Table 4.
Brain structure | Model fit |
|||||
---|---|---|---|---|---|---|
Linear |
Quadratica |
|||||
R-square |
R-square |
|||||
All | Males | Females | All | Males | Females | |
Amygdala | 0.0003 | |||||
Caudate nucleus | 0.001 | |||||
Nucleus accumbens | 0.007 | |||||
Hippocampus | 0.001 | |||||
Pallidum | 0.001 | |||||
Putamen | 0.06*** | |||||
Thalamus | 0.028*** | |||||
Lateral ventricles | 0.123*** | |||||
3rd ventricle | 0.053*** | 0.066*** | 0.046** | |||
4th ventricle | 0.005 | |||||
Cerebellum GM | 0.088*** | |||||
Cerebellum WM | 0.073*** | |||||
Total GMb | 0.283*** | 0.43*** | 0.15*** | 0.324*** | ||
Total WMb | 0.193*** | 0.13*** | 0.278*** | |||
Intracranium | 0.01* | 0.05 | 0.026** | |||
Total brain | 0.029*** | |||||
ACC surface area | 0.0002 | 0.015 | 0.011 | |||
ACC GMb | 0.114*** | 0.123*** | ||||
acc thickness | 0.215*** | |||||
Frontal surface areab | 0.04*** | 0.144*** | 0.0001 | 0.055*** | 0.161*** | |
Frontal GMb | 0.383*** | 0.49*** | 0.274*** | 0.405*** | 0.518*** | |
Frontal thickness | 0.288*** | |||||
Temporal surface areab | 0.027** | 0.103*** | 0.0001 | 0.06*** | 0.125*** | |
Temporal GMb | 0.166*** | 0.255*** | 0.089*** | 0.198*** | 0.285*** | 0.114** |
Temporal thickness | 0.169*** | |||||
Parietal surface areab | 0.08*** | 0.211*** | 0.007 | 0.142*** | 0.273*** | |
Parietal GMb | 0.401*** | 0.506*** | 0.296*** | 0.471*** | 0.574*** | 0.354*** |
Parietal thickness | 0.404*** | 0.416*** | ||||
Occipital surface areab | 0.011* | 0.055*** | ||||
Occipital GMb | 0.192*** | 0.261*** | 0.123*** | 0.256*** | 0.318*** | 0.185*** |
Occipital thickness | 0.389*** | 0.411*** |
Abbreviations: GM, gray matter; WM, white matter. A non-significant R-square indicates that the regression line is not different from zero.
All quadratic fits were significantly better than linear fits based on F-ratio derived from “extra sum-of-squares method”. Obtained p-values of the F-ratio indicate if the simpler linear model is really correct, and the chance that randomly obtained data would show a better fit to a more complicated (quadratic) model. Low p-values indicate that the quadratic model is significantly better than the linear model Motulsky and Christopoulos (2004, p. 141).
Trajectories differed significantly between sexes.
p < 0.05.
p < 0.01.
p < 0.001.