses (Jung and
Haier,  2007; Schmithorst et al., 2005).

4.3. Conclusions and implications for education

The current study has shown that whether higher

intelligence is associated with advanced or less ‘mature’
patterns of brain activity depends on the specific compo-
nent  of the task being examined, as well as on the neural
areas involved. We  aimed to show that, rather than a static
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apacity difference, intelligence is related to the capacity of
refrontal  areas to dynamically adapt to task demands and
nvironmental contingencies. Therefore, our data support
he  hypothesis that the dynamic properties of these corti-
al  areas are related to a prolonged developmental period
f  cortical plasticity associated with a higher IQ.

These results have potentially important implications
or educational practice (Goswami, 2006; Blakemore,
010). It has been shown that executive functions, even
ore  than IQ (Blair and Razza, 2007), are strongly related to

apacities  deemed to be important in school learning such
s  numerical processing (Qin et al., 2004) and reading com-
rehension (Schlaggar and Church, 2009). Furthermore, a
eries  of neuroimaging studies in adolescents and children
ave  shown that these capacities rely on the same brain
reas that are associated with executive functions (for a
eta-analysis, see Houdé et al., 2010). A better under-

tanding of the individual differences in functioning of the
ognitive  control network in relation to IQ and age period
ay  contribute to a better understanding of how to develop

pecific training programs to improve school performance
Diamond et al., 2007).

ppendix  A. Supplementary data

Supplementary data associated with this arti-
le can be found, in the online version, at
oi:10.1016/j.dcn.2011.09.007.
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